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ABSTRACT Modeling individual and crowd behaviors is the basis for evacuation research, which is essential
to reduce casualties under emergency conditions in large venues. This paper focuses on the pedestrian
evacuation of large-scale venues with multiple exits, and proposes an improved pedestrian evacuation model
which uses a novel dual-strategy adaptive particle swarm optimization algorithm with affinity propagation
clustering. Compared with the traditional models, the proposed model is demonstrated to have a better
performance in simulating pedestrians’ herding behavior in panic situations, especially when not familiar
with the environment, as i) individual heterogeneity is considered and affinity propagation clustering is
used in population division to simulate the process of people spontaneously gathering into swarms; ii) A
dual-strategy updating scheme is designed to balance the cognition difference between the leaders and the
agents in the swarm; and iii) Adaptive control of parameters is used to simulate the human-surrounding
interaction and psychological fluctuates when the evacuees are moving towards exits. Numerical examples,
which simulated the evacuation of a rectangle venue with multiple exits, demonstrate the effectiveness and
practicality of the proposed model. Moreover, the influences of pedestrian velocity, characteristics of exits,
and leader movement on evacuation are analyzed. Experimental results show that the movement of leaders
is different from other evacuees and the parameters of doors, such as width, quantity, and location all have
a great influence on evacuation time.

INDEX TERMS Pedestrian evacuation, crowd behavior, particle swarm optimization, cellular automaton.

I. INTRODUCTION
Emergency evacuation and pedestrian dynamics have drawn
attention to researchers in different areas, with the goal of
understanding and mitigating the risks of scenarios when
people are exposed to natural disasters (e.g. earthquake,
fire, flood, etc.), or threatened by terrorists in enclosed
public spaces such as museums, libraries, and stadiums.
Take the fire evacuation as an example, the statistics of the
U.S. Fire Administration indicate that about 1,319,500 fires
occurred in American in 2017, which led to 3,400 deaths and
14,670 injuries in total. Long evacuation time and high panic
degrees may appear when disasters happen in large public
places, especially when pedestrians are not familiar with
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the environment. Stampeded pedestrians caused by emer-
gency may result in greater casualties. While well-developed
emergency plans and proper guidelines will certainly have a
positive effect on improving evacuation efficiency and reduc-
ing damages, a good understanding of pedestrians’ dynam-
ics under emergency evacuation is the basis of evacuation
management. Simulation of pedestrian evacuation enables
researchers to mimic the entire evacuation process under
various emergency evacuation conditions, which will directly
support the development of emergency evacuation plans.

Research on pedestrian evacuation simulation can be
categorized into seven main categories, according to their
modeling approaches as shown in Table 1. Early works on
evacuation modeling focused on the physical features of the
building. However, this kind of model ignored the initial state
and individual differences of pedestrians, which resulted in an
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TABLE 1. Comparison of researches in different fields.

inaccurate estimation of the evacuation time, such as [1], [2].
With the advancement in computer computation capabilities,
the more complicated computation can be handled. Both fea-
tures of buildings and response of pedestrians under different
situations were taken into account, such as network flow
models [3], [4], agent-based models [5], [6], game theory
models [7], [10], cellular automaton models [11], [17], lattice
gas models [19], [21], social force models [22], [26], and so
on. These models are summarized in Table 1.

The exit choice of evacuation for pedestrians in large
venues with multiple exits is a significant problem to study.
Lo et al. [8] proposed a non-cooperative game theory based
exit choice model. Fu et al. [9] improved the least effort
algorithm and considered crowd density around the exits
to simulate the exit selection process in the evacuation.
Ehtamo et al. [10] proposed an exit selection model based on
the game-theoretic concept of best response dynamics, where
each pedestrian updated the strategy periodically according to
the strategies of others.

Evolution algorithms have also been applied in evacua-
tion modeling. In [27], [28], the authors proposed a method
using improved artificial bee colony for the path planning
and exit selection of pedestrians to reduce the evacuation
time. Goto et al. [29] proposed to utilize ant colony optimiza-
tion in wide-area complex evacuation scenario considering
the danger zones when natural disasters happen. However,
these papers assumed that the pedestrians are highly familiar
with the environment and rational enough to identify the
optimal path, which may not be the case in reality, espe-
cially when pedestrians are not familiar with the surrounding
environment.

Pedestrian evacuation in large enclosed public spaces like
museums is a tough problem because most pedestrians are
in panic and not familiar with the environment. In this sit-
uation, pedestrians tend to herd and follow others. There-
fore, in this paper, an evacuation model called Dual-Strategy
Adaptive Particle Swarm Optimization (DSAPSO), which
was based on particle swarm optimization (PSO) and cellular
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automaton (CA) was proposed, with the individual features
and behaviors taken into consideration. Moreover, to simu-
late the spontaneous gathering process in evacuation, affinity
propagation clustering (APC) was used to divide people into
heterogeneous groups as the swarms of the PSO, which can
better match the reality.

PSO [30] originates from the herding behavior in nature,
considering the cognition of both individuals and society
to pursue the collective goal, which is well suited for the
emergency evacuation. Many variants of PSO have been
developed over the last decades, for example, cooperative
co-evolving PSO [31] designed for high-dimensional prob-
lems and orthogonal PSO [32] used previous information
more efficiently. PSO is a classical optimization algorithm in
evolutionary computation, which has been applied in many
areas.Manasrah andAli [33] proposed schedules ofworkflow
in cloud computing with improved PSO. Jeong et al. [34]
utilized PSO to solve the combinatorial problems in power
systems. During the optimization process in PSO, each par-
ticle searches the optimal solution based on the cognition of
both itself and society. Comparing with other optimization
algorithms, this kind of cognitive behavior is a good fit for
crowd modeling. The position of each particle is updated
based on the velocity, which can be controlled and observed
easily. Moreover, All the other particles in the swarm are one-
way influenced by the particle with the best solution, which
can be considered as the leader [35]. There are a number
of applications of PSO used in evacuation, which mainly
focus on evacuation routing optimization with PSO [36],
[37]. However, few applications of PSO simulates social and
individual behavior in evacuation. In [17], a modified particle
swarm optimization based on human behavior model has
been proposed. And Tsai et al. [38] proposed a PSO-based
simulation framework to simulate in a simple way. However,
these works ignored the features of pedestrians and assumed
the velocity unchanged and global best individual varied with
time, which is not consistent with the reality.

