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ABSTRACT Object tracking is a key technology in the field of intelligent transportation. To solve the
partial occlusion problem in vehicle tracking, this paper analyzes the characteristics of a VGG convolutional
neural network by experimental observation and describes its characteristics: (1) feature maps can be
used for positioning, but they have redundancies, and (2) different layers of feature maps have different
characteristics. After these characteristics are applied to vehicle tracking, a vehicle tracking algorithm is
designed. For a given target vehicle, feature maps are generated on convolutional layers conv4_4 and
conv5_4 of the VGG network, and the feature maps most relevant to the target vehicle are selected.
These feature maps are used to capture target vehicle information and distinguish the target vehicle from
backgrounds with similar appearances. The experiments use vehicle data from the LaSOT, VOT2017 and
OTB2015 datasets to compare the vehicle tracking results of our proposed algorithm with those of other
algorithms. The results show that the method proposed in this paper has certain advantages. According to
algorithm implementation and vehicle tracking experiments, the proposed vehicle tracking method can solve
the drift problem and is better than the traditional method at addressing drift problems.

INDEX TERMS Vehicle tracking, convolutional neural network, VGG, deep learning.

I. INTRODUCTION
At present, the ever-expanding scale of cities and rapid eco-
nomic expansion have led to explosive growth in the number
of cars. Therefore, the intelligent management of urban traffic
must be carried out [1]–[4]. For a city’s traffic problems,
the current driverless technology and human-computer inter-
action technology continue to play an important role in the
transportation field [5]. Object tracking technology is also
evolving. Object tracking has always been a research focus
and challenge in the field of computer vision and has been
widely studied by researchers around the world. It is per-
formed to estimate the position, shape and range of a tracked
object in a continuous sequence of video images, thereby
yielding relevant information such as the speed, direction
and trajectory of the object to understand and analyze the
moving object, resulting in better service. However, there
are still a number of difficulties in tracking vehicles, such
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as moving vehicle feature variability, vehicle scale changes,
illumination intensity inconsistencies, occlusion, and inter-
ference from complex backgrounds. There are still serious
constraints on the performance and speed of vehicle tracking
algorithms [6], [7]. Therefore, it is necessary to design a
robust vehicle tracking algorithm during the process of build-
ing intelligent transportation.

The development of target tracking divided in two stages:
in the first stage, the traditional object tracking algorithm is
developed, and in the second stage, deep learning is used to
solve the object tracking problem [8].

Early object tracking was performed using traditional algo-
rithms such as the Kalman filtering [9], [10], particle filter-
ing [11], [12], or mean-shift algorithm [13], [14], and optical
flowmethods [15]–[17]. Then, the rise of correlation filtering
promoted the development of object tracking methods, and
relevant filtering methods began to be applied to vehicle
tracking, including the CSK (circulant structure kernel) fil-
tering [18], KCF (kernelized correlation filtering) [19] and
DSST (discriminative scale space tracking) algorithms [20].
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The rise of deep learning methods has greatly improved
the performance and efficiency of object tracking compared
to the traditional algorithms. Traditional algorithms use artifi-
cial features to describe the object, while deep learning trains
the network model on a large number of samples and obtains
a CNN (convolutional neural network) for feature extraction.
The expression of CNN features is stronger and its effect is
better than the expression of artificial features. At present,
many scholars use deep learningmethods to propose different
solutions to the problems in tracking. Aiming at the problem
of foreground and background discrimination in tracking,
[21], [22] used multi-area networks to distinguish targets
from background, and [23] proposed a spatial attention map
to suppress background interference during tracking. Aiming
at the occlusion problem in the tracking process, [24], [25]
used the convolution feature to locate the tracking target,
and [26] locates the target by fusing different convolution
features. Aiming at the problem of insufficient online train-
ing samples, [27] proposed the DLT (deep learning tracker)
algorithm to reduce the need for training samples, and [28]
proposed the SO-DLT (structured output DLT) algorithm to
further solve the rotation problem. Aiming at the rotation
problem in the tracking process, the tracking algorithms
proposed in [29], [30] achieved better tracking results than
previous methods. Aiming at the problem of slow tracking
speed in the process of object tracking, [31] reduced the
feature extraction part to reduce the number of dimensions,
which improved the efficiency of the algorithm. Aiming at
accounting for change in the appearance of the target, [32]
proposed a dual model learning method combining multiple
feature selection to solve the problem that deep convolutional
features are not sensitive to changes in the appearance of the
target.

Deep learning methods achieve better effects in dealing
with occlusion, background clutter and real-time problems
than traditional learning methods, but further improvements
are needed in the process of deformation and in the position-
ing accuracy in the tracking process. This paper draws on the
idea of the DLT algorithm, according to the characteristics of
the vehicle, by analyzing the characteristics of the pretrained
VGG-19 network, the characteristics of different layers of
the convolutional layer are fully utilized, and the vehicle
tracking algorithm is designed to deal with target deformation
and occlusion. It achieves a better effect than the traditional
methods, and effectively prevents tracking target drift and
improves the tracking accuracy.

