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ABSTRACT The fault vibration signal of rotating machinery system under strong background noise has the
characteristics of non-stationary, non-Gaussian and complex components. In view of these characteristics,
an improved method of signal separation based on Vold-Kalman filter (VKF) of adaptive instantaneous
frequency estimation is proposed. First, a method for adaptive multiridge extraction of peaks detection based
on synchro-squeezing wavelet transform (SWT) is proposed as the high-precision adaptive instantaneous
frequency (IF) estimation method. The high precision IF estimation is used as the instantaneous frequency
parameter of VKF, so that the complexmulti-component non-stationary signal can be separated directly in the
time domain and transformed into a signal combination composed of multiple stationary single-component
signals and signal residues. Secondly, an improved method is proposed combining the adaptive IF estimation
method with order tracking analysis and diagonal slice of bispectrum. In the improved method, the
corresponding IF estimation of each component signal is taken as the reference frequency of its order
tracking and the order spectrum analysis of each component signal is carried out respectively.Meanwhile, the
signal residual is analyzed by diagonal slice of bispectrum, so as to suppress Gaussian noise and effectively
separate and extract fault features in the vibration signal. Finally, the method is verified on simulation data
and experimental data under different conditions. The results show that the improved method has higher
extraction accuracy than other traditional methods. It has the superiority and the great potential for practical
applications.

INDEX TERMS Adaptive instantaneous frequency estimation, diagonal slice of bispectrum, order tracking,
signal separation, Vold-Kalman filtering.

I. INTRODUCTION
For rotating machinery, periodic shock vibration will occur at
the fault location due to its own rotation characteristics, so the
fault vibration signal is non-stationary [1]. At the same time,
due to the impact of periodic shock, the vibration system often
shows non-linearity, so that the output signal of the system
has non-Gaussian characteristics [2].

For a rotating system with rotation speed variation,
the vibration signal itself is non-stationary due to changes
in speed, and its dynamic modulation sideband will vary
with the speed [3]. For complex multi-component signals
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generated by complex rotating systems, such as a multi-stage
transmission gearbox or a complex gearbox with multiple
inputs and outputs, there are multiple fault frequencies, and
the accurate extraction of the relevant features of each fault
frequency lays a good foundation for its fault diagnosis.

Traditional fault feature extraction methods often treat
the vibration signal as a locally approximately stationary
Gaussian signal processing in a short period of time, but
the traditional signal processing methods are weak when
faced with the multi-component complex components, non-
stationary and non-Gaussian characteristics of fault signals
in rotating machinery systems. Therefore, according to the
fault characteristics of mechanical equipment, how to extract
effective fault features from non-stationary and non-Gaussian
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complex multi-component fault signals has become the focus
of current research.

In recent years, many scholars have studied the field
of the non-stationary, non-Gaussian and complex compo-
nents of fault signals in rotating machinery systems. For
example, Cheng et al. [4] successfully applied local mean
decomposition (LMD) and order tracking to the fault diag-
nosis of gears; Yang et al. [5] further optimized the param-
eterized time-frequency analysis method and successfully
applied it to the signal separation ofmulti-component FM sig-
nals; Hong et al. [6] proposed a novel vibration-based fault
diagnostic algorithm for gearboxes under speed fluctuations
without rotational speed measurement; Wang et al. [7] pro-
posed an adaptive noise reduction method combined with
sparse wavelet coefficients, and successfully recovered and
extracted weak bearing fault features from multi-component
signals; Wang et al. [8] successfully applied to the fault
diagnosis of gearboxes by optimizing the parameters of vari-
ational modal decomposition (VMD); Hou et al. [9] proposed
a rotation speed order tracking method based on general-
ized demodulation (GD) and applied it to wavelet trans-
form fault detection; Feng et al. [10] successfully applied
the time-frequency demodulation analysis method to the
fault diagnosis of wind turbine planetary gearboxes at non-
stationary speeds; Huang et al. [11] proposed a method
of multi-frequency curve extraction based on the fast path
and applied it to the bearing fault diagnosis under variable
rotation speed; Li et al. [12] proposed a method combin-
ing Vold-Kalman filtering with compound multi-scale fuzzy
entropy and Laplace operator. It was used for fault diagnosis
of rolling bearings.

Although many scholars have studied and made positive
contributions to this field, the scope of research characteris-
tics targeted is not comprehensive. Because of limitations of
the methods, the effect of vibration signal processing is not
satisfactory. Therefore, it is necessary to take into account the
characteristics of non-stationary, non-Gaussian and complex
components of fault signals of rotating machinery system,
and study the solutions from various aspects.

High-order cumulates and corresponding high-order
spectra [13] are the main methods for processing
non-Gaussian signals. For example, Zhou et al. [14] has
deeply studied characteristics of bispectrum in gearbox vibra-
tion signals, which provides the reference direction about the
application of bispectrum to gearbox fault diagnosis. Chen
and Yang [15] deeply studied various algorithms of high-
order spectra and made great contributions to the promotion
and application of high-order spectra.

In view of the non-stationary characteristic, scholars have
improved a series of time-frequency analysis methods (such
as short-time Fourier transform [16], Wigner-Ville distribu-
tion [17] and Hilbert-Huang transform [18]) or time-scale
analysis (such as wavelet transform and wavelet packet trans-
form [19]). Although these methods have achieved good
results in fault diagnosis of non-stationary signals, there are
some deficiencies. For example, the time-frequency focusing

of the short-time Fourier transform is poor, cross-interference
terms appear in the Wigner-Ville distribution, and the accu-
racy of the wavelet transform or wavelet packet transform
depends on the choice of the wavelet basis, etc.

In addition, order tracking analysis [20] is also an effec-
tive method for processing non-stationary signals. The order
tracking signal is an equal-angle interval sampling signal,
and the number of sampling points is guaranteed to be the
same in each vibration period. When the reference shaft is
selected, the order spectrum distribution is not affected by the
change of the reference shaft speed. Moreover, this method
can ensure that the entire period of the periodic signal is
truncated, thereby highlighting the periodic component of
the signal. For a single input gearbox, speed can be used
as the reference frequency, but for a multi-input gearbox or
machine, since the input speed is not unique, speed cannot be
used as the reference frequency.