Cellular Automata (CA) was used to describe the move-
ment of pedestrians in the proposed DSAPSO model. The
existing researches showed that CA quantifies the evacuation
venue with discrete cells [11]. It was Burstedde et al. [12]
that initially proposed to simulate pedestrian dynamics with
CA, which was widely considered as an efficient way
to mimic the behavior of people. It belonged to grid-
based models, which perform the movement of pedestri-
ans by a discrete process. In recent years, CA was used
in many studies about pedestrian behaviors on evacuations.
Pereira et al. [13] proposed a CA-based model considering
route changes and distance of pedestrians in a group, allowing
the pedestrians to change their directions and move to the
exit together. In order to avoid collision during the evac-
uation process, Suma et al. [14] studied the anticipation
influence in pedestrian dynamics. Furthermore, Yanagisawa
and Nishinari [15] analyzed the suitable position of the
exits and the outflow of exits. Some researches focused on
the dynamics of a certain area, for example, Liu et al. [16]

proposed a modified CA model to study the density near the
exits.

The abovementioned studies mainly focused on individual
behavior, like competition with people nearby [7], exit selec-
tion [8], direction control [13], and obstacle avoidance [16].
However, the behaviors of pedestrians on evacuation include
not only the individual behaviors but also the social behav-
iors, such as the leader impact. Pedestrians tend to huddle
when the emergency happens in the real-world, especially in
large enclosed spaces where they are not familiar with the
surroundings. On one hand, pedestrians that belong to the
same group like family members, tourist groups are more
likely to leave together, which forms evacuation groups. On
the other hand, the trained staff in these places will guide
the people nearby to evacuate, which forms other groups.
Visitors who are alone and not familiar with buildings also
tend to follow other groups. Yang et al. [23] proposed the
guides are necessary and of value in the evacuation process.
There are many works related to guidance in the evacuation
process. Hou et al. [24] stressed the significance of leaders in
the emergency scheme, particularly in large enclosed spaces.
Yang et al. [25] proposed a modified social force model
for guided crowd evacuation. In these models, guides are
mostly related to trained staff members. However, visitors
who are familiar with the environment can also play the role
of leaders in pedestrian emergency evacuation. Therefore,
the proposed DSAPSO model uses APC for population par-
tition and improved PSO algorithm for evacuation strategy
generation to simulate the evacuation of pedestrians in an
emergency at large venues with multiple exits. Moreover,
individual and social features are taken into consideration on
the movement simulation using CA. The proposed models
can provide supports for layout optimization of exits and
management of pedestrian evacuation at large venues.

The novelties of this model are listed below
1) Combine the concept of APC and PSO with CA mod-

els to simulate pedestrian emergency evacuation. The
concept of APC is used for population partition and the
improved PSO algorithm and CAmodel are used to sim-
ulate the social and individual behavior in evacuation.

2) Consider the individual difference. The imparity of
pedestrians are considered such as age, mobility ability,
environmental familiarity, and psychological quality in
CA models to simulate the evacuation of pedestrians at
large venues. Comparing to the traditional CA models
in which the individuals are mostly considered identi-
cal with uniform velocity and moving behaviors, the
proposed model considers more social and individual
behaviors.

3) Utilize a novel partition method APC to simulate
the clustering process of pedestrians into groups in
emergency evacuation. The proposed method does not
require a predefined number for the clusters and simu-
lates the clustering process more naturally and precisely.

4) Develop dual-strategy and Adaptive PSO for updating
the leaders and the other pedestrians. In view of the
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differences between leaders and the other pedestrians,
positions are updated in a dual-strategy way. The leaders
can identify the best way out, while others are unfamiliar
with the environment andmaymovewith the pedestrians
around and their own experience. Hence, leaders play
a vital role in the evacuation process. Moreover, an
adaptive PSO model is proposed to tackle the situation
changes during the evacuation process.

The rest of the paper is organized as follows. In Section II,
the whole process of the proposed DSAPSO algorithm and
the details of its components are introduced. In Section III,
DSAPSO is adopted in a CA-based scenario considering the
main features and behaviors of pedestrains. Numerical results
are presented in Section IV and the conclusion is drawn in
Section V, respectively.

II. DSAPSO DESIGN
A. MODEL FRAMEWORK
The modeling process of DSAPSO is illustrated in
FIGURE 1. In thismodel, firstly, APC is utilized to cluster the
population (all the pedestrians in the venue) into a number of
groups with each group representing a swarm in PSO. After
clustering, each swarm selects the desirable exit and elects the
capable leader considering the characteristics of each pedes-
trian. Then Each swarm evolves and updates the positions of
the pedestrians based on DSAPSOmodel until all pedestrians
reach the exit. In the DSAPSO model, owing to the differ-
ent features, the leaders and other individuals update their
positions by different strategies called dual-strategy(DS). To
simulate the interaction between pedestrians and the environ-
ment, during the evacuation process, the parameters in the
proposed model change adaptively as the environment and
crowd distribution varies. The objective function is defined
as the minimization of the distance between the selected exit
and the position of each particle. The details of the formulated
problem will be shown in Section II-C.

B. APC BASED SWARM INITIALIZATION
To utilize DSAPSO in an emergency evacuation, the first step
is to cluster the pedestrians into a number of non-overlapping
groups which are the swarms in standard PSO.