The vehicle tracking algorithm designed in this paper first
inputs the first frame of video into a pretrained VGG-19 net-
work and generates feature maps on the conv4_4 and
conv5_4 layers. For the feature maps generated by the
conv4_4 and conv5_4 layers, the constructed feature map
selection sl-CNN is used to select the feature maps most
relevant to the target vehicle and remove redundant feature
maps. The constructed UnNet (universal network) is used
to capture the target vehicle information from the feature
maps generated at the conv5_4 layer; the constructed SpNet

(specific network) is used to distinguish the target vehicle
from vehicles with similar appearances from the feature maps
generated at the conv4_4 layer. In the new frame of the
video, the ROI (region of interest) centered on the target
position of the previous frame is cut forward through the
UnNet and SpNet networks, and then, foreground heat maps
are generated. From the two foreground heat maps generated,
interference detection is used to determine the position of the
final target vehicle.

The contributions of this article are as follows:
(1) The featuremaps of the pretrainedVGG-19 network are

analyzed, and their characteristics are obtained; the convolu-
tional layer feature maps can be used for vehicle positioning,
but redundancy exists. The high-level convolutional layer
conv5_4 can acquire high-level semantic features to distin-
guish the target vehicle from the background, and the low-
level convolutional layer conv4_4 can obtain local features
that distinguish between a target vehicle and a vehicle with a
similar appearance.

(2) According to the network characteristics of the
VGG-19 network, the vehicle tracking algorithm is designed,
which fully considers the characteristics of different convolu-
tional layers and solves the problems of partial occlusion and
target drift tracking.

(3) In the vehicle tracking algorithm, an sl-CNN model is
designed for feature map selection, and the UnNet and SpNet
are designed to generate foreground heat maps of the vehicle.

(4) The algorithm is tested with multiple datasets and
more reliable conclusions are obtained than with previous
algorithms. The vehicle tracking results are tested using
multiple datasets, such as the LaSOT (Large-scale Single
Object Tracking), VOT2017 (2017 Visual Object Tracking),
and OTB2015 (2015 Object Tracking Benchmark) datasets,
and various algorithms, such as the DLT, MOSSE (mini-
mum output sum of squared error) filter, DCF (discriminative
correlation filter), KCF, MEEM (multi-expert entropy mini-
mization), Struck (structured output tracking with kernels),
CSK, LSK (local steering kernel), Staple (sum of template
and pixel-wise learner), DSST, and TLD (tracking-learning-
detection) algorithms, are compared. The experiments show
that the method in this paper is advanced.

II. VGG NETWORK FEATURE ANALYSIS
To deeply understand the characteristics of CNNs and apply
them to the task of vehicle object tracking, the feature maps
of the VGG network were analyzed in this study.

The feature analysis method of this paper is based on
the application of the pretrained VGG-19 network on the
ImageNet [33] image classification task. VGG-19 [34] is a
19-layer CNN. Its network structure is shown in Figure 1.
The network structure consists of 16 convolutional layers and
3 fully connected layers. After several experiments, we find
that the convolved layers conv4_4 and conv5_4 have cer-
tain characteristics. We believe that these two layers are
the basis of vehicle tracking algorithm design, so our fea-
ture analysis method mainly focuses on these two layers
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FIGURE 1. VGG-19 network structure.

(see 5.2 for a discussion of the choice of these two layers).
The conv4_4 convolutional layer is the twelfth convolutional
layer, the conv5_4 convolutional layer is the sixteenth convo-
lutional layer, and both convolutional layers generate 512 fea-
ture maps.

A. FEATURE MAPS CAN BE USED FOR POSITIONING,
BUT REDUNDANCY EXISTS
The feature maps of the VGG network can be used for
the positioning of vehicle objects, but the feature maps are
redundant. In the CNN, different convolutional layers can
extract different levels of input image feature information,
and low-level extracted features often contain details of the
target in the image, which can be used to capture local
features of the target, while the high-level feature further
describes the semantic information of the image. An in-depth
analysis of the feature maps shows that they can be used
for the positioning of vehicle objects. Both the conv4_4 and
conv5_4 convolutional layers are obtained by multiple con-
volutions, and their receptive fields are large. Figure 2 shows
the feature maps of the conv4_4 and conv5_4 convolutional

FIGURE 2. Feature maps of the VGG-19 network.

layers obtained by VGG-19, which have maximum activation
values in the object region, where (a) is the original image of
the input VGG network and (b) presents the feature maps of
the conv4_4 layer, which are activated in the target area and
are distinguished from the background; (c) are feature maps
of the conv5_4 layer, which are activated in the target area and
can capture target and interference information. In the figure,
the activated portion of the feature maps is mainly located in
the foreground object area and can be used to locate the target
vehicle. Therefore, the VGG feature map can be used for the
positioning of vehicle targets.

Both the conv4_4 and conv5_4 convolutional layers gen-
erate 512 feature maps, but not all feature maps can be used
for the positioning of the target vehicle, as most contain
noise and cannot be used for target positioning. In Figure 3,
(a) is the input image, (b) is the ground-truth foreground
mask, (c) present the feature maps of the conv4_4 layer, and
(d) present the feature maps of the conv5_4 layer. As shown
in Figure 3, the average feature map contains background
noise. Therefore, feature maps responsive in both the vehicle
area and the background area must be removed to prevent the
tracker from identifying the background area of the image.

