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ABSTRACT Post-transcriptional modification such as N6-methyladenosine (m6A) has a crucial role in
the stability and regulation of gene expression. Therefore, the identification of m6A is highly required
for understanding the functional mechanisms of biological processes. Several machine learning techniques
based on handy craft feature extraction methods have been proposed to facilitate the laborious work.
However, due to the inefficient feature extraction, these techniques increase the computational complexity
and thereby affect the identification accuracy ofm6A.This paper proposes a fast and reliable predictivemodel
for the identification of m6A sites. The proposed model is based on the convolutional neural network (CNN)
which extracts the most significant features from the RNA sequences encoded by concatenating one-
hot and nucleotide chemical properties. The proposed model is applied and tested on multiple species
benchmark datasets and evaluated against the state-of-art predictive models. The results indicate that
the proposed model achieves high accuracy of 93.6 %, 93.8 %, 85.0 % and 92.5 % on the benchmark
datasets of Homo sapiens (H.sapien),Mus musculus (M.musculs), Saccharomyces cerevisiae (S.cerevisiae),
and Arabidopsis thaliana (A.thaliana), respectively.The proposed model could be used to facilitate the
researcher’s community in m6A identification. In addition, an easy to use web server is made available
at https://home.jbnu.ac.kr/NSCL/pm6acnn.htm.

INDEX TERMS Post-transcription modification, RNAmethylation, sequence analysis, convolutional neural
network, deep learning.

I. INTRODUCTION
Methyladenosine (m6A) is the most frequently occurring
RNAmodification amongmore than 160RNAmodifications.
It exists in eukaryotes including yeast, insects and mam-
mals [1]–[5]. The m6A is the adenosine base methylated at
the sixth position of the nitrogen. The m6A is associated
with various biological processes including RNA structural
dynamics [6], cell differentiation, and reprogramming [5],
localization and degradation of RNA [7], alternative splicing
[8], circadian clock regulation [9] and primary microRNA
processing [10], Therefore, the understanding of the func-
tional mechanism of this biological process is vital. In recent
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past, to identify m6A sites, high-throughput experimental
methods were utilized such as m6A-seq [11] and MeRIP-Seq
[12]. The m6A-seq provides mouse and human m6A modi-
fication landscape in a transcriptome-wide manner depend-
ing on massively parallel sequencing and antibody-mediated
capture. While MeRIP-Seq identifies the transcripts which
are adenosine methylation substrates and provides an under-
standing of mammalian transcriptome epigenetic regulation.
The experimental methods are inefficient in cost and time as
well as incompetent locating the position ofm6A site.We aim
to overcome the shortfall in the efficient identification of the
m6A sites accurately and rapidly. Therefore, The develop-
ment of computational models is very crucial.

Most of the previous works relied on machine learning and
hand-crafted features. Chen et al. [13], [14] proposed two
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SVM models for m6A identification in S.cerevisiae using
nucleotide chemical properties (NCP) with nucleotide fre-
quency and pseudo nucleotide composition. Liu et al. [15]
used physical-chemical properties with the SVM model for
m6A identification in S.cerevisiae. MethyRNA [16] was pro-
posed to find m6A sites in H.sapiens and M.musculus using
SVM and NCP with nucleotide frequency. iMethyl-STTNC
[17] utilized split-tetra-nucleotide composition with SVM
for m6A sites identification in H.sapiens and S.cerevisiae.
M6AMRFS [18] used the dinucleotide binary encoding
with the eXtreme Gradient Boosting algorithm for m6A
identification in H.sapiens, M.musculus, S.cerevisiae, and
A.thalinia. iMRM [19] used the NCP with the eXtreme Gra-
dient Boosting algorithm form6A identification inH.sapiens,
M.musculus, and S.cerevisiae. The aforementioned machine
learning-based algorithms were mainly oriented upon the
handy crafted features that require the domain knowledge for
accurate prediction of the proposed predictor. These features
are fabricated in such a way that the information regarding
the pattern in the sequence must be maintained. Whereas the
deep learning-based computational architectures are capable
of extracting the most important features from the sequences
without any human intervention which leads to a significantly
accurate and robust computational model. Currently, the deep
learning-based models achieve remarkable results in the field
of natural language processing [20], [21], image recognition
[22], [23], speech recognition [24] and also in the field of
computational biology [25]–[33].