The traditional clustering methods such as k-means clus-
tering and mean-shift clustering [39]–[41] are not the ideal
choices to our problem due to their sensitivity in some pre-
defined parameters like the number of clusters. The Affinity
Propagation Clustering (APC) method, which does not need
to predefine the number of clusters, considers all pedestrians
as potential exemplars and is demonstrated to yield a satis-
factory result in clustering [42].

APC is originally proposed by Frey and Dueck [42].
Instead of randomly electing some exemplars and then itera-
tively refining them, this method exchanges real-valued mes-
sages between individuals to acquire high-quality clusters.
Two kinds of messages are exchanged, responsibility and
availability. The responsibility r(i, k) is sent from individual i

FIGURE 1. The flowchart of DSAPSO.

FIGURE 2. Message-passing in APC. Sending responsibilities r (i, k) and
availabilities a(i, k) between the individuals.

to individual k , in which i is the current candidate exemplar,
and k is one of the other individuals. It is a reflection of the
suitable degree for individual i to serve as the exemplar of
individual k . The availability a(i, k) is sent from candidate
exemplar k to individual i, which shows the relative appro-
priate degree for individual i to choose individual k as its
exemplar considering the responsibilities from other support-
ing individuals to the candidate exemplar k . The message-
passing process is shown in FIGURE 2.

APC takes similarity s(i, k) between individual i and k as
the input, which is computed by using the negative squared
error (Eu-clidean distance): s(i, k) = −‖xi − xk‖2, and
xi is the location vector of individual i. In each iteration,
the responsibilities and availabilities are updated using the
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following rules

r(i, k)= s(i, k)− max
∀k ′,s.t.k ′ 6=k

{r(i, k ′)+ s(i, k ′)} (1)

a(i, k)=


min

{
0, r(k, k)+

∑
i′ 6∈{i,k}

max {0, r(i′, k)}
}

i 6= k∑
i′ 6=k

max {0, r(r ′, k)} i = k

(2)

where k ′ is another individual (k ′ = k). To avoid numerical
oscillations and utilize the previous messages, the value of
the last iteration is taken into account. Therefore, during the
message-passing procedure, each message is set to λ times of
its value from the last iteration plus (1−λ) times of its current
value computed in (1) and (2).

r(i, k) = λ× r(i, k)last + (1− λ)× r(i, k) (3)

a(i, k) = λ× a(i, k)last + (1− λ)× a(i, k) (4)

The iteration process may terminate after a predefined num-
ber of iterations mits, or when the clustering result stays
constant for a fixed number of iterations cits. To preserve
more messages from previous iterations, the parameter λ
is set as a relatively large number 0.9, which yields more
stable clustering results and reduces numerical oscillations.
Moreover, in the evacuation model, the parameters mits and
cits are set as 150 and 25 [42] respectively, as it can preserve
the accuracy of the results and alleviate the computational
burden at the meantime.

In order to partition all the individuals into swarms to
implement DSAPSO, the size of each swarm is set in the
range of [4, 50]. If the size of one swarm is too large, one
more APC will be performed within the swarm to satisfy the
limitation of swarm size. If the size of swarm is too small, it
will be merged with surrounding swarms.

C. PSO BASED OPTIMIZATION MODEL
Particle Swarm Optimization (PSO) is a stochastic global
optimization technique used to find the optimal region of
complex search space. Based on the research about the feed-
ing behavior of flocks of birds and groups of fish, PSO is ini-
tially proposed by Shi and Eberhart [30]. Imagine a scenario
where a bird flies around in a search space toward its goal,
it adjusts its position according to its own experience and
that of its surrounding companions. By learning both social
and individual behaviors, the bird tends to move towards the
most promising position. Essentially, PSO is an evolutionary
computation algorithm by simulating biological behavior in
nature.

In PSO, the swarm comprises of a group of particles, and
each particle is associated with two vectors, the velocity
vector Vi = [v1i , v

1
i , · · · , v

D
i ] and the position vector Xi =

[x1i , x
1
i , · · · , x

D
i ], where D stands for the dimensions of the

solution space. The fitness of each particle is determined
by the optimization function, and Xi is the position of the
particle, indicating a potential solution. In this problem, the

optimization function can be the distance from the particle
to the exit. Record the best solution of each swarm that
minimizes the optimization function of each particle pBest =
[pBest1, pBest2, · · · , pBestN ], and N is the number of parti-
cles in the swarm. Simultaneously, we record the best solution
of the whole swarm gBest . And each particle can update their
position based on the experience of its history pBesti and the
global best gBest . The evolutionary process performs in an
iterative way until the iteration number reaches I . And during
each iteration, the velocity and position are updated using the
following rules

vdi = ω × v
d
i + c1 × rand

d
1 × (pBestdi − x

d
i )

×c2 × randd1 × (gBestdi − x
d
i ) (5)

xdi = xdi + v
d
i (6)

where d is the current dimension, ω is the inertia weight [43],
c1 and c2 are acceleration coefficients, and randd1 and randd2
are random numbers generated independently within [0, 1].
The updating rules indicate that the velocity of particle i is
composed of three parts: the memory of its historic velocity,
the impact of its best position in history, and the global best
position. In these parameters, ω can influence the conver-
gence, where a relatively small ω has a good performance in
local searching and improves solution accuracy, while a larger
ω is more capable of global searching. c1 reflects the effect
of the optimal position of individual memory on speed during
the flight, which is the individual cognitive coefficient. c2
reflects the effect of the overall optimal position of the whole
group on the velocity, which is the social learning factor.
In practice, these parameters are essential to gain satisfying
performance. The pseudocode is shown in algorithm 1, which
is composed of two parts, initialization and updating. In this
algorithm, itr is the current iteration number.