FIGURE 3. Feature maps of mixed noise.

The activation value of the feature map is the sum of all
response values in the target vehicle area. Figure 4 shows pie
charts of the proportion of the number of different activation
value feature maps in the target vehicle area. The left side
is for the conv4_4, convolutional layer, and the right side
is for the conv5_4 convolutional area. As can be seen from
the figure, the activation value of most feature maps in the
object area is small. Therefore, the feature maps generated
by VGG-19 are redundant and have little correlation with
the target vehicle. Therefore, when implementing the vehicle
object tracking task, a large number of redundant feature
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FIGURE 4. Pie chart of the quantity ratio of feature maps for different activation values.

maps should be removed, and a small number of effective
feature maps should be selected to improve the performance
of the tracker. The removal of redundant feature maps is
described in detail in Section III-A.

B. DIFFERENT LAYER FEATURE MAPS HAVE DIFFERENT
CHARACTERISTICS
Since the feature maps are affected by noise, they suffer
from redundancy. In the experiment, the characteristics of
the feature maps of the different layers are observed. The
feature maps can be denoted by ∈ Rd×n, where d represents
the dimension of each feature map vector, and n represents
the number of feature maps. The image is associated with a
foreground mask. The foreground mask can be represented
as π ∈ Rd×1, where, if the i-th neuron of each feature map
is not located in the foreground object, πi = 0; otherwise,
πi = 1. The foreground mask [35], [36] of the feature maps
is reconstructed by solving equation (1):

min
c
‖π − Fc‖22 + λ ‖c‖1, s.t. < 0 (1)

where λ is a parameter used to balance the sparsity and the
reconstruction error, and c ∈ Rn×1 is the sparse coefficient.

The input vehicle image is forwardly propagated through
the VGG-19 network, and the feature maps of the
conv4_4 and conv5_4 convolutional layers can be obtained.
For the conv5_4 convolutional layer, the feature maps
obtained in the experiment are used to reconstruct the fore-
ground mask by the above formula. Figure 5 shows the
foreground masks of the feature maps of the conv5_4 con-
volutional layer, where the first two lines are the images of
the buses and their foreground masks, and the last two lines
are the images of the cars and their foreground masks. As can
be seen from the first two rows of Figure 5, the selected
feature maps can better locate the vehicle than the other
feature maps. Even when the appearance and model of the
vehicle change, the positioning effect is relatively stable, and
positioning failures rarely occur. The latter two lines show

FIGURE 5. Foreground mask reconstructed by the feature maps of the
conv5_4 layer.

that the selected feature maps separate the vehicle from the
background and are not affected by vehicle rotation. The
conv5_4 layer captures the high-level semantic features of the
object but has insufficient discriminating power for different
vehicles and cannot be directly used for vehicle positioning.
In Figure 2, conv4_4 can separate the target vehicle from
other vehicles, indicating that conv4_4 is more sensitive to
different vehicle changes than conv5_4, but the robustness is
relatively low.

Following the qualitative analysis above, a quantitative
analysis is performed to illustrate this point. The experimen-
tal data are vehicle images selected for the vehicle dataset:
2,400 vehicle images belonging to eight different models and
2,500 images of non-vehicles. The first experiment uses the
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feature maps of conv4_4 and conv5_4 to test the accuracy
of classifying images into as either vehicles or non-vehicles.
In the training phase, the positive training sample is four
images belonging to four vehicles, and the sparse coefficient
is calculated by equation (1). In the test phase, the reconstruc-
tion error of the foreground image is calculated according to
the feature maps and the foreground mask of the input image,
as in equation (2):

e = min
i
‖π − Fci‖22 (2)

If the error is less than a given threshold, the image
is of a vehicle, and if the error greater than the given
threshold, the image is of a non-vehicle. The second exper-
iment divides all the vehicle images into different mod-
els. In the training phase, the training sample includes
20 images per vehicle, and the sparse coefficient is cal-
culated by equation (1). In the test phase, the foreground
mask reconstruction error of each model vehicle is calcu-
lated first, and then the image with the smallest error is
classified into the corresponding vehicle model, as shown in
equation (3):

idcar = argmin
i
‖π − Fci‖22 (3)

The classification results of the two experiments are shown
in Table 1. As can be seen from the table, in Experiment 1,
for the results of classifying images as containing vehicles or
non-vehicles, the overall classification accuracy obtained by
the conv5_4 layer is higher than that of the conv4_4 layer,
indicating that the feature map of the conv5_4 layer can
better separate vehicles from non-vehicle objects. It can be
concluded that the high-level semantic information obtained
from the feature map of the conv5_4 layer can better dis-
tinguish vehicles from the background. In Experiment 2,
from the results of classifying pictures into different models
of vehicles, the overall classification accuracy obtained by
the conv4_4 layer is higher than that of the conv5_4 layer,
indicating that the feature map of the conv5_4 layer can
better classify different types of vehicles. It can be con-
cluded that the intermediate information obtained from the
feature map of the conv4_4 layer can better distinguish
between different types of vehicles. Therefore, when design-
ing the vehicle tracking algorithm, the characteristics of the
conv4_4 and the conv5_4 layers are fully considered. Then,
the conv5_4 layer is selected to capture the target vehicle
information, and the conv4_4 layer is selected to distinguish
the target vehicle from a vehicle with a similar appearance.
These rules are applied to improve the vehicle tracking
accuracy.