Signal separation [21] is an indispensable link in the
process of multi-component signal processing, which lays
a good foundation for the subsequent signal parameter
estimation. How to accurately separate each component
from the multi-component signal is a difficult problem in
the multi-component signal analysis. According to differ-
ent application fields and analysis methods, many algo-
rithms suitable for signal separation are proposed, such
as polynomial fitting method of signal components [22],
single frequency assumption method of signal compo-
nents [23], independent components Analysis method (ICA)
[24], time-varying filter method [25], time-frequency analy-
sis method [26], etc. The Vold-Kalman filtering method [27]
can effectively decompose the frequency components of com-
plex multi-component signals on the basis of minimizing the
structure and data equation errors. It provides an effective
means for solving the problem about the single-component
decomposition of complex multi-component vibration sig-
nals.

Compared with traditional filtering methods, Vold-Kalman
filtering directly extracts the signal components of interest
from the time domain. It can avoid the phase deviation caused
by the time-to-frequency transformation. Compared with the
empirical mode decomposition method (EMD), the cen-
ter frequency of the Vold-Kalman filter can be adaptively
adjusted according to the instantaneous frequency. It can
effectively separate signal components that are adjacent or
even crossed in the time-frequency domain [28]. It can avoid
the pattern aliasing caused by EMD.

However, VKF is based on instantaneous frequency esti-
mation, and peaks detection is the most commonly used
traditional instantaneous frequency estimation method for
multi-component signals. At present, the commonly used
peaks detection method is time-frequency transform peak
searching method [29], that is, peak searching is car-
ried out after time-frequency transformation of the signal.
Since the size of the time-frequency coefficient represents
the similarity between the current position of the signal
and the time-frequency transformation function, a local
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maximum value will be formed at the spectral peak of the
time-frequency coefficient, and a convex ridge will be formed
vertically. The basic principle of time-frequency transform
peak searching method [30] is to determine the position of
peak by searching the ridge line in the time-frequency coef-
ficient matrix, so as to complete the peaks detection.

By summarizing the research methods of complex multi-
component vibration signals, it is found that the problems to
be solved are concentrated in three aspects. The first is how
to obtain a high-precision instantaneous frequency estimate.
The second is how to separate signals efficiently. The third
is how to extract the characteristics of the separated sig-
nals effectively. At the same time, due to the non-stationary,
non-Gaussian and complex components of the fault signal,
the difficulty of achieving the effective extraction of fault
features is increased.

For the above Problem, this paper has proposed a sig-
nal separation method based on Vold-Kalman filtering of
improved adaptive instantaneous frequency estimation. The
main contributions are as follows:

(1) The method for adaptive multiridge extraction of
peaks detection based on synchro-squeezing wavelet trans-
form (SWT) is proposed as a method of high-precision adap-
tive instantaneous frequency (IF) estimation. It achieves high
precision and fast adaptive IF estimation.

(2)It is proposed to use high-precision IF estimates as the
instantaneous frequency parameters of Vold-Kalman filtering
(VKF), so that the complex multi-component non-stationary
signal can be separated directly in the time domain and
transformed into a signal combination composed of multiple
stationary single-component signals and signal residues.

(3)An improved method is proposed combining the
adaptive IF estimation methods with order tracking and diag-
onal slice of bispectrum. In the improved method, the corre-
sponding IF estimation of each component signal is taken as
the reference frequency of its order tracking and the order
spectrum analysis of each component signal is carried out
respectively. Meanwhile, the signal residual is analyzed by
diagonal slice of bispectrum, so as to suppress Gaussian
noise and effectively separate and extract fault features in the
vibration signal.

(4)It is proved that the improved method proposed in this
paper is superior to the traditional speed order tracking anal-
ysis and traditional signal separation methods in suppressing
noise and extracting signal fault features.

(5) It proves the superiority and practicability of the
improved method proposed in this paper in solving the prob-
lem of fault feature extraction of complex multi-component
non-stationary signals under the background of strong noise.

In the second section of this paper, the principle and algo-
rithm flow involved in the improved method are introduced.
In the third section, compared with the traditional spec-
tral peak detection method, the advantages of the improved
method in high-precision multi-ridge extraction were verified
by simulation signals. Compared with EMD and traditional
order tracking analysis, the feasibility and superiority of the

improved method in signal separation and feature extraction
are verified by simulation signals. In the fourth section, dif-
ferent experimental data are used to verify the practicability
of the improved method. Finally, the work of this paper was
summarized and prospected in the fifth section, which laid
the foundation for the subsequent research work.

II. METHODOLOGY
A. PRINCIPLE OF SIGNAL SEPARATION BASED ON
VOLD-KALMAN FILTERING OF ADAPTIVE INSTANTANEOUS
FREQUENCY ESTIMATION
In this paper, the method for adaptive multiridge extraction
of peaks detection based on SWT is proposed as the method
of adaptive instantaneous frequency estimation. The number
and starting points of ridge extraction, conditions of the
extraction and conditions of screening curves, etc., can be
adaptively determined. This method can efficiently and accu-
rately extract the time-frequency ridge of multi-component
complex signals with high precision.

By reassigning the wavelet transform coefficients of the
signal, Synchro-squeezing Wavelet Transform (SWT) [31]
can concentrate the energy in the time-frequency spectrum
of the signal to the vicinity of the real instantaneous fre-
quency of the signal, so as to eliminate interference terms
and improve the time-frequency resolution [32]. Compared
with traditional wavelet transform, SWT has higher time-
frequency resolution and time-frequency aggregation.

SWT is a time-frequency recombination analysis algorithm
based on CWT. First, the continuous wavelet transform is
applied to the signalx(t):

Wx (a, b) = a−1/2
∫
+∞

−∞

x(t)ψ∗
(
t − b
a

)
dt (1)

where: a is the scale factor; b is the translation factor; t is time;
ψ∗(t) is the conjugate of the wavelet basis function ψ(t) .
When the signal is a pure harmonic function, namely

x(t) = A cos(t), and the frequency is ξ < 0, then the Fourier
transform isψ̂(ξ ) = 0. According to Plancherel’s theorem, its
continuous wavelet coefficient is:

Wx (a, b) =
1
2π

∫
x̂(ξ )a1/2ψ̂∗(aξ )eibξdξ

=
A
4π

∫
[δ (ξ − ω)+δ (ξ+ω)]a1/2ψ̂∗(aξ )eibξdξ

=
A
4π

a1/2ψ̂∗(aω)eibω (2)