In the evacuation model, Vi and Xi are two-dimensional
vectors, in which each dimension represents the x direction
and y direction in a 2D environment. fit(Xi) is used to describe
the fitness of particle i, which can be defined as the distance
between the particle and the selected exits

fit(x1i , x
2
i ) (7)

where (x1, x2) is the location of the particle in a 2D environ-
ment. This function is determined by the specific evacuation
scenarios. The optimal value is 0 when the particle reaches
the selected exit. In this model, each pedestrian is considered
as a particle in the swarm. As the goal is to evacuate all
the pedestrians out of the venue,the objective function of
pedestrian i is defined as follows

min fit(x1i , x
2
i )

s.t.

x1i ∈ [0,M ],

x2i ∈ [0,N ],

vi ∈ [vmin, vmax]. (8)

where M is the length of the venue, N is the width of the
venue, vmin and vmax are the minimum and maximum value
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Algorithm 1 PSO Algorithm
procedure Initialization

for i = 1 to N do
Initialize velocity Vi and position Xi for particle i
Evaluate particle i
Set pBesti = Xi

end for
set gBest = min {pBest1, pBset2, · · · , pBestN }
set itr = 0

end procedure
procedure Updating

while itr < I do
for i = 1 to N do

Update the velocity and position of particle i
Evaluate particle i
if fit(Xi) < fit(pBesti) then

pBseti = Xi
end if
if fit(pBesti) < fit(gBest) then

gBest = pBesti
end if

end for
itr = itr + 1

end while
end procedure

of the velocity. Note that these constraints are elementary. The
movement of each particle is under the rules detailed in the
following sections.

D. DUAL-STRATEGY UPDATING RULES
In this model, each pedestrian is considered as a particle in
the swarm, and the collective goal is to approach exits. In
standard PSO, the best individual (global best) is designated
as the leader whichmay alternate during the evolution process
in the swarm. However, based on the following two assump-
tions, the leader would remain unchanging under normal
circumstances empirically.

1) In large enclosed spaces, most pedestrians are not famil-
iar with the environment, which means they only have
a vague impression on the location of the exits. As a
consequence, pedestrians in each swarm tend to follow
the leader or other people.

2) The leaders, as can be seen in the Section III-D, are either
selected in each swarm or designated as professional
workers who are more qualified and familiar with this
area. Herein, instead of following others, they are more
likely to head straight to the desirable exits in proximity
at a relatively high speed.

To address this problem, a dual-strategy updating method
is proposed for the leaders and other pedestrians. For the
leaders, they play a predominant role that guides the other
pedestrians to the exits. The behaviors of surrounding pedes-
trians will have little impact on them, which demonstrates

that they will automatically seek the best routes. For other
pedestrians, they are inclined to panic and follow the leaders.

- Strategy 1-Update to the best available location if the
current pedestrian is a leader: The leader will update
his/her location, but in a way differs from the traditional
standard PSO. In each time slot, the leader will select
the possible location that is nearest to the exit in the
next time slot. If the selected place is not available,
for example, it is already occupied by another individ-
ual, the alternative selection becomes the suboptimal
location. This selection-verification process will repeat
until the leader finds the desirable choices or all the
better locations are occupied. And if there are not any
better locations available, he/she will stay at the current
location until the next time step.

- Strategy 2-Update using the rules in PSO if the current
pedestrian is not a leader: As a pedestrian in evacua-
tion, his/her mobile behaviors are dominated by social
and individual recognition. Herein, the velocity of the
pedestrian will be updated using (4). Moreover, if a
pedestrian is close enough to the exits, i.e. the distance
between pedestrian i and the desirable exit is closer than
a certain small value c, it is not necessary for him/her to
follow others. Under this circumstance, the pedestrian
will update using strategy 1. In our model, c is set
as 2 meters.

E. ADAPTIVE CONTROL OF PARAMETERS
As shown in Section II-C, the parameter inertia weight ω
is of vital importance in the evolution of PSO. It denotes
how much a pedestrian will follow the velocity of his/her
last iteration. A relatively large ω is more capable of search-
ing globally, whereas a smaller ω performs better in local
searching, so normally the parameter ω gradually decreases
with iteration to gain a satisfying performance. In reality,
the reaction of people may change when they are getting
closer to the exits, thus they tend to converge and search
around the neighborhood. The evacuation process is complex,
so the traditional method is not the optimal scheme, as it
linearly decreases with iterations and neglects the interaction
between the environment and pedestrians. To control the PSO
evacuation process, this section derives an adaptive control
approach based on the swarm distribution information.

1) SWARM DISTRIBUTION INFORMATION IN PSO
During the PSO process, the population distribution charac-
teristics vary as the evolution goes on and on. For exam-
ple, if the leader is surrounded by pedestrians in proximity,
the pedestrians can easily recognize the leader and pursue
their collective goals. However, if the leader is far from
other pedestrians in the swarm and the population distribu-
tion is dispersive, the increased social distance may lead to
decreased social recognition, as shown in FIGURE 3. The
real line denotes the relationship between the leader and
all the other pedestrians, while the dotted line denotes the
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FIGURE 3. The distribution information of the evacuation process, where the real line denotes the relationship between
the leader and all the other pedestrians, the dotted line denotes the relationship between different pedestrians. For better
illustration, only the relationship between p1 and all the other individuals is shown. a) The individuals explore with a
certain distance mutually. b) The leader walks foremost and guides others. c) Other individuals follow the leader and
converge.

relationship between different pedestrians, in which we only
draw the relationship between p1 and all the other individuals
for better illustration. When a swarm of pedestrians searches
and updates their velocities and positions based on the expe-
rience of the leader and that of themselves, it is reasonable to
expect that the distribution information has a great influence
on the overall behavior of the swarm. The population distri-
bution information and evolutionary state were introduced in
[44]. Here we extend this method and utilize it in DSAPSO.

The distribution information in FIGURE 3 can be formu-
lated by computing the mean distance of each pedestrian
to all the other pedestrians, as illustrated in [45]. Hence,
the information will be calculated in each generation in the
following rules.