TABLE 1. Vehicle classification accuracy using the different
feature maps.

III. VEHICLE TRACKING ALGORITHM BASED
ON THE VGG NETWORK
The vehicle tracking algorithm is designed according to the
characteristics of the VGG-19 network.

A. SELECTION OF THE FEATURE MAPS
According to the feature analysis from Section 2, it can be
seen that the feature maps have redundancy, so the feature
maps should first be filtered to remove the noisy feature
maps. For the selection of the feature maps, an s1-CNN,
a CNN model based on a target heat map, is used in
the study. This method is performed separately on the
conv4_4 and conv5_4 convolutional layers of the VGG-19
network. The sl-CNN consists of convolutional layers and a
random dropout layer. It does not contain nonlinear trans-
formations. The sl-CNN selects feature maps generated by
the conv4_4 layer or the conv5_4 layer as an input image
and then generates the target vehicle heat map M . The target
vehicle heat map M is a two-dimensional Gaussian graph
centered on the true position of the target vehicle, and its
variance is proportional to the size of the target vehicle. After
inputting the feature map to the sl-CNN, a dropout layer is
first used to prevent overfitting, and then a convolutional layer
with a 3 × 3 convolution kernel is used to obtain the output.
The training of the sl-CNN is performed by minimizing the
squared loss between the foreground vehicle heat map M̂ and
the target vehicle heat mapM . The loss function is:

Lsl =
∥∥M̂ −M∥∥2 (4)

The model parameters are obtained by back-propagation
of the sl-CNN. The feature maps are then selected based on
the effect of the model parameters on the loss function Lsl .
By converting the input feature maps into vec(F) and fi as the
i-th element of vec(F), the change in the loss function can be
calculated by the following second-order Taylor expansion:

δLsl =
∑
i

giδfi +
1
2

∑
i

hii(δfi)2 +
1
2

∑
i6=j

hijδfiδfj (5)

where gi =
∂Lsl
∂fi

is the first derivative, and hij =
∂2Lsl
∂fi∂fj

is
the second derivative.

Since the number of elements in the feature maps is very
large, the complexity of calculating all second derivatives hij
is too large and time consuming. According to the Hessian
matrix, the third term on the right side of equation (5) can be
ignored. The first derivative gi and the second derivative hii
can be calculated by backpropagation. After setting fi to zero,
we can obtain:

δfi = 0− fi (6)

The importance of element fi, which is denoted by si,
is defined as the change in the objective function. According
to equations (5) and (6), si can be calculated by:

si = −gifi +
1
2
hiif 2i (7)
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The importance of the n-th feature map can be further
defined as the sum of the importance of all its elements,
namely:

Sn =
∑

x,y
s (x, y, n) (8)

where s(x, y, n) is the importance of the index of the element
whose position is (x, y) in the n-th feature map.

All feature maps are sorted in descending order according
to their importance, and then the top N feature maps are
selected for vehicle target positioning. The N feature maps
have the greatest influence on the objective function, so they
are more associated with the positioning of the target vehicle
than the other feature maps. In addition, in the experiment,
feature map selection is performed only on the first image
frame for object tracking.

B. CONSTRUCTION OF UNNET AND SPNET
After the redundant feature maps are removed, the feature
maps most relevant to the target vehicle are obtained, that
is, those feature maps on which the vehicle is positioned.
Before positioning the target vehicle, one needs to build two
networks: UnNet and SpNet. UnNet is a universal network
built on the feature maps of the selected conv5_4 layer
to capture information on the target vehicle; SpNet is a
specific network built on the feature maps of the selected
conv4_4 layer to distinguish the target vehicle from vehicles
with similar appearances. Compared to the simple structure
of the sl-CNN, the structures of SpNet and UnNet are more
complicated, which helps make the tracking more accurate.
SpNet and UnNet have the same architecture; both contain
two additional convolutional layers and use rectified linear
unit (ReLU) as the nonlinear activation function. The con-
volution kernel of the first convolutional layer has a size of
9 × 9, the padding is 4, the parameter initialization method
is Gaussian filtering, the bias initialization method is con-
tinuous, and 36 feature maps are the output; the convolution
kernel of the second convolutional layer has a size of 5 × 5,
the padding is 2, the parameter initialization method is Gaus-
sian filtering, the bias initialization method is continuous, and
the foreground vehicle heat map is the output. Both networks
have a learning rate of 0.1e-9 and a momentum of 0.6. The
difference between the two networks is that the weight decay
is set differently: the weight decay of UnNet is 0.1, while
the weight decay of SpNet is 0.0005. These two networks
need to be initialized in the first frame of the video sequence.
They are initialized by minimizing the loss functions. The
loss functions are as follows:

L = LSp + LUn (9)

LT =
∥∥M̂T −M

∥∥2
F + β ‖WT ‖

2
F (10)

where T ∈ {Sp,Un} represents the collection of SpNet and
UnNet; M̂T represents the predicted foreground heat map;M
is the target vehicle heat map; β is the tradeoff parameter of
the weight attenuation; WT is the weight parameter of the
convolution layer.