Nazari et al. proposed iN6-Methyl (5-step) [34] in which
they utilized the deep learning-based CNN architecture for
the prediction of m6A sites in the benchmark datasets of
H.sapiens, M.musculus, and S.cerevisiae. They extracted the
feature using a word2vec model, which is a natural language
processingmodel inwhich each sequence ismanually divided
intowords having a length of k using a k-mer technique. The k
was set to 3 and each word wasmapped into its corresponding
feature representation. The word2vec has to be trained on the
whole-genome to produce a vector space, therefore, it is a
computationally costly and time-consuming process.

In this regard, to fill the gaps in terms of performance
and computational cost in existing computational models,
we propose a simple and efficient CNN-based architecture
for the identification of m6A sites in RNA sequences. We call
it pm6A-CNN. The input RNA sequences are represented by
the combination of one-hot encoding and nucleotide chemical
properties (NCP). The nucleotide chemical properties are the
most basic representation of nucleotides with respect to the
functional groups, hydrogen bond and ring structure. The
architecture of CNN is able to extract the most important
features from RNA sequences representation automatically
which enables the pm6A-CNN to identify the m6A sites
more accurately and robustly. The grid search algorithm is
utilized to select the optimum hyper-parameters of the pm6A-
CNN. The performance of pm6A-CNN is evaluated using
subsampling (k-fold cross-validation) method by setting the
value of k to 10 for keeping the consistency with state of

TABLE 1. The summary of multiple species benchmark datasets.

the art models. As an achievement, the pm6A-CNN outper-
formed the existing computational models. Finally, a user-
friendly web server is constructed and made available at
https://home.jbnu.ac.kr/NSCL/pm6acnn.htm.

II. MATERIALS AND METHODS
This section includes the benchmark dataset, the proposed
model and the performance evaluation.

A. BENCHMARK DATASET
In this study, we used four different species benchmark
datasets which are namelyH.sapien,M.musculs, S.cerevisiae,
and A.thaliana. All sequences of these four benchmark
datasets have Adenines at the center. The positive sequences
have experimentally validated methyladenosine (m6A) sites
whereas the negative ones are not methyladenosine (m6A)
sites. The H.sapiens benchmark dataset was prepared by
Chen et al. [16] in 2017, consisting of 1130 positive
sequences and 1130 negative sequences with the length
of 41nt for each sequence. Dominissini et al. [11] in 2012 pre-
pared theM.musculus benchmark dataset where the length of
each sequence is 41nt. The benchmark dataset ofM.musculus
contains 725 positive sequences and 725 negative sequences.
Chen et al. [13] created the benchmark dataset of the
S.cerevisiae in 2015. It includes 1307 positive sequences and
1307 negative sequences where the length of each sequence
is 51nt. The benchmark dataset of A.thaliana was prepared
by Wang and Yan [35] in 2018. It includes 2100 positive
sequences and 2100 negative sequences and the length of each
sequence is 101nt. The summary of the benchmark datasets is
listed in Table 1. In this paper, we used k-fold cross-validation
in order to evaluate the performance of the proposed model.
According to the recent literature for computational mod-
els, evaluation of the model using k-fold cross-validation or
jackknife test, having a testing dataset is not mandatory as
the outcome of k-fold combinations can be considered as
different independent test datasets.

B. THE PROPOSED MODEL
We propose a deep learning-based CNN architecture that
takes RNA sequence as an input as shown in Figure 1.

The optimum hyper-parameters are found using a grid
search method. The ranges of hyper-parameters are enlisted
in Table 2.

The RNA sequence is represented by the combination of
two commonly used encoding techniques one-hot encoding
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FIGURE 1. Illustration of the proposed model pm6A-CNN.