1) Compute the mean distance of each pedestrian i to all
other pedestrians from the same swarm as pedestrian
i. Moreover, the distance between pedestrian i and j is
measured with Euclidian metric

di =
1

N − 1

N∑
j=1,j 6=i

√√√√ D∑
k=1

(xki − x
k
j )

2
(9)

2) Denote the mean distance of the leader as dg. Compare
di and find the minimum mean distance dmin and the
maximum mean distance dmax . Then the evolutionary
factor τ can be calculated, which indicates the popula-
tion distribution information.

τ =
dg − dmin
dmax − dmin

(10)

2) ADAPTATION OF THE INERTIA WEIGHT
The inertia weight ω plays an indispensable role in balancing
the global and local search capabilities. Researches have
shown the inertia weight should be higher in the beginning
and lower as the evolution process converges [30], [46]. It is
also comprehensive in this model, as pedestrian i gradually
reaches the exits, the velocity in the last generation will have
a decreasing impact on his/her current velocity. Hence, the
evolutionary factor τ which represents the current distribution
information is used to control ω [47].

ω(τ ) =
1

1+ 1.5e−2.6τ
∈ [0.4, 0.9] (11)

In the evolution process, the swarm will gradually converge,
leading to a decrease in τ . As a consequence, the inertia
weight ω will gradually decrease, which is able to control the
inertia weight adaptively with respect to different distribution
information.

III. EVACUATION BEHAVIORS AND FEATURES WITH
CELLULAR AUTOMATON
In this model, DSAPSO method is combined with CA in
a discrete manner. And it mainly focuses on simulating the
evacuation behavior in a large enclosed public space where
multiple exits co-exist. At the same time, some features that
influence evacuation behaviors are considered, including the
exit selection of each swarm, the mental and physical condi-
tions of each individual, the distribution information of each
swarm, and the characteristics of each swarm. In this section,
we will discuss these factors and analyze the effects of these
factors.

A. BASIC RULES AND ASSUMPTIONS
During the evacuation process, the reactions of different
people are unpredictable. Since this model is simulated in a
large enclosed public venue with multiple exits, we derive the
following basic rules and assumptions based on the existing
research results [18].

1) RATIONAL EFFECT
When an emergency occurs, pedestrians are all rational and
always want to move closer to the exits.

2) GROUP EFFECT
The whole population is divided into a number of swarms,
and a pedestrian will follow the majority of the swarm he/she
belongs to in exit selection and moving trend.

3) INERTIAL EFFECT
Pedestrians are all inertial creatures and they tend to stick
to what they are doing. They tend to insist on the same
destination once they choose a certain exit and head for it.

B. ENVIRONMENT SETTINGS
The DSAPSO model is based on the traditional CA model
[12]. In this paper, the room is modeled as a two-dimensional
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FIGURE 4. The initialization of the space. (a) Divide the space into a number of cells. A leader may move to the next position or stay in the
same cell. (b) The exit area near the exits.

grid, where each cell can either be occupied by a pedestrian or
be empty. To cover the average size of the human body, each
cell is designed as 0.4m×0.4m based on the researches of
other CA models [11]. In the beginning, pedestrians are ran-
domly distributed in the available area without overlapping.
During each iteration, each pedestrian will update his/her
position to the neighboring eight possible cells or stay at the
current cell, as shown in FIGURE 4(a). During the evacuation
process, the exit area is an area around the exit, as shown in
FIGURE 4(b). It is an essential area in evacuation and con-
gestion may constantly happen here. It is set as a semicircle
with a radius of 1.5m and will be analyzed in Section IV-E.

C. INDIVIDUAL FEATURES
In reality, the mental and physical conditions of each pedes-
trian is not identical in the evacuation process, and these
conditions are crucial in determining what the pedestrians
would react in different situations. For example, older people
may move at a relatively low speed, and those who have low
psychological ability may react hastily. Herein, each pedes-
trian i is characterized with age, mobility ability, familiarity
with the environment and psychological quality, denoted as
ai, mi, fi and ui. In the beginning, these parameters are all
randomly initialized in the range of [0,1], which is positively
related to these factors.

With these condition of each pedestrian, we can determine
pedestrian i’s potential to be a leader as qi

qi = θ1 · ai + θ2 · mi + θ3 · ui + θ4 · fi ∈ [0, 1] (12)

These parameters are determined by the specific evacua-
tion scenarios, which will be discussed in the experimental
settings.

D. LEADER ELECTION
After applying the APC method to the entire population, all
the pedestrians are partitioned into swarms. The selection of
leaders in the process is based on qi of each pedestrian. More-
over, the number of leaders in each swarm may be more than
one due to the fact that there may exist multiple pedestrians

with equally high qi. Besides, qi of a leader may decrease
in the evacuation process, so it would be better to have an
alternative leader. Hence, we analyze the data and propose a
thresh-hold based selection procedure. The threshold value of
γ is set as 0.75, where most swarms can select one or two
leaders. For those swarms whose best pedestrian i can not
satisfy qi > γ , we will select the most qualified individual
as their leader. Multiple leaders of some swarms indicate that
other pedestrians will select the best leader in the qualified
leaders of their present swarm as the global best.

E. EXITS CHOICE
Each swarm has to select an appropriate exit as its goal. The
collective goal should be the nearest for the whole swarm, so
the average Euclidian distance between the individual and the
exit is used as the selection standard

D =
1

N − 1

N∑
i=1

(f (x1i , x
2
i ) (13)

where x1i and x2i denote the position of pedestrian i. For
the current swarm, we compute the average distance D from
each exit and find the exit j that minimizes the distance. The
selected exit is set as the goal of the swarm throughout the
evacuation process.