If the frequency of the mother wavelet ψ̂(ξ ) is ξ = ω0,
then the wavelet coefficient Wx (a, b) will aggregate in the
time scale plane a = ω0/ω. However, the actual wavelet
coefficients diverge in the scale direction, which makes the
time spectrum of wavelet transform relatively fuzzy. It is
pointed out that although Wx (a, b) is distributed near a, its
oscillation behavior at point b is determined by the original
frequency ω, which is independent of the value of a [33].
Therefore, for any (a, b) and Wx (a, b) 6= 0, calculate its
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instantaneous frequency ωx (a, b) is:

ωx (a, b) = −i (Wx (a, b))−1
∂

∂b
Wx (a, b) (3)

Finally, for the signal x(t), setting up the map-
ping relationship (a, b) → (ωx (a, b) , b), the wavelet
coefficients Wx (a, b) transforms from time-scale plane to
time-frequency plane. The wavelet coefficients of the inter-
val

[
ωl −

1
21ω,ωl +

1
21ω

]
around the arbitrary center

frequency ωl , which belong to Wx (ωx (a, b) , b), are com-
pressed by SWT on time-frequency plane. In this way, each
frequency component of the signal is compressed in the
direction of the frequency domain. The disadvantage of
the traditional wavelet transform with low resolution in the
time-frequency domain is changed, so that each frequency
component of the signal can be clearly displayed on the
time-frequency graph. The discrete calculation formula of the
SWT coefficient is:

Tx(ωl, b) =
∑

ai:|ωx (a,b)−ωl |≤1ω/2

Wx (a, b) a
−3/2
i (1a)i (4)

The principle of Vold-Kalman filtering (VKF) is quoted
from Vold’s improved method of Kalman filter [19]. This
method can directly extract the signal components in the time
domain. In this paper, the IF estimation is used as the refer-
ence instantaneous frequency parameter of each component,
and the second-order Vold-Kalman filter is selected extract
multiple components simultaneously.

The modulation signal can be expressed as:

s(t) =
∞∑
k=1

Ak (t)2k (t), where Ak (t) is the amplitude

envelope of the k-th component; 2k (t) is the carrier signal.
2k (t) = exp

[
jk
∫ τ
0 ω(τ )dτ

]
, where,

∫ τ
0 ω(τ )dτ is the instan-

taneous phase, ω(τ ) is the instantaneous frequency.
The amplitude envelope can be expressed as a low-order

polynomial. For discrete signals, the amplitude envelope can
be expressed as:

∇
sAk (n) = εk (n) (5)

where: s is the difference order; ∇ is a difference operator;
εk (n) is the non-homogeneous item.
Set s = 2, according to equation (5):

Ak (n− 1)− 2Ak (n)+ Ak (n+ 1) = εk (n) (6)

When n = 1, Ak (0) − 2Ak (1) + Ak (2) = εk (1). For the
actual signal,Ak (0) = 0. When n = N , for the actual signal,
Ak (N + 1) = 0. So the matrix form of equation (6) is:

−2 1 0 · · · 0
1 −2 1 · · · 0

0 1 −2 · · ·
...

...
...

...
. . . 1

0 0 · · · 1 −2



Ak (1)
Ak (2)
Ak (3)
...

Ak (N )

 =

εk (1)
εk (2)
εk (3)
...

εk (N )

 (7)

which is

MA = ε (8)

where,M is an N × N matrix.

The Measured signal is x(n) =
∑
k
Ak (n)2k (n) + δ(n),

where, δ(n) is the noise or error term. The matrix form is:

X = AB+ δ (9)

The time-frequency ridgeline extracted by the instanta-
neous frequency estimation method can estimate ωk (n), the
instantaneous frequency of the signal component of interest,
to obtain its carrier matrixB. The reconstruction form of each
component signal is:

S = AB (10)

By resampling the discrete signals in time domain at
equal angular intervals, the order tracking algorithm skillfully
transforms the non-stationary signals into stationary signals.
The traditional order tracking takes the frequency of the
rotation shaft as the instantaneous frequency parameter to
analyze the order tracking of the signal. But in this paper,
the IF estimation of each component is used as the reference
to analyze the order tracking of each component, so as to
obtain the amplitude characteristics of the order tracking of
the corresponding component signal.

Diagonal slice of bispectrum [34] for a zero-mean
Gaussian process, the third-order cumulate and bispectrum
are zero. Diagonal slice of bispectrum is a special case of
bispectrum and its value is also zero. That is, the residual
signal δ (n), its third-order cumulate is:

c3x (τ1, τ2) = E [δ (n) δ (n+ τ1) δ (n+ τ2)] (11)

Its bispectrum is:

S3x (ω1, ω2) =

∞∑
τ1=−∞

∞∑
τ2=−∞

c3x (τ1, τ2)

· exp [−j (ω1τ1 + ω2τ2)] (12)

When ω1 = ω2 = ω, the diagonal slice of bispectrum is
estimated as:

Ŝ3x (ω1, ω2) = Ŝ3x (ω) (13)

In mechanical fault diagnosis, the fault signal is often non-
Gaussian, and the non-fault signal is often Gaussian. So the
effect of Gaussian noise can be suppressed by diagonal slice
of bispectrum analysis, thereby extracting the characteristics
of the fault signal.

B. ALGORITHM FLOW CHART AND MAIN STEPS
Based on the above principles, the design algorithm flow is
shown in Figure 1:

Among the figure 1, the algorithm flow chart of the method
for adaptive multiridge extraction of peaks detection based on
SWT is shown in figure 2.

The main steps of the signal separation method based
on the Vold-Kalman filtering of adaptive instantaneous fre-
quency estimation are summarized as follows:

(1) The signal x(t) is divided into N sections.
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FIGURE 1. Algorithm flow chart of signal separation method based on Vold-Kalman filtering of improved adaptive IF estimation.

(2) The time-frequency matrix TFR(a) is obtained by per-
forming SWT for x(a), where a ∈ [1,N ].
(3) The peak value information vmta(m, n) and position

information amta(m, n) of wavelet ridge are extracted from
the matrix TFR(a).
(4) The peak positions and number of amta(:, 1) were cal-

culated by the first-order derivative peaks detection method,
which was used as the starting positions Xapmx and the
number M.

(5) Set the adaptive extraction thresholdC0 = Xapmx(b)×
µ0, where,µ0 is the filter coefficient, b ∈ [1,M ].
(6) When the coordinate distance of adjacent starting posi-

tion D0 ≤ C0, the starting position with the corresponding
small peak value in vmta(:, 1) is set to zero and removed until
the threshold condition is not satisfied.