C. VEHICLE POSITIONING
After the network is built, the two networks need to be used
to predict the location of the target vehicle. First, in the new
frame of the video sequence, a rectangular ROI centered at
the target position in the previous frame is cropped. The
foreground heat map of the target vehicle is then predicted
by forwardly propagating the ROIs. First, the target vehicle
is located on the heat map generated by UnNet. (a) The target
vehicle position is expressed as:

X̂ = (x, y, σ ) (11)

where x and y represent the center coordinates and σ rep-
resents the scale of the target bounding box. (b) The target
position in the previous frame is represented by X̂ t−1. (c) The
position of the candidate target vehicle in the current frame is
assumed to be affected by the Gaussian distribution:

p
(
X t | X̂ t−1

)
= N

(
X t ; X̂ t−1, 6

)
(12)

where6 represents the variance in the positional parameters.
(d) The confidence of the i-th candidate target vehicle is
calculated as the sum of all the values of the heat map within
the candidate region as follows:

conf i =
∑

j∈Ri
M̂Un(j) (13)

where j represents a coordinate index; Ri is an area of the
i-th target candidate according to its position parameter X ti ;
M̂Un represents the heat map generated by UnNet. (e) The
candidate vehicle target with the highest confidence is chosen
by UnNet.

Because UnNet is built on the conv5_4 layer, it captures the
semantic features of vehicles and is not sensitive to changes
in different vehicles. Therefore, the foreground heat map
generated by UnNet will highlight the target vehicle and
vehicles with similar appearances. In other words, the posi-
tion of the target vehicle identified by UnNet may be the
position of a vehicle with a similar appearance. To prevent
trackers from tracking similar vehicles, interference detection
methods are needed to determine the final target position. The
target position predicted by UnNet is represented by X̂Un, and
the corresponding target area in the heat map is RUn. Evaluate
the probability of interference from the ratio of confidence
values outside and inside the target area:

Pd =

∑
j∈M̂Un−RUn M̂Un(j)∑
k∈RUn M̂Un(k)

(14)

where M̂Un−RUn represents the background area on the heat
map M̂Un. When Pd is less than the set threshold, no common
interference is considered to have occurred, and the target
position predicted by UnNet is used as the final positioning
result; otherwise, the heat map M̂Sp predicted by SpNet is
used for the above target positioning step, and the result is
the final target position.
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FIGURE 6. Algorithm flowchart.

D. ONLINE UPDATE OF THE VEHICLE TRACKING
RESULTS
Online updates are primarily input into SpNet, allowing
SpNet to adapt to changes in the target’s appearance and to
improve its identification of the foreground and background.
In the experiment, SpNet is updated only after the first frame
is initialized according to two different types of rules: (1)
adaptive rules and (2) discriminative rules. According to
the first type of rule, SpNet is fine-tuned every 15 frames
using the tracking result with the highest confidence in the
intermediate frames. According to the second type of rule,
when the interference term is detected using equation (15),
SpNet is further updated by minimizing the tracking results
of the first frame and the current frame:

minβ
∥∥WSp

∥∥2
F +

∑
x,y

{[
M̂1
Sp (x, y)−M

1 (x, y)
]2

+
[
1−8t (x, y)

] [
M̂ t
Sp (x, y)−M

t (x, y)
]2}

(15)

where WSp represents the convolution weight of SpNet;M̂ t
Sp

represents the heat map of the t-th frame predicted by SpNet;
(x, y) are the spatial coordinates. The foreground mask 8t

represents the predicted target bounding box: if position (x, y)
belongs to the target area, then 8t (x, y) = 1; otherwise,
8t (x, y) = 0. M t represents the heat map generated accord-
ing to the predicted target position.

The second term in the above equation represents the
loss of the positioning target vehicle in the first frame.
The estimated target vehicle area becomes unreliable

when the appearance of the target vehicle is learned when
an interfering vehicle appears or the target vehicle is severely
occluded in the current frame. Therefore, the update is super-
vised by adding the first frame so that the deep learning
model still learns the appearance of the target vehicle in the
first frame. The third term in the above equation considers
only the loss in the background region in the current frame
and eliminates the loss in the unreliable target region so
that this model will better identify the location where the
interference occurs as the background. An advantage of the
combination of the second and third terms in equation (14) is
that it enables SpNet to well separate the target vehicle from
the background and mitigate model degradation caused by
interference factors or occlusion.

E. ALGORITHM FLOW
The flow chart of this algorithm is shown in Figure 6, which
is divided into the following steps:

(1) The first frame image of the video sequence is input
into the pretrained VGG-19 network, and feature maps are
generated on the conv4_4 and conv5_4 convolutional layers.