F. SWARM INFORMATION
During the evacuation process, the feature of the whole
swarm is also an important factor in influencing the behaviors
of pedestrians. For example, a swarm of young people can
surely react faster than a swarm of older people. Observing
this phenomenon in practice, the feature of swarm j is taken
into account, defined as sj

sj =
1
Nj

Nj∑
k=1

qjk ∈ [0, 1] (14)

where Nj denotes the size of swarm j, and qjk denotes the
potential of pedestrian k to be a leader in swarm j. The param-
eter sj represents the feature of the current swarm, which can
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Algorithm 2 Direction Control

if |vxi | > |v
y
i | then

if vxi > 0 then
Move in the positive direction of x axis

else if vxi < 0 then
Move in the negative direction of x axis

end if
else if |vxi | < |v

y
i | then

if vyi > 0 then
Move in the positive direction of y

else if vyi < 0 then
Move in the negative direction of y

end if
else

Choose a random direction
end if

be used to describe the influence of swarm in the movements
of pedestrians in the evacuation process in Section III-G.

G. INDIVIDUAL BEHAVIOUR
The updating rules have been illustrated in Section II-D. In
the traditional CA model, the velocity is set uniformly in
the beginning, ignoring the individual differences. To com-
pensate for the inadequacy of this moving mechanism, a
probability based updating technique which takes the pedes-
trian feature, swarm feature, and surrounding environment
into account during each time slot was proposed. Besides,
the velocity calculated in the DSAPSO model will also be
considered, both the magnitude and the direction. In other
words, during each iteration, the velocity computed in (6) will
be primarily used to detect the orientation of the current indi-
vidual, whereas whether to update the position is determined
by a couple of relevant factors. The direction of the pedestrian
i is detected by the rules in algorithm 2.

In algorithm 2, the direction of pedestrian i is determined
by the numerical value of his velocities in x axis and y axis.
After updating the velocities, he/she tends to move toward
the direction whose velocity is relatively large. This method
is consistent with our experience, as a larger velocity in one
direction indicates an inclination to move in this way.

After the calculation of the direction, the locationwhere the
individual will move to is decided. However, the individual
will not necessarily move in this time slot due to the surround-
ings and his own mental and physical condition. This means
the velocity of each pedestrian varies and cannot be arbitrarily
uniformly defined, ignoring the individual difference. Hence,
we propose a probability-based mobility control to determine
whether the individual would move in each time slot. The
determination process follows the following rules

1) Calculate the number of pedestrian ni in the surrounding
24 cells, which forms a 5 × 5 square. The parameter
congestion di is set as di =

ni
25 .

2) Utilize the velocity updated in the PSO procedure, and

calculate the velocity factor ei =

√
v2x+v2y
vm

, where vm is
the upper bound of the velocity.

3) Compute the possibility factor

pi = ξ + ξ1(1− di)+ ξ2qi + ξ3ei + ξ4si ∈ [0, 1] (15)

where qi is the potential to be a leader and si is the
feature of the swarm that individual i belongs to, both of
which are computed in (12) and (14). The determination
of these weights can be set according to the needs of
simulation, or according to the actual situation of the
simulation environment. Therefore these parameters are
acquired through Delphi Method by surveys in specific
evacuation scenarios.

4) Generate a random number r ∈ [0, 1], update the posi-
tion of individual i only if pi > r .

From the updating rules above, the moving possibility of
pedestrian i is affected by the potential to be a leader, the
congestion degree nearby, the current velocity, and the feature
of the swarm. Moreover, the base possibility ξ can guarantee
every pedestrian has a relatively large possibility to update
his/her position in most cases. In the possibility-control pro-
cess, the determination of each pedestrian is heterogeneous
based on the current situation.

IV. SIMULATION AND RESULTS
The DSAPSO model is simulated in different scenarios. As
our model is mainly used for large enclosed public space, we
take the following two scenarios (a) two exits in a 22m×18m
venue with 400 pedestrians to evacuate. (b) two exits in a
30m×15m venue with 450 pedestrians to evacuate. The exits
are initially located on both sides of the room, but later,
their locations and quantities are changed to analyze the
differences in the results. Moreover, the width of the door
is 1.2m, and we also do experiments with a variety of door
sizes to see the impact of door width. Finally, we compare
our model with some traditional models, like the social force
model and cellular automaton with forces essentials (CAFE)
model. The simulation runs 30 times for each scenario to
acquire authentic data. According to [48], some traditional
phenomenons in human evacuation like arching, clogging,
and herding, etc. are analyzed to validate the performance
of the proposed evacuation model. And the comparison with
some traditional models indicates it is promising and consis-
tent to the reality.

A. ACQUIRE THE MODEL PARAMETERS AND OBJECTIVE
FUNCTIONS
The parameters in this model are the weights of different fac-
tors in (12) and (15). These parameters are generally depen-
dent on the evacuation environment, as in different situations
we care about different factors of pedestrians. For example,
in large public space where many pedestrians are not familiar
with the environment, familiarity with the environment can
be considered to be dominant, while in other situations we
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FIGURE 5. The population distribution during the evacuation process. a) In the initialization, the pedestrians are clustered into a
number of swarms. b) Each swarm heads for its own goal. c) Arching at the exits when most pedestrians are near the exits. d)
The evacuation process comes to an end.

may reconsider its importance. Therefore, we adopt Delphi
Method to acquire these parameters of this evacuation sce-
nario and finally set them as θ1 = 0.1, θ2 = 0.2, θ3 =
0.1, θ4 = 0.6, ξ = 0.4, ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.1, ξ4 =
0.1. In Section IV-G, we will discuss the impact of different
value range of the factors. Besides, our experiments are set
in simple scenarios without obstacles, hence we can set the
objective function f (x1i , x

2
i ) as

fit(x1i , x
2
i ) = |x

1
i − ŷ1| + |x

2
i − ŷ2| (16)

where (ŷ1, ŷ2) is the position of the selected exit for particle i.