(7) Xapmx(b) was taken as the starting point f ba (1), f
b
a

represents the ridge b of the time-frequency matrix a. The
ridge line of amta(:, k) was extracted by the peaks detection
method of the modulus extremum, where, k ∈ [2,N ].

(8) Set the adaptive module extremum threshold condition
C1 =

∣∣f ba (k − 2)− f ba (k − 1)
∣∣ × µ1 and C2 = Xapmx(b) ×

µ2, where, µ1 and µ2 are the limiting coefficients.
(9)MakeD1 to represent the distances between the position

coordinates of all peaks at time k and the position coordinates
of the previous point, so thatD1 ≤ C1 orD1 ≤ C2. Search the
position coordinate set F(k) under the condition of C1 or C2
in the matrix of amta(:, k), then search the maximum point
Vmax(k) in the corresponding coordinate set V (k) of vmta(:
, k), and mark the position corresponding to Vmax(k) in F(k)
as f ba (k).

(10) If F(k) 6= ϕ, namely F(k) is not an empty set, the
ridge line is continuous.

(11) If F(k) = ϕ and F(k − 1) = ϕ, then the ridge line is
discontinuous. Search forward from starting points.

(12) If F(k) = ϕ but F(k − 1) 6= ϕ, assuming
f ba (k) = f ba (k − 1):

(a) If F(k + 1) 6= ϕ, the ridge line is continuous.
(b) If F(k+1) = ϕ, continue to judge according to step(12)

until F(k + d) = ϕ, the ridge line is discontinuous, where,
d is the maximum number of consecutive empty sets allowed.

(13) Find the mean of each segment of ridge lines fm(a, b).
(14) Define the maximum extreme relative deviation of

each segment as:

fmn (a, b) = max
(
|max (f (a, b))− fm (a, b)| ,
|min (f (a, b))− fm (a, b)|

)
/fm (a, b) .

If fmn (a, b) = 0, then f (b) zeroing and culling.
(15) Set the adaptive filtering threshold of adjacent ridges

as C3 = |fm (a, b)− fm (a, b+ 1)| /fm (a, b), if C3 ≤ µ3 and
fmn (a, b) ≥ fmn (a, b+ 1) , then f (b) zeroing and culling
until the filter conditions are no longer met, where, µ3 is the
filtering coefficient.

(16) The carrier matrix Bf is constructed by the ridge
matrix ωf of IF estimation of each component signal
extracted by the instantaneous frequency estimation method,
and the second order Vold-Kalman filtering is carried out
toobtain the instantaneous amplitude estimation matrix of
each component signal Af , where, the bandwidth of VKF
is -3dB.

(17) Use equation (10) to reconstruct each component
signal sr (b), and find the reconstructed modulated signal as
s =

∑
b
sr (b). The signal residual is δ(n) = x(n)− s(n).

(18) The IF estimation of each component signal f (b)
is used as the reference frequency of each component
signal sr (b).
(19) The signal residual δ(n) is analyzed by diagonal slice

of bispectrum to extract the amplitude and frequency charac-
teristics of the residual signal.

(20) Diagnose vibration signals using instantaneous
frequency estimation, order amplitude characteristics and
amplitude-frequency characteristics of diagonal slice of
bispectrum.

This improved method utilizes the method for adaptive
multiridge extraction of peaks detection based on SWT to
adaptively extract high-precision IF estimates of the signal,
that is, to obtain the number of signal decompositions and the
instantaneous frequency estimates of each single-component
signal. It can reduce the SWT calculation time. It improves
the accuracy of peaks detection and solves the problem that

112174 VOLUME 8, 2020



Y. Li et al.: Research on a Signal Separation Method Based on VKF of Improved Adaptive Instantaneous Frequency Estimation

FIGURE 2. The algorithm flowchart.

multi-ridge extraction is difficult to extract separately in the
traditional peaks detection.

This improved method uses the Vold-Kalman filter algo-
rithm to adaptively decompose the time series signal into

multiple single-component signals according to IF estima-
tion. At the same time, the sum of the single-component
signals is recorded as the reconstructed signal. The dif-
ference is subtracted between the original signal and the
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reconstructed signal. The difference contains noise and other
useful information components, which are recorded as the
signal residual. The signal is decomposed into multiple
single-component signals with actual physical significance.
The disadvantages of frequency aliasing, complex compo-
nents and noise interference caused by direct analysis of
the original signal are avoided, and the problem of efficient
adaptive separation of complex multi-component signals is
solved.

This improved method uses the instantaneous frequency
curves estimated obtained by IF estimation to track the order
of the corresponding component signals. It solves the prob-
lem that for a multi-input gearbox or machine, the input
speeds are not unique and cannot be used as the reference
frequency. Since each component signal is a single harmonic
signal, there is almost no noise interference. Therefore, the
effect of order tracking analysis is obvious. There are no
approximate orders and cross orders. It is sufficient to extract
the amplitude of the corresponding order as the fault fea-
ture. The order information missing in the order spectrum
can be determined by the relation between the instantaneous
frequency curve and the rotation frequency, so as to determine
the fault component. It solves the problem of fault diagnosis
caused by the non-stationary characteristics of the vibration
signal.

Because the signal residual contains not only noise, but
also some other useful information, such as the instantaneous
frequency of the vibration harmonic components cannot be
extracted because of the phase cancellation. Since there is
no corresponding IF estimation for signal residual, order
tracking analysis cannot be carried out in the case of multi-
input speeds, and some weak fault features may be missed.
At the same time, based on the characteristic that the noise is
Gaussian and the fault signal is non-Gaussian, this paper uses
diagonal slice of bispectrum analysis to suppress noise and
extract fault features. It solves the problem of fault diagnosis
caused by the non-Gaussian characteristic of fault signal.

III. SIMULATION
A. THE SUPERIORITY OF THE IMPROVED METHOD IN
MULTI-RIDGE EXTRACTION OF HIGH PRECISION IF
CURVES
In order to verify the superiority of the improved method
in multi-ridge extraction of high precision instantaneous fre-
quency curves, set the simulation signal 1 to:

x(t) = sin(2π t2)+ sin(4π t2)+ sin(8π t2)+ noise (14)

where, noise is randomly distributed noise. The sampling
frequency is 5120Hz, and the sampling time is 4 seconds.
Its instantaneous frequency of speed is ϕ′(t) = 2t , and the
instantaneous frequency of the three components for x(t) are
respectively: ϕ′1(t) = 2t , ϕ′2(t) = 4t and ϕ′3(t) = 8t .
Therefore, the simulation signal 1 contains one, double and

four times of the speed frequency information.
As shown in Figure 3, (a) (b) (c) is the time domain

diagram of simulation signal 1 and its corresponding SWT

time-frequency image when the noise is 0dB, 2dB and 4dB.
All three time-frequency images show the one, double and
four times ridges of the instantaneous frequency of speed,
and they are clustered. However, as the intensity of noise
increases, the time-frequency ridges become more and more
blurred. Especially the time-frequency ridges at four times,
the frequency are most seriously affected by noise, and the
degree of dispersion for peak points increases. For traditional
method of peaks detection, if the selected frequency extrac-
tion width is too large, it is easy to cause over-recognition
when the initial ridgeline distance is close. But if the selected
frequency extraction width is too small, under recognition
occurs at the blur of ridgeline. These conditions increase the
difficulty of accurate ridge extraction.