(2) On the feature maps generated by the conv4_4 and
conv5_ 4 layers, the feature maps most relevant to the target
vehicle are selected using the sl-CNN to remove the redun-
dant feature maps.

(3) On the feature maps generated by the conv5_4 layer, a
UnNet is constructed to capture the target vehicle informa-
tion; on the feature maps generated by the conv4_4 layer,
an SpNet is constructed to distinguish target vehicles from
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FIGURE 7. Vehicle tracking results.

vehicles with similar appearances. Both networks are initial-
ized using the first image frame.

(4) In the new frame of the video sequence, the ROI cen-
tered on the target position of the previous frame is cropped
and forward propagated through UnNet and SpNet. Then,
each of these networks generates a foreground heat map.

(5) For the two foreground heat maps generated in step (4),
interference detection is used to determine the position of the
last target vehicle.When the ratio between the confidence val-
ues of the regions outside and inside the target area is less than
the set threshold, it is considered that no common interference
exists, and the target position predicted by UnNet is used
as the final positioning result; otherwise, the target position
predicted by SpNet is used as the final target location.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT AND DATASET
The experimental development environment is an Ubuntu
16.04 operating system, in which Python is mainly used
for algorithm implementation. The program uses the deep
learning framework TensorFlow and uses CUDA9.0 and
cuDNN for GPU (Quadro M5000) acceleration to accelerate
the implementation of the program. The training dataset is
vehicle data from the Common Objects in Context (COCO)
[37] dataset, with a total of 11,856 images of cars, bicycles,
trucks, buses andmotorcycles, as shown in Table 2. Each type
of vehicle data includes many different scenarios, such as
rain, night, rotation, lane change, acceleration, and occlusion.

Vehicle training in these different scenarios has certain signif-
icance for training vehicle tracking models, making vehicle
tracking suitable for stable tracking in different application
scenarios. The test dataset is the vehicle dataset in LaSOT
[38], a high-quality benchmark for single object tracking,
the vehicle dataset in VOT2017 [39], and the vehicle dataset
in OTB2015 [43].

TABLE 2. Number of images of each vehicle type in the training set.

B. EXPERIMENTAL RESULTS AND ANALYSIS OF THE
LASOT VEHICLE DATASET
This paper tests the proposed vehicle tracking algorithm
based on the VGG network on the benchmark and then
evaluates it. The experiment was trained a total of 50 times,
with a minibatch size of 32. Each training step involved
371 iterations, with an average of 5 s per iteration, and the
total training timewas approximately 26 hours.When testing,
the average time required for each test dataset was 3 minutes.
Figure 7 shows four representative vehicle motion scenes and
their tracking results, wherein the first image in a line is the
first frame of each video sequence, and the remaining images
in the line are the tracking results of the algorithm and the real
position of the target vehicle.
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The perspective of the first scene is the side view. The
target car is a gray vehicle with low definition. The target
vehicle travels fast on the road. During its journey, it passes a
black car and is then obscured by roadside trees. As shown in
the figure, the algorithm can track fast-moving vehicles and
distinguish vehicles of different colors and models. When the
target vehicle passes the black car, there is no offset for the
tracking of the target vehicle. When the trees partially block
the target vehicle, the vehicle can still be tracked, but when
the trees almost completely block the vehicle, the tracking
position completely disappears, and the tracked vehicle is
completely lost.

The perspective of the second scene is the rear view. The
scene is at night, the target car is a gray vehicle with medium
definition. The target vehicle is waiting at a traffic light,
there are vehicles flowing around it, and the lights changes
during the waiting process. After the green light appears,
the car moves forward along the road. It can be seen from
the figure that for the algorithm of this paper, changes in the
vehicle flow have little influence on the tracking accuracy.
However, since the scene is at night when it is dark, the target
vehicle appears almost black in the image, which causes the
tracking frame to shift with the color change in the vehicle,
indicating that the algorithm has a slightly poor tracking
effect on vehicles at night.

The perspective of the third scene is the rear view. The
scene is rainy. The target vehicle is a white vehicle with low
definition. The target vehicle is driving on the road. During
the driving process, the vehicle changes lanes. There are
similar light-colored vehicles around it. After the lane change,
part of the fast-moving wiper is occluded. Finally, the vehicle
decelerates, the distance is decreased, and the size of the
target vehicle becomes relatively large in the video sequence.
As shown in the figure, for the algorithm proposed in this
paper, the lane change of the target vehicle does not affect
the tracking of the vehicle, and the partial occlusion of the
wiper also has little effect on the tracking results. The scale
change in the target vehicle caused by the change in distance
is not large and does not affect the vehicle tracking results.
However, the deformation of the target vehicle makes the
tracking frame appear slightly smaller than the target vehicle.

The perspective of the fourth scene is the rear view. The
target vehicle is a red vehicle with high definition. The target
vehicle is driving on a road. First, the vehicle turns left. After
the left turn, more vehicles can be seen on the road, and the
target vehicle proceeds straight ahead and then turns right.
It can be seen from this scenario that for the algorithm pro-
posed in this paper, the turning of the target vehicle has little
effect on the object tracking results, and the scale change in
the target vehicle also has little effect on the tracking results,
but the tracking frame is slightly offset from the position of
the target vehicle.