TABLE 2. The ranges of the tuned hyper-parameters.

and nucleotide chemical properties (NCP). In one-hot encod-
ing A is represented as (1,0,0,0), C is represented as (0,1,0,0),
G is represented as (0,0,1,0) and U is represented as (0,0,0,1).
While NCP is the representation of each nucleotide in the
RNA sequence based on their three chemical groups in the
three-dimensional Cartesian coordinate system. As each of
the four nucleotides in the RNA sequences namely, Adenine
(A), Cytosine (C), Guanine (G) and Uracil (U) consists of
different chemical properties. Considering the ring structures,
A and G are purines consisting of two rings. While C and
U are pyrimidines consisting of one ring. In terms of sec-
ondary structure formation, the bonds between A and U are
weak hydrogen bonds whereas between C and G are strong
hydrogen bonds. Also, regarding the chemical functionality,
A and C can be grouped into an amino group, while G and U
into a group called the keto group. According to these three
chemical properties, the four nucleotides can be categorized
into three distinct groups which are represented in the three-
dimensional Cartesian coordinate system by assigning the
value of 1 or 0. Therefore, A is denoted by coordinates
(1, 1, 1), C is represented by coordinates (0, 1, 0), G is
represented by coordinates (1, 0, 0) and U is denoted by
coordinates (0, 0, 1). The visual representation of NCP is
shown in Figure 2.

FIGURE 2. Diagrammatic representation of nucleotide chemical
properties.

The vectors produced by utilizing one hot-encoding and
NCP are concatenated together resulting in representing the
RNA sequence by a seven-channel vector. The resulted vector
is passed to a CNN model with two Conv1D layers and two
fully connected layers. Each Conv1D layer is followed by
a ReLU nonlinear activation function. In addition, the first
Conv1D is followed by a group normalization [36] by setting
the size of the group to four. The learned features using the
two convolution layers are passed to the dropout layer with a
dropout rate of 0.5 and then to two fully connected layers. The
first fully connected layer is followed by a ReLU activation
function. The second fully connected layer is a one-node layer
with a sigmoid activation function. L2 regularization method
is used for weights and bias of the filters to avoid overfitting.
Adam optimizer with the learning rate of 0.001 is utilized
for model optimization. The binary cross-entropy is utilized
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as a loss function. The Batch size of 32 and early stopping
based on validation loss is utilized for the maximum number
of training iterations. Keras [37] framework is utilized for the
implementation of the proposed model pm6A-CNN.

Conv(S)ij = ReLU
( Z−1∑

s=0

I−1∑
n=0

W k
snSj+s,n

)
(1)

Equation 1 represents Conv1Dwhere S represents the input
of the RNA sample, k denotes the index of the filter, and j
denotes the index of the output position. EachW k is convolu-
tion filter having Z× I weight matrix, where Z represents the
size of the filter while I denotes the number of input channels.

f = wd+1
d∑
k=1

mkwkzk (2)

Equation 2 represents the dense layer where wd+1 is an
additive bias term, mk shows the dropout operator which is
appraised from Bernoulli distribution, zk is the 1×d dimen-
sional feature vector, and wk denotes the weight of zk from
the previous layer.

ReLU(x) =

{
x if x > 0
0 if x ≤ 0

(3)

Equation 3 shows the ReLU activation function where x is
the input.

Sigmoid(x) =
1

1+ e−x
(4)

Equation 4 is the representation of the sigmoid activation
function.

C. PERFORMANCE EVALUATION
To evaluate the performance of our proposed model we
utilized the 10-fold cross-validation technique. The bench-
mark datasets were divided into ten mutually exclusive folds.
Where one fold is reserved for testing of the proposed model,
one fold for validation of themodel, while the remaining folds
were used for training of the proposed model. This is a recur-
sive process which occurs ten times. The final approximation
of the performance was taken into account by taking the aver-
age outcome of ten folds. The common performance metrics
used in this study and several existing computational models
[38]–[41] are Accuracy (ACC), Sensitivity (SN), Specificity
(SP), and Mathew’s correlation coefficient (MCC). These
performance metrics are formulated as:

ACC = 1− (
N+− + N

−

+

N+ + N−
) (5)

SN = 1− (
N+−
N+

) (6)

SP = 1− (
N−+
N−

) (7)

MCC =
1− (N

+
−+N

−
+

N++N− )√
(1+ N−+−N

+
−

N+ )(1+ N+−−N
−
+

N− )
(8)

TABLE 3. The performance of the proposed model using different
sequence representation methods.