Figure 3 (d) (e) (f) are the instantaneous frequency curves
extracted by the traditional peaks detection method from (a)
(b) (c) respectively. Figure 3 (g) (h) (i) are the instantaneous
frequency curves extracted by the improved method from
(a) (b) (c) respectively. The comparison between (d) (e) (f)
and (g) (h) (i) found that the instantaneous frequency
curve IF1 extracted by the traditional method has obvious
over-recognition in the green circles of (d) (e) (f). It leads
to abrupt and stepped frequency changes that become more
pronounced as the noise increases. In the red circles of (d) (e)
(f), the frequency of instantaneous frequency curves IF2 and
IF4, extracted by the traditional method, have obvious under-
recognition. It causes the frequency change to be so slow
that appearing as ‘burrs’. The phenomenon becomes more
obvious as the noise increases. The improved method solves
such problems of traditional peaks detection under different
noise. The extracted curves are smoother.

As shown in Figure 4, where (a), (b) and (c) are the
relative error (RE) curves of the instantaneous frequency
curves in Figure 3 and theoretical values, respectively. In the
figure, the word ‘old’ represents the traditional peak detection
method and the word ‘new’ represents the improved method.
The changes and comparison of the curves verify the analysis
about the extraction effect of two methods; (d), (e) and (f) are
the comparison about the average relative error (MRE) curves
and the data statistical graphs of the instantaneous frequency
between the traditional method and the improved method
under different noise. These intuitive show the superiority of
the improved method. The MRE curves and statistical graphs
of IF1 show that the improved method is significantly better
than the traditional method in both the value of the error and
the amount of error distribution. Due to the under identifi-
cation of the traditional method, the MRE curves of IF2 and
IF4 show that the two methods are basically consistent. But
the statistical graphs of IF2 show that the error distribution
range of the improved method is smaller than that of the
traditional method. The statistical graphs of IF4 data show
that the improvedmethod is superior to the traditional method
in the distribution of small errors.

Therefore, in terms of suppressing noise, the improved
method of adaptive multi-ridge extraction peaks detection is
superior to the traditional peaks detection method.
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FIGURE 3. (a) (b)(c) are the simulation signal and its SWT time-frequency image under different signal-to-noise ratios; (d) (e) (f) are the instantaneous
frequency curves of the traditional peaks detection method under different signal-to-noise ratios; (g) (h) (i) are the instantaneous frequency curves of the
improved method under different signal-to-noise ratios.

B. THE FEASIBILITY AND SUPERIORITY OF THE
IMPROVED METHOD IN SIGNAL SEPARATION AND
FEATURE EXTRACTION
In order to verify the feasibility of the improved method
in signal separation and feature extraction, the simulation
signal 1 when noise=0dB was analyzed.

As shown in figure 5, (a) is the simulation signal 1 and
the IF estimation curves when noise=0dB, the signal is a
non-stationary signal with acceleration, the instantaneous fre-
quency of each component corresponds to different colors,
the same below. (b) is the corresponding single-component
signals obtained after Vold-Kalman filtering. They are all
non-stationary signals. (c) is the comparison between the
reconstructed signal and the original signal and the signal

residual. The comparison shows that VKF can better recon-
struct the harmonic components of the signal. (d) is the
isometric resampling diagram of (b) in the time domain. (e) is
the order tracking of each component signal using the IF esti-
mates as reference frequency respectively. The results show
that there is only first-order information. It indicates that each
component signal is a single component. (f) is the diagonal
slice of bispectrum analysis and power spectrum analysis of
the signal residual in (c), respectively. Diagonal slice of bis-
pectrum is sensitive to non-Gaussian components. Therefore,
it can extract 10Hz (one-octave frequency), 30Hz (the sum of
one-octave frequency and two-octave frequency) and 50Hz
(the sum of one-octave frequency and four-octave frequency)
in the signal residual. However, almost no information is
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FIGURE 4. (a) (b) (c) are the IF RE analysis of each component extracted by the traditional method and the improved method under different SNR.
(d) (e) (f) are the comparison of MRE curves and the data statistics graphs under different SNR between traditional methods and the improved method.

extracted from the power spectrum. The frequency in the
diagonal slice of bisectrum is not the stationary component,
but the average result after bisectrum transform which treats
the signal residual as the multi-segment short-time stationary
signal. It can be used as auxiliary information to judge the
vibration state comprehensively. The above results are in line
with the expected results and verify the feasibility of the
improved method.

To verify the superiority of the improved method in signal
separation and feature extraction, the simulation signal 1 with
different SNR is analyzed by traditional signal analysis meth-
ods such as EMD and speed order tracking, and the results are
shown in figure 6.

In Figure 6, (a) (b) (c) are the simulated signal 1 and the IF
estimation curves with different SNR, the harmonic signals
are submerged by strong noise. The instantaneous frequency
of each component corresponds to different colors, the same
below. The speed order tracking and the order diagonal slice
of bispectrum are carried out to the signals in (a)(b)(c), and
the results are shown in (d)(e)(f). By comparison, it is found
that with the increase of noise intensity, the useful infor-
mation extracted from the rotational speed order spectrum
becomes less and less. When noise=6dB, it is impossible
to extract useful information from the results of speed order
tracking analysis. The effect of bispectrum in suppressing
Gaussian noise is obviously. Due to the large number of
components of the simulated signal 1, the adjacent order and

cross order interference are serious. It leads to unsatisfactory
analysis results. At the same time, for the signal ofmulti-input
speeds, there is a problem that the reference frequency cannot
be determined. Therefore, for signals with strong noise and
complex components, signal separation must be performed.