To better evaluate the tracking effect of the algorithm
proposed in this paper, the precision of the algorithm tracking
results is evaluated by a quantitative performance evaluation
index called the mean Intersection over Union (mIoU). In the

TABLE 3. mIoU values of the proposed algorithm and the DLT algorithm
in different scenarios.

accuracy evaluation, the proposed algorithm is compared
with a mainstream tracking algorithm: the DLT algorithm.
Table 3 shows the mIoU value of our algorithm and that of
the DLT algorithm for different scenes.

As shown in the above table, the mIoU value of our algo-
rithm is generally higher than that of the DLT algorithm.
Among them, in scene 1, the mIoU value of the DLT algo-
rithm is higher than that of the algorithm proposed in this
paper. After observing the tracking results, the reason is that
the proposed algorithm lost the tracked target vehicle after
being almost completely occluded, but the DLT algorithm
continued to track the target. After the vehicle reappears,
the position of the target vehicle can still be tracked, indi-
cating that for the occlusion problem, the DLT algorithm
has higher processing ability than the proposed algorithm.
In scene 3, the mIoU value of the DLT algorithm is much
lower than that of the algorithm proposed in this paper and is
even less than 0.1. The main reason is that the target vehicle
changed lanes. The DLT algorithm lost the target vehicle
position when the target vehicle changed lanes and started
tracking another nearby vehicle. Finally, the target position is
completely lost, so the mIoU value is very low. This was not
the case with the algorithm proposed in this paper. In scene 4,
the mIoU value of the DLT algorithm is also much lower
than that of the algorithm proposed in this paper. The main
reason is that after the scale of the target vehicle in the video
sequence decreased, the tracking frame of the algorithm did
not decrease, indicating that the ability of this algorithm to
deal with target vehicle scale change problems is not as good
as that of the algorithm proposed in this paper.

Therefore, the proposed algorithm can obtain better vehicle
tracking results than the DLT algorithm in most scenarios.
The proposed algorithm can address vehicle tracking prob-
lems in complex and variable vehicle motion scenarios.

C. EXPERIMENTAL RESULTS ON THE VOT2017
VEHICLE DATASET
We also conducted experimental tests on the VOT2017 vehi-
cle dataset. Five vehicle videos in the VOT2017 dataset were
tested in the experiment. Following [39], we used two indi-
cators, the accuracy and robustness, to evaluate the results.
The accuracy is the average amount of overlap between the
predicted and ground-truth bounding boxes during successful
tracking periods. The accuracy of the t-th frame is defined
as φt =

At∩Agt
At∪Agt

; then, the calculation of the accuracy can be
defined as the average accuracy of a video, namely, ρA =

1
Nvalid

Nvalid∑
t=1

φt , where Nvalid is the number of valid frames.

The robustness measures how many times the tracker loses
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FIGURE 8. Precision and success plots of the different trackers on the OTB2015 vehicle dataset.

the target (fails) during tracking. Its calculation formula is
ρR =

1
Nrep

∑Nrep
k=1 F(k), where Nrep is the number of repeti-

tions and F(k) is the number of failures in the k-th repetition.
The higher the value of the accuracy, the better the tracking
accuracy is; the lower the value of the robustness, the better
the tracker robustness is. Table 4 shows the experimental
results of the proposed method and the MOSSE [40], DCF
[19], KCF [19], MEEM [41], and Struck [42] algorithms.
The results show that the proposed algorithm has the highest
accuracy, which 0.02 higher than that of the MEEMmethod;
its robustness is also the best, which is 0.03 lower than that
of the KCF method.

TABLE 4. Experimental results of different trackers.

D. EXPERIMENTAL RESULTS ON THE OTB2015
VEHICLE DATASET
We also performed experimental tests on the OTB2015 vehi-
cle dataset. In the experiment, fourteen vehicle videos in
the OTB2015 dataset were tested. Following [43], we use
the precision and success rate to perform a one-pass evalu-
ation (OPE) of the results. Figure 8 shows the precision and
success rate plots of the experimental results of our method
and the CSK [18], LSK [44], Staple [45], DSST [20], TLD
[46], KCF [19], and Struck [42] tracker algorithms. In the
precision plot, our algorithm ranks second; in the success rate
plot, our algorithm ranks first.

V. DISCUSSION
In this paper, the characteristics of the different convolutional
layers in the VGG network are used, and a vehicle tracking

algorithm is designed and compared with multiple tracking
algorithms. The verification results show that our method has
certain advantages. In this section, we discuss various factors
that influence the tracking results of the proposed algorithm,
including the choice of the CNN model, the choice of the
convolutional layers, and the limitations of the algorithm.