FIGURE 3. The performance of the proposed model using different
feature representation.

where N+ is the representation of methyladenosine sties
while non-methyladenosine sites are represented by N−. N−+
represents the methyladenosine sites incorrectly identified as
non- methyladenosine. N+− states the number of non- methy-
ladenosine site that was predicted as methyladenosine sties.

III. RESULTS AND DISCUSSION
The proposed model was evaluated using the 10-folds cross-
validation on four species benchmark datasets. In order to
study the effectiveness of incorporating nucleotide chemi-
cal properties, we conducted three experiments. The first
experiment used only a one-hot encoding for RNA sequence
representation. The second experiment used only nucleotide
chemical properties encoding for RNA sequence representa-
tion. The third experiment integrated the representation of
both encoding methods (one-hot and nucleotide chemical
properties). The results of these experiments are shown in
Figure 3 and Table 3.

It can be seen that the integrated representation produced
better results in the identification of m6A sites. Further-
more, Figure 4 shows the AUC of the proposed model
along with standard deviation errors in 10 folds using the
benchmark datasets of H.sapiens, M.musculus, S.cerevisiae,
and A.thaliana. The confusion matrix of the proposed model
is also visualized in Figure 5. Moreover, to assess the
dominance of the pm6A-CNN on the base of performance.
We compared our model with the best known existing
computational models including iMRM [19], iN6-Methyl
(5-step) [34], M6AMRFS [18], and RFAthM6A [35]. The
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FIGURE 4. The auROC of the proposed model for multiple species.

FIGURE 5. The confusion matrix of proposed model for multiple species.

iMRM [19] and iN6-Methyl (5-step) [34] used only three
benchmark datasets including H.sapiens, M.musculus, and
S.cerevisiae and outperformed theM6AMRFS [18]. Whereas
the RFAthM6A [35] showed a higher performance in compar-
ison to M6AMRFS [18] by utilizing only the fourth bench-
mark dataset i.e. A.thaliana. The comparison between the
computational models is illustrated in Table 4 and Figure 6.

TABLE 4. Summary outcomes of proposed model pm6A-CNN comparison
with the existing computational models.

The ’-’ sign in Table 4 means that it was not possible to obtain
these metrics for the corresponding tools.

It is depicted that our proposed model outperformed all
other competing methods. The performance of the proposed
model for H.sapiens, and M.musculus benchmark datasets is
higher than the state-of-the-art model iN6-Methyl (5-step)
[34]. For theH.sapiens benchmark dataset, the improvements
in terms of ACC, SN, MCC, and AUC are 2.5%, 6.5%,
4.3%, and 6.2%, respectively. In the benchmark dataset of
M.musculus, the improvements in ACC, SN, MCC, and AUC
are 4.3%, 11.9%, 7.3% and 5.8%, respectively. Whereas for
the benchmark dataset of S.cerevisiae, the proposed model
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FIGURE 6. Illustration of comparison between the proposed model and
existing models for the multiple species.

outperformed iMRM [19] in all the performance metrics
ACC, SN, SP, MCC, and AUC by 7.3%, 7.6%, 7.5%, 15.6%,
and 7.4%, respectively. Finally, for the benchmark dataset of
A.thaliana, the proposed model improved ACC, SN, SP, and
MCC by 7.1%,5.0%,9.1%,14.1%, respectively. The achieved
results of the proposed model in terms of all performance
metrics for all the benchmark datasets show the robustness
of the proposed model in the identification of m6A site using
the combination of two different encoding techniques for the
representation of RNA sequences.

IV. WEB-SERVER
The proposed model has been made available for free
access at https://home.jbnu.ac.kr/NSCL/pm6acnn.htm. This
web server supports processing direct sequence inputs as well
as uploading Fasta files. The webserver was built using the
Flask library in Python.

V. CONCLUSION
In this study, we proposed an efficient deep learning-based
CNN architecture for the identification of m6A sites in mul-
tiple species. The CNN based predictor extracts the most
important features by utilizing the combination of one-hot
encoding and nucleotide chemical properties for the repre-
sentation of RNA sequences. This combination helped the
predictor to accomplishmore effective and efficient outcomes
for the identification of m6A sites. Moreover, it is anticipated
that the established predictor along with webserver would
be effective facilitation for the researchers to explore the
functional procedure of m6A sites.
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