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ABSTRACT In this paper, we present an optimal channel selection method to improve common spatial
pattern (CSP) related features for motor imagery (MI) classification. In contrast to existing channel selection
methods, in which channels significantly contributing to the classification in terms of the signal power are
selected, distinctive channels in terms of correlation coefficient values are selected in the proposed method.
The distinctiveness of a channel is quantified by the number of channels with which it yields large difference
in correlation coefficient values for binary motor imagery (MI) tasks, rather than by the largeness of the
difference itself. For each distinctive channel, a group of channels is formed by gathering strongly correlated
channels and the Fisher score is computed using the feature output, based on the filter-bank CSP (FBCSP)
exclusively applied to the channel group. Finally, the channel group with the highest Fisher score is chosen as
the selected channels. The proposed method selects the fewest channels on average and outperforms existing
channel selection approaches. The simulation results confirm performance improvement for two publicly
available BCI datasets, BCI competition III dataset IVa and BCI competition IV dataset I, in comparison
with existing methods.

INDEX TERMS Electroencephalography (EEG), brain-computer interfaces (BCIs), correlation coefficient,
common spatial pattern (CSP), channel selection.

I. INTRODUCTION
Brain-computer interfaces (BCIs) provide non-muscular
communication between humans and computer using brain
signals. Electroencephalogram (EEG)-based BCIs, which
directly translate the intent reflected by EEG signals into a
control command, have been used due to its high tempo-
ral resolution and non-invasiveness [1], [2]. Motor imagery
(MI) is an area of active research in EEG-based BCIs,
as the power of motor-relevant cortex-related EEG signals
is decreased or increased during imaging of body move-
ments; these changes are known as event-related desynchro-
nization (ERD) or event-related synchronization (ERS) [3].
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Especially, the common spatial pattern (CSP) approach [1],
[4]–[6] has been used successfully in MI classification by
extracting ERD/ERS-related features. Recently, the vari-
ous extensions of the CSP which overcome a frequency
band dependency problem have been proposed such as
filter-bank CSP (FBCSP) [7], sub-band regularized CSP
(SBRCSP) [8], filter-bank regularized CSP (FBRCSP) [9],
sparse filter band common spatial pattern (SFBCSP) [10],
and filter band combined with Tikhonov regularization CSP
(FB-TRCSP) [11]. Moreover, the temporally constrained
sparse group spatial pattern (TSGCSP) [12] and sparse group
representation model (SGRM) [13] is proposed to over-
come a time period dependency and subject-dependency
problem, respectively and shows improved performance for
MI-classification.
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In order to improve performance, EEG-based BCIs use
EEG signals from multiple sites of scalp, thereby increasing
the number of EEG channels [14]. However, the use of a
large number of EEG channels does not always guarantee
performance improvement [15]. Redundant task-irrelevant
channels tend to introduce undesirable interference and boost
noise level, as the activated brain regions for the same intent
are relatively small and differ among subjects [16]. Therefore,
several MI-relevant channel selection algorithms have been
proposed [17]–[21].

The sparse common spatial pattern (SCSP) approach
described in [17] selects the MI-relevant channels that cor-
respond to the high sparse CSP filter coefficient, which is
extracted by l1/l2 norm regularization. The CSP-rank for