A. SELECTION OF THE CNN MODEL
Currently, CNN models mainly include LeNet [47], AlexNet
[48], GoogLeNet [49], VGG, and residual network (ResNet)
[50]. Among them, LeNet is a representative early CNN
models. It has a simple structure and only two convolutional
layers. It has a shallow network structure, and its processing
results for complex problems are not ideal. AlexNet is a
classic CNN model and one of the models used by many
current tracking algorithms. It consists of a 5 convolutional
layers and a 3 fully connected layers. The VGG model sim-
plifies the structure of the neural network. As the network
deepens, the height and width of the image shrink according
to certain rules. The training process of VGG converges faster
than that of AlexNet. Moreover, studies have shown that
when extracting CNN features from images, the VGG model
is the preferred algorithm, but its shortcoming is that the
number of parameters can be as high as 140M,which requires
more storage space than other models [31]. GoogLeNet is
a new deep learning structure. Structures such as AlexNet
and VGG all achieve better training effects when the depth
of the network is increased. However, GoogLeNet uses an
Inception structure to improve the training effect and make
more efficient use of computing resources. However, stud-
ies have shown that VGG performs better than GoogLeNet
in multiple migration learning tasks. The previous network
model used layer stacking to deepen the number of network
layers, but as the network deepened, the performance of
the network declined. Therefore, ResNet ensures that the
depth of the network can be deepened without decreasing the
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performance. However, ResNet’s structure is deep, and its
characteristics are not easily to analyze directly. Therefore,
considering the structure, advantages and disadvantages of
each type of CNN model, we use the VGG in our proposed
vehicle tracking algorithm and analyze the characteristics to
design the vehicle tracking framework. Subsequent research
may consider re-expanding the network based on the ResNet
model. In addition, for the two common structures of the
VGG model (VGG-16 and VGG-19), VGG-19 was chosen
because its structure network is deeper than VGG-16’s net-
work structure and the characteristics are more obvious.

B. SELECTION OF THE CONVOLUTIONAL LAYERS
In Sections II-A and II-B, we analyzed the characteristics
of the conv4_4 and conv5_4 convolutional layers. In fact,
in the experiment, some features of each of the two lay-
ers (conv4 and conv5) can be similarly observed, but the
characteristics of other small layers are relatively not sig-
nificant. In addition, conv4_4 and conv5_4 are multicon-
volved, and more obvious characteristics can be observed.
Figure 9 shows the feature maps of each layer of conv4 and
conv5. Each convolutional layer displays a representative fea-
ture map. As shown in the figure, except for the conv4_4 and
conv5_4 layers, all the convolutional layers are greatly
affected by noise. In addition, the feature maps of each
layer in the conv4 layer with an activation value greater
than 8000 inside the target region and an activation value
less than 100 outside the target region and the feature maps
of each layer in the conv5 layer with an activation value
greater than 700 inside the target region and an activation
value less than 20 outside the target region are defined as
valid feature maps. Then, the number of valid feature maps
of each layer in the conv4 layer and in the conv5 layer
are counted, and the statistical results are plotted into a
line chart, as shown in Figure 10. As shown in the figure,
the conv4_4 and conv5_4 layers have the largest number
of valid feature maps, so the characteristics are the most
obvious. Therefore, the conv4_4 and conv5_4 convolu-
tional layers are selected for analysis and algorithm imple-
mentation in specific experiments. After the algorithm is
implemented, the combination of conv4_4 and conv5_4 is
replaced with conv4_1 and conv5_1, conv4_2 and conv5_2,
conv4_3 and conv5_3 in turn, and the tracking effects are
not good.

FIGURE 9. Feature maps of the different layers of conv4 and conv5.

FIGURE 10. Line chart of the change in the number of valid feature maps
of the different convolutional layers of conv4 and conv5.

C. LIMITATIONS
The results of the vehicle tracking experiments show that the
proposed algorithm has certain advantages, but it still has cer-
tain limitations, mainly in the following aspects: (1) Although
the algorithm can address the partial occlusion of the target
vehicle to some extent, if the amount of occlusion is too large
and the occlusion duration is too long, the target vehicle being
tracked may be lost, causing a tracking failure. (2) Although
the algorithm can address scale changes caused by the change
in the distance relative to the target vehicle in the video
sequence, the scale change will affect the tracking results.
The next step should consider this problem. (3) At present,
the algorithm has low efficiency, high time complexity and
high spatial complexity. The VGG model needs to occupy a
large amount of storage space and has high requirements on
the operating environment. Therefore, the algorithm and the
code must be adjusted to improve the tracking efficiency.

VI. CONCLUSION
Vehicle tracking is currently a challenging research topic
in computer vision. It also has a wide range of application
requirements and practical significance in the real world.
In recent years, vehicle tracking algorithms have made great
progress in terms of time and precision, but some of its
problems still require further research and exploration.

This paper analyzes some important characteristics of
VGG convolutional neural network features and proposes a
vehicle tracking algorithm based on a VGG network with
these characteristics. Experiments show that the proposed
vehicle tracking method can effectively track vehicles and
solve the drift problem and the partial occlusion problem in
vehicle tracking.

Although this article solves some problems, there are still
many shortcomings. For this reason, wewill continue to study
the following aspects:

(1) Optimizing the vehicle tracking algorithm to improve
its operating efficiency.

(2) Further solving the complete occlusion problem in
vehicle tracking so that when a completely occluded target
vehicle reappears in the video sequence, it can be further
tracked.
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