Perform EMD analysis on the simulated signal 1 in
Figure 6 (c) to obtain instantaneous frequency estimates as
shown in Figure 6 (g). Compared with the IF estimates in (c),
the IF estimates in (g) have frequency aliasing and their physi-
cal significance is not clear. As shown in Figure 6 (h), the first
eight intrinsic mode functions (IMF1 to IMF8) obtained after
EMD analysis are taken, and it can be found that each compo-
nent signal is a non-stationary signal. Due to the IF estimation
of EMD has frequency aliasing, so diagonal slice of bispec-
trum analysis is performed on the IMF component signals,
and the results are shown in Figure 6 (i). Although bispectrum
suppresses noise, the frequency obtained by bispectrum is
the average frequency of the transformation period. So the
analysis results are difficult to meet the application needs.

From the above comparative analysis, it can be found that
speed order tracking analysis and traditional signal separation
methods have limitations in processing signals with strong
noise and complex components. Therefore, it is necessary to
conduct in-depth research on the characteristics of the signal
and propose more effective signal separation methods.

Using the improved method proposed in this paper,
the simulation signal in Figure 6 (c) is analyzed, and the
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FIGURE 5. The improved method to analyze the simulated signal 1 with noise = 0dB.

TABLE 1. The median of the relative error between the harmonic signal reconstructed by different methods under different noise and the theoretical
value.

result is shown in Figure 7. Among them, (a) is the sin-
gle non-stationary component signals extracted by VKF,
the color of each component is the same with the color of the
corresponding IF estimation, the same below. (b) is the order
tracking analysis of each component signal by IF estimation.
The results show that there is only first-order information,
indicating that VKF has a good effect on the separation of
noise and the signal of each component. (c) is the comparison
between the reconstructed signal and the original signal and
the signal residual. The comparison shows that VKF can
better separate and reconstruct the harmonic components of
the signal. (d) is the diagonal slice of bispectrum analysis
and power spectrum analysis for the signal residual in (c).
Because the power spectrum cannot suppress Gaussian noise,
its analysis results are greatly disturbed, which causes great
difficulty in identifying the extracted features. Bispectrum
suppresses the noise, and the extraction effect is good. It can
be found that the diagonal slice of bispectrum extracts the

information of 10Hz (one-octave frequency), 40Hz (four-
octave frequency), 80Hz (eight-octave frequency) and 120Hz
(twelve-octave frequency) in the signal residual.

Comparing the analysis results of Fig. 7 (b) and (d) with
Fig. 6 (f) and (i), the improved method can separate the
components with definite physical meaning, so it is better
than EMD in signal separation; the improved method can
avoid the influence of neighboring order and Gaussian noise,
so it is better than traditional rotational speed ratio analysis
in feature extraction.

The relative error between the reconstructed harmonic
signals obtained by different methods and the theoretical
values is obtained. Since the median is not affected by the
maximumorminimumvalue of the distribution sequence, it is
highly representative of the distribution sequence. Therefore,
themedian of the relative error is obtained as shown in table 1.
Through the comparison, found that medians of EMD are
greater than 1. This is due to EMD is unable to realize the

VOLUME 8, 2020 112179



Y. Li et al.: Research on a Signal Separation Method Based on VKF of Improved Adaptive Instantaneous Frequency Estimation

FIGURE 6. (a)(b)(c) are the simulated signal 1 with different SNR; (d)(e)(f) are speed order tracking analysis of (a)(b)(c); (g)(h)(i) are EMD analysis of the
simulated signal 1 with noise = 6dB.

separation of noise. The combination of traditional peaks
detection based on SWT and VKF can realize the separation
of noise. But compared with the improved method, the dif-
ference of median between the traditional method and the
improved method is more obvious with the increase of noise.

To sum up, it is proved that the improved method proposed
in this paper has more advantages than the speed order track-
ing analysis and traditional signal separation methods.

C. COMPARISON OF THE IMPROVED METHOD WITH
EMD FOR COMPLEX MULTI-COMPONENT SIGNALS
The simulated signal 1 simulates a rotating system with
varying speeds, which verifies the feasibility and superior-
ity of the improved method proposed in this paper. There

are complex multi-component signals produced by complex
rotating systems in production, such as the vibration signal
of multi-stage transmission gearboxes or a complex gearbox
with multiple inputs and multiple outputs. In order to verify
that the improved method proposed in this paper is also
feasible and advantageous for processing the vibration signal
of a complex rotating system, set the simulation signal 2 to:

f (t) =

{
x1(t), 0 ≤ t < 7.5
x2(t), 7.5 ≤ t ≤ 25.5

(15)

where,

x1(t) = sin (3.2π t)+ sin
(
6π t + 0.08π t2 + 4 sin (0.2π t)

)
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FIGURE 7. The improved method to analyze the simulated signal 1 with noise = 6dB.

x2(t) = sin
(
3.2π (t − 7.5)+ 0.11π (t − 7.5)2

)
+ sin

(
6π t + 0.08π t2 + 4 sin (0.2π t)

)
The sampling frequency is 40Hz. The sampling time is 25.5

seconds. The signal from 0 to7.5 seconds is x1(t), and the
signal from 7.5 seconds to 25.5 seconds is x2(t). f (t) contains
three components and the instantaneous frequencies are:

ϕ′ (t) =


ϕ′1(t) = 1.6, 0 ≤ t < 7.5
ϕ′2(t) = 1.6+ 0.11 (t − 7.5) , 7.5 ≤ t ≤ 25.5
ϕ′3(t) = 3+ 0.08t
+ 0.4 cos (0.2π t) , 0 ≤ t ≤ 25.5

(16)

where, ϕ′1(t) indicates the state of uniform speed, ϕ′2(t) indi-
cates the state of speed increase, ϕ′3(t) represents the state of
speed fluctuations.
ϕ′1(t) and ϕ′2(t) together show the transition process of

speed from steady to rising speed. The instantaneous fre-
quency curve has an intersection point at 7.5 seconds, which
meets the design requirements of multi-component complex
vibration signals.

As shown in Figure 8, (a) is the time-domain diagram and
IF estimation of the simulated signal 2, indicating that there
is no correlation between the signal components, which can

be regarded as a non-stationary multi-component signal in
the case of multiple inputs and multiple outputs. Because of
the components are not related to each other but affect each
other, so the speed order tracking analysis of the signal cannot
obtain the expected effect, so effective signal separation must
be performed for this type of signal.