B. THE WHOLE PROCESS OF EVACUATION
There are mainly four states during the evacuation pro-
cess in the proposed model, as shown in FIGURE 5. The
experiments are conducted in scenario (a). In the begin-
ning, people are randomly distributed in the space, and those
with common interests would cluster into the same swarm.
For example, those who are in the same tourist group, or
related to each other like friends or family tend to gather
together. Other factors can also lead to clustering, like a
trained staff nearby would help people to evacuate, as shown
in FIGURE 5(a). Different colors denote different swarms or
the various groups that herd automatically. As we can see,
the APC method clusters the whole population into multiple
groups, the size of which ranges from two to forty. The result
shows that it performs well in the spontaneous gathering of
pedestrians. Then, each swarm would move under the rules

of DSAPSO, updating the position with both the cognition of
the leader and his/her own. In this way, each pedestrian comes
closer to the exits, shown in FIGURE 5(b). Whereafter, the
pedestrians around the exits will shape like an arch as exits
get increasingly crowded, which is considered as the queuing
behavior, as illustrated in FIGURE 5(c). In reality, the arching
behavior is a notable feature during evacuation. After the
clogging in the exits and when most individuals are out, the
evacuation comes to an end, as shown in FIGURE 5(d).

C. ARCHING
Arching is a distinctive feature when pedestrians are clogging
near the exits. In this experiment, we set the door width as
0.8m,1.2m, and 1.6m respectively in scenario (a) to gauge
the difference of the shape, as shown in FIGURE 6. The
arching information is acquired at the same time during
the evacuation. We can evidently discover that as the door
width increases, the arching shape becomes plumper. This
phenomenon is common in the evacuation process, and it
indicates that the door width is a bottleneck in the evacua-
tion process, determining the queuing behavior as more and
more pedestrians getting closer to the door. This experimental
result is consistent with those from classical models such as
[11], illustrating that the DSAPSO model has some notable
features as other widely recognized models and is in line with
reality. Moreover, the clogging may promote the panic degree
among people, which may lead to a stampede or other acci-
dents. In this situation, the evacuation efficiency decreases
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FIGURE 6. The arching behavior with different door width at the same time.

FIGURE 7. Leader movement.

and the safety of the people are not ensured. Therefore, by
gauging the shape of the arch at the rush hour, it can help the
designer to set the optimal door width to reduce the risk of
accidents like a stampede.

D. LEADER MOVEMENT
During the evacuation process, the leader, as the global best
of a swarm, is essential for the other pedestrians who follow
him/her. We simulate in scenario (a) and select a swarm to
observe the behavior. As we can see in FIGURE 10, the leader
is a pedestrian marked with a pentagram, which is selected
in the beginning by the evaluation of qi. As the leader is
relatively more familiar with the environment than any other
pedestrians in the swarm, he/she will select the best available
location while the other pedestrians will explore based on
both the leader and his/her own experience. Hence, the leader
can update his location more rationally, becoming the fastest
to reach the selected exit. As shown in FIGURE 7(b). After
a number of iterations, the leader goes first and the other
pedestrians will move under the guidance of the leader. When
the pedestrians are far away from the leader, the leader impact
may decrease as they can hardly recognize the leader.

E. CONGESTION AROUND THE EXITS
The congestion around the exits is also analyzed to discover
the evacuation process in different exits. Here we take sce-
nario (a) as an example to analyze this process, in which
the average speed is 2.0m/s. As shown in FIGURE 8(a),
the number of pedestrians around the left and right exits
is generally the same. In the beginning, the density rises

sharply and then stays at a relatively high value for a long
time, which indicates that the clogging begins to take shape
and the exits are surrounded by the pedestrians. When the
evacuation process comes to an end, the density drops to zero
in a short time. However, the situation of the two exits are
slightly different during the evacuation, especially in the first
fifteen minutes. The number of people in the right exit rises
and drops for a moment mainly because that the swarm tends
to cluster and move together. After the APC process, there
are more swarms of small size near the right exit. At the
same time, most pedestrians heading for the right exit have
not arrived near the exit, so the swarms of small size near the
right exit can reach its destination quickly.

F. ALGORITHM COMPARISON WITH EFFECTS OF
DIFFERENT DOOR SIZES AND VELOCITIES
The door size is a bottleneck in the evacuation process, and
different velocities can lead to varied results as well. Here we
discuss the influence of various door sizes and velocities and
compare our model with some widely recognized models in
scenario (a).

The social force model, which considers the physical and
psychological forces and introduces the self-organization
behaviors to make the evacuation model more consistent with
reality, is one of the most classic evacuation models [22].
CAFEmodel [11] is also a widely accepted evacuation model
based on CA. It is an improved cellular automaton model,
which describes the evacuation process with three basic
forces namely repulsion, friction, and attraction. We compare
our DSAPSO model with the abovementioned models by
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FIGURE 8. (a) Analysis of people around the exit area. (b) Comparison with other models.

FIGURE 9. The behavior of pedestrians with different familiarity range at the same time.

FIGURE 10. Impact of factor ranges in determining the potential to be a leader qi .

evacuation time of different door sizes and velocities, as
shown in FIGURE 8(b). The graph shows that our model is
comparable to these models at various velocities and door
width. As the average velocity increases, the evacuation time
of theDSAPSOmodel decreases faster than the CAFEmodel.
Moreover, the proposed model has a better performance com-
pared with the social force model when the door is narrow.
The experiments also demonstrate that the door width has a
great influence on the evacuation time in an inverse-relative
way. When the door width is small, the evacuation time is
high and a slight increase in the door width can lead to a
big drop in the time. However, as the door width increases,
the marginal benefits become less significant. And even the
door width continues to increase, the evacuation time stays
at a relatively small value in this simulation scenario. This

indicates that the doors do not have to be very wide, as the
marginal benefit is low when the door size is over 2m in
this simulation scenario. In reality, the door is not built wide
enough in many cases due to the limitation of other factors
like construction requirements and budget constraints. The
experiment can be utilized to determine the optimal choice
of door width to make a trade-off between the evacuation
efficiency and cost. In FIGURE 8(b), it suggests that the door
width of 2m or 2.4m can be a good choice in this simulation
scenario, yielding a satisfactory result.