Using EMD to decompose simulation signal 2, the IF
estimation is shown in Figure 8 (b). Compared with the IF
estimation in (a), the IF estimation in (b) is aliasing and has no
clear physical meaning. As shown in Figure 8 (c), taking the
first four intrinsic modal functions (IMF1 to IMF4) obtained
after EMD analysis, it can be found that each component
signal is a non-stationary signal. Diagonal slice of bispectrum
analysis is performed on the IMFs, the result is shown in
Figure 8 (d). Bispectrum analysis has a good effect on noise
suppression. But due to frequency aliasing, IMF1 contains the
frequency information of IMF2. It indicates that the signal is
not sufficiently decomposed in the corresponding frequency
band. The frequency information of IMF3 and IMF4 are con-
sistent. It indicates that the signal is excessively decomposed
in the corresponding frequency band.

Therefore, in view of the characteristics of complex multi-
component signals generated by complex rotating systems,
it is necessary to study a more effective signal separation
method.
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FIGURE 8. EMD analysis for simulation signal 2.

Using the improved method proposed in this paper,
the simulation signal 2 in Figure 8 (a) is analyzed, and
the result is shown in Figure 9. Among them, (a) is
the single non-stationary component signals extracted by
VKF, and the color of each component is corresponding
to the color of the IF estimation, the same below. (b) is
the order tracking analysis of the IF estimation of each
component signal. The blue order analysis is a 0.5-order fre-
quency multiplication, and the red order analysis is the cou-
pling between the 1-order frequency multiplication and the
1.5-order frequency multiplication. (c) is the comparison
between the reconstructed signal and the original signal and
the signal residual. The comparison shows that VKF can
be better separated and reconstructed the signal harmonic
components. (d) is the diagonal slice of bispectrum analysis
and power spectrum analysis of the signal residual in (c), and
the extracted information can be used as a reference for fault
identification.

Comparing the analysis results of Fig. 9 (a) and (b) with
Fig. 8 (c) and (d), it proves that the improved method pro-
posed in this paper is more advantageous than the traditional
signal separation method for complex multi-component
signals.

IV. EXPERIMENT
A. THE DESIGN SCHEME OF EXPERIMENT
In order to verify the practicability of the improved method
proposed in this paper, a closed power flow gearbox test
bench was used to perform related experiments. The vibra-
tion signals of the gearbox were collected under normal and
pitting of the tooth surface conditions. The bench is loaded by
the internal force generated by the torsion bar. In the experi-
ment, the pitting corrosion of tooth surface was observed and
recorded every 60 minutes when the machine stopped. Data
were collected once at the start-up and shutdown stage, each
time for 60 seconds. This method can be used to simulate
the non-stationary operation of the gearbox in the produc-
tion environment. The gear can reach the limit of fatigue
life quickly, and the natural pitting of tooth surface will
appear.

The test gear has a transmission ratio of 1: 1 and a number
of 18 teeth. The test bench is shown in Figure 10 (a). The
model of piezoelectric sensor is CA-YD-186 (sensitivity is
10.41mV/m•s−2), the sampling frequency is 12000Hz, and
layout positions are shown in Figure 10 (b). Figure 10 (c)
shows the rotation speed of the shaft during the speed-up
phase collected by the torque tachometer.
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FIGURE 9. The improved method for simulated signals 2.

FIGURE 10. (a) is the test bench, where 1-speed motor, 2-coupling, 3-test gearbox, 4-torque tachometer, 5-torque bar, 6/7/8/9-piezoelectric
acceleration sensor, 10-main test gearbox; (b) is the schematic diagram of sensors distribution; (c) is the speed chart of motor.

B. COMPARISON OF THE IMPROVED METHOD AND EMD
ON DIFFERENT SIGNALS
The signals within the 19th to 20th seconds of the speed-up
phase are selected, as shown in Figure 11(a) (b) (c), which
are the normal signal, the slight gear-pitting signal and the
gear-pitting signal. As can be seen from Figure 10 (c), the
speed increases from 500r/min to 600r/min, and the cal-
culated instantaneous frequency of gear engagement ranges
from 150Hz to 180Hz.

In Figure 11 (a), the one-octave frequency, two-octave
frequency and five-octave frequency of the instantaneous fre-
quency of the gear meshing signal are obtained. In Figure 11
(b)(c), the one-octave frequency, two-octave frequency, three-
octave frequency and five-octave frequency of the instan-
taneous frequency of the gear meshing signal are obtained.
Each time-frequency curve in Figure 11 (a) (b) (c) has its spe-
cific physical meaning. The results of EMD analysis for the
signals are shown in Figure 11 (d) (e) (f). The instantaneous
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FIGURE 11. EMD analysis of the normal signal and the gear pitting fault signal.

frequency estimation of EMD has no clear physical meaning.
At the same time, it cannot suppress the noise, so that the
frequency curves of the high-frequency range fluctuate too
much.

As shown in Figure 11 (g) (h) (i), taking the first
four intrinsic mode functions (IMF1 to IMF4) obtained
after EMD analysis, it can be found that each compo-
nent signal is a non-stationary signal. Diagonal slice of
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FIGURE 12. The improved method analyzes the normal signal, the slight gear-pitting signal and the gear-pitting signal.

bispectrum analysis was performed, and the results are shown
in Figure 11 (j) (k) (l). Due to frequency aliasing, the fre-
quency information of IMF1 to IMF4 partially overlapped,
indicating that the signal was not sufficiently decomposed

in the corresponding frequency band. Since the IMFs are
non-stationary signals, the frequency value is the average
value during the conversion period of the bispectral anal-
ysis. Therefore, the physical meaning represented by each
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FIGURE 13. Electric discharge machined bearing outer ring.

frequency value cannot be judged, that is, the failure compo-
nent corresponding to the frequency value cannot be judged.

Using the improved method proposed in this paper,
the signals in Figure 11 (a) (b) (c) are analyzed separately,
and the results are shown in Figure 12. Among them, (a) (b)
(c) are the single non-stationary component signals extracted
by VKF. Each color of the component is consistent with the
color of the corresponding IF estimation, the same below.
(d) (e) (f) are the order tracking analysis of each component
signal by the IF estimation. The results show that there is only
first-order information, indicating that VKF has a good effect
on the separation of noise and the signal of each component.
The amplitudes in (e) and (f) are twice that in (d). And (e) (f)
increase the three-octave frequency (IF3) which not appears
in (d). Meanwhile, the amplitudes of IF3 and IF5 in (f) are

twice that in (e). It proves that the gear of the vibration signal
represented by (f) has a fault and the gear of the vibration
signal represented by (e) has a slight fault, which is consistent
with the experimental design. (g) (h) (i) are the comparison
of the reconstructed signals with the original signals and the
signal residuals. The comparison shows that VKF can better
separate and reconstruct the harmonic components of the sig-
nals. (j) (k) (l) are performed by diagonal slice of bispectrum
analysis and power spectrum analysis on the signal residual
in (g) (h) (i), respectively. Bispectrum analysis has a good
effect on noise suppression. The amplitude range of the bis-
pectrum analysis in (l) is 100 times that in (j) and is 50 times
that in (k). Form an obvious frequency cluster in (l). It proves
that the vibration signal represented by (l) has a fault.