G. EFFECTS OF THE FACTORS DETERMINING THE
POTENTIAL TO BE A LEADER
The factors that determining qi of each pedestrian include
age, mobility ability, psychological quality, and familiarity
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FIGURE 11. The effects of different location and quantity of exits.

with the environment, as suggested in (12). Different range of
these parameters denotes the characteristics of these pedes-

trians. For example, different range of age represents the
age profile of the swarms, like swarms of young students or
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middle-aged adults. To gauge the impact of these parameters,
take familiarity as an example, as shown in FIGURE 9, in
which the familiarity range is increased to gauge the differ-
ence at the same time in evacuation. When the pedestrians are
unfamiliar with the environment, as shown in FIGURE 9(a),
the distribution of pedestrians is dispersive and disordered,
for the reason that their individual recognition is feeble and
they may search randomly in the neighborhood. As the famil-
iarity increases, as shown in FIGURE 9(b) and FIGURE 9(c),
the crowd distribution is more concentrated because the indi-
vidual recognition is high and they are able to find their way
more efficiently. For other factors like age, we can normalize
its value into [0,1] with simple conversion function like expo-
nential function, as shown in FIGURE 10(a). By varying the
generation of the factors’ value within the different range, as
shown in FIGURE 10(b), it can be seen that a higher value
range can result in shorter evacuation time. Moreover, the
familiarity has a greater influence on evacuation time, as we
set the weight of familiarity higher in Section IV-A.

H. EFFECTS OF DIFFERENT LOCATION AND QUANTITY OF
EXITS
The location and number of exits play a significant role in
the evacuation process. Here we set each door width as 2m
and run for 30 times in each case in scenario (b). As shown
in FIGURE 11, we rearrange the exits to I) Two exits are
located on the left and right side respectively, which corre-
sponds to FIGURE 11(a) and FIGURE 11(b). II) both in the
left side of the venue, which corresponds to FIGURE 11(c)
and FIGURE 11(d). III) one exit on the left side and the
other one at the bottom, which corresponds to FIGURE 11(e)
and FIGURE 11(f). IV) two exits on the left side and the third
one on the right side, which corresponds to FIGURE 11(g)
and FIGURE 11(h). V) two exits on the left side and two
exits on the right side, which corresponds to FIGURE 11(i)
and FIGURE 11(j), and show the number of people escaping
out of each exit respectively. Moreover, all these figures of
pedestrian distribution are in the stage of swarm moving of
evacuation.

In cases I and II, the two exits are uniformly distributed
and symmetrical with different locations, hence the flow of
pedestrians are alike, where the slight difference is mainly
due to the clustering of swarms. However, the evacuation time
in case II is relatively long as people on the right side have
to go across the whole venue. This indicates that a higher
degree of symmetry in exits’ location is able to reduce the
evacuation time. In case III, the exit at the bottom is on the
long side, hence it is closer to more pedestrians than the
exit in the left side, which indicates the pedestrian volume is
higher at the bottom and may lead to clogging as we can see
in FIGURE 11(e). In this case, more traffic pressure moves
to the bottom exit, thus the evacuation time does not decrease
and is roughly equal to the time in case II. In case IV and V,
more exits can further help to improve the evacuation effi-
ciency. Observing from the above scenarios, the location of
exits is a bottleneck during evacuation and evenly distributed

exits are more conducive to evacuation efficiency. In addition,
the increase in the number of exits can significantly improve
the evacuation efficiency.

V. CONCLUSION AND DISCUSSION
In the evacuation process, the movement of pedestrians is
affected by many factors. Because of the limitations of their
visibility range and herding behaviors, the movement of
the surrounding people plays an essential role. At the same
time, the behavior of recognition and familiarity affects the
whole process. To capture these behavioral effects, this paper
proposed a DSAPSO model utilizing the PSO algorithm to
balance the effects of social and individual recognition, which
can better simulate the movement of pedestrians in venues
where most pedestrians are not familiar with the environ-
ment, such as museums, libraries, and stadiums under the
guidance of leaders and the experience of their own. APC
method is used to divide the whole population into a number
of swarms and select the leaders with the best quality. To
simulate the dynamic changes of pedestrians, we develop a
modified PSO with dual-strategy adaptive control method.
Moreover, instead of assuming homogeneous behaviors, this
model explicitly takes into account various characteristics
of people. The simulation results present the distinctive fea-
tures of the model like arching, leadership effect, velocity in
the evacuation process, and the influence of different door
sizes and locations. It is also shown that the performance of
our proposed model is promising compared with the CAFE
model and social force model when the door width is small.
It can also simulate the evacuation considering the individual
characteristics, and is consistent with the reality in some
widely-recognized phenomenons such as arching and con-
gestion. The experimental results indicate that the leader has a
predominant influence on guiding during the evacuation pro-
cess. As the door width increases, the decrease in evacuation
time is becoming less distinctive, and the optimal choice of
door width in the simulation scenario of this paper is around
2m. Moreover, the location and quantity of exits are also
important in evacuation, where a higher degree of symmetry
in exits distribution helps to evacuate more efficiently.

We have obtained some promising results, however, there
are many investigations and modifications that should be
done further. In this paper, we only consider a simple con-
figuration of the evacuation environment without obstacles,
simulations have not been done on some complex buildings.
Besides, more factors could be considered in the movement
of the pedestrians in future work, such as the panic degree of
the crowd, the clash between pedestrians, the capacity of the
door, exit selection, and adaptive leaders when the location of
doors are different.
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