Comparing the analysis results of Figure 12 and Figure 11,
it proves that the improved method proposed in this paper is
superior to the traditional signal separation method.

C. COMPARISON OF THE IMPROVED METHOD AND
SPEED ORDER TRACKING AND EMD ON THE COMPOSITE
FAULT SIGNAL
The above experiment is designed to analyze and compare
the fault-free case and the single fault case of gear pitting.
The results show that the traditional signal separation method
has limitations and deficiencies in the practical application
of multi-component non-stationary signals with strong noise.

FIGURE 14. Speed order ratio analysis and EMD process the composite fault test signal separately.
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FIGURE 15. The improved method to analyze the composite fault signal.

The improvement method proposed in this article is more
practical.

Aiming at the complex multi-component non-stationary
vibration signal of multi-input and multi-output, a composite
fault experiment was designed for coexistence of gear pitting
and bearing outer ring pitting, in which the simulated pitting
pits of the bearing outer ring was made by EDM, as shown
in Figure 13. Its model number is 32212. This composite
fault experiment meets the requirement of multiple outputs
for multiple fault vibration sources, which increases the diffi-
culty for effectively extracting different fault characteristics.

Select the signal within the 16th to 17th seconds of
the speed-up phase, as shown in Figure 14 (a). From
Figure 10 (c), it can be found that the speed increases from
450r/ min to 500r/ min, and the instantaneous frequency of
gear engagement is 135Hz to 150Hz. The outer ring fault
frequency of the test bearing is 35.5Hz to 39.4Hz.

The IF estimation of the composite fault signal is shown
in Figure14(a). Different colors represent different compo-
nents, the same below. Four IF curves from low frequency
to high frequency are: the one-octave frequency of the test
bearing outer ring pitting fault frequency, and the one-octave
frequency, two-octave frequency and three-octave frequency
of the gear meshing frequency.

The speed order tracking is performed to the vibration
signal in Figure 14 (a). The time domain diagram and angle
domain diagram after isometric resampling are shown in (b).
Comparing with the original signal, it can be found that
after isometric resampling, the signal is transformed from a
non-stationary signal in the time domain to a stationary signal
in the angular domain. It has a certain impact period, but due
to the different vibration periods of the two fault sources and
the influence of strong noise, it is not possible to directly find
specific laws from the angular domain diagram. The order
spectrum is shown in Figure 14 (c), which are the traditional
order spectrum and the order diagonal slice bispectrum. The
comparison shows that the order bispectrum is superior to
the traditional order spectrum in suppressing strong noise.
However, the two order spectrums are based on the rotation
speed. From the order values in (c), it can be found that
the order spectrums form order clusters at the 18th, 36th,
54th, and 72th orders, which respectively correspond to one,
two, three, and four times of the frequency of gear pitting
fault. Because the outer ring pitting fault of the bearing is a
weak component, it is easily overwhelmed by strong noise
and other faults. Although the speed order tracking can be
extracted the pitting fault characteristics of gear, but there
are obvious deficiencies in extracting weak fault components.
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It is necessary to extract different components. It is also the
demand characteristics of the composite fault.

Using EMD to separate the vibration signal in
Figure 14 (a), the IF estimation of EMD is shown
in Figure 14 (d). As shown in Figure 14 (e), the first four
intrinsic mode functions (IMF1 to IMF4) obtained after EMD
analysis are taken, and each component signal is a non-
stationary signal. The diagonal slice of bispectrum analy-
sis is performed on the IMFs, and the results are shown
in iFigure 14 (f). Due to frequency aliasing, the frequency
information of IMF1, IMF2, and IMF3 partially overlap.
It indicates that the signal is insufficient decomposition
in the corresponding frequency band. Since the IMFs are
non-stationary signals, so the physical meaning of each fre-
quency value cannot be judged.

Using the improved method proposed in this paper,
the composite fault signal in Figure 14 (a) is analyzed, and
the result is shown in Figure 15. Among them, (a) is the single
non-stationary component signals extracted by VKF, and the
color of each component is corresponding to the correspond-
ing IF estimation, the same below. (b) is the order tracking
analysis of each component signal by the IF estimates, and
the results show that there is only first-order information,
indicating that VKF has a good effect on the separation of
noise and the signal of each component. The order spectrum
of the blue component corresponds to the fault frequency of
the bearing outer ring, and the rest of the order spectrum
corresponds to the one, two and three times of the frequency
of gear pitting fault. The analysis results in (b) are good sepa-
ration of different components of themulti-component signal.
(c) is the comparison between the reconstructed signal and
the original signal and the signal residual. The comparison
shows that VKF can better separate and reconstruct the har-
monic components of the signal. As shown in (d), the signal
residuals in (c) are performed by diagonal slice bispectrum
analysis and power spectrum analysis respectively.

Comparing the analysis results of Figure 14 and Figure 15,
in terms of signal separation and feature extraction of com-
plex multi-component signals with multiple inputs and mul-
tiple outputs, it proves that the improved method proposed
in this paper is more advantageous than the traditional order
tracking analysis and the traditional signal separationmethod.

V. CONCLUSION AND RECOMMENDATIONS
This paper proposes a signal separation method based on
Vold-Kalman filter of adaptive instantaneous frequency esti-
mation, and analyzes the simulation data and experimental
data under different conditions. Comparison of different sig-
nal separation methods, the results show that the improved
method proposed in this paper has advantages and practica-
bility in adaptively separating and extracting the fault charac-
teristics of complex multi-component non-stationary signals
and suppressing noise.

In future work, it is recommended to extend this improved
method to other composite faults and vibration environments,
such as composite faults of planetary gearboxes. At the same

time, the research method in this paper laid the foundation
that complex multi-component signals need to be separated
and extracted non-stationary fault characteristics, but the
actual application and effect still need to be verified in indus-
trial machines.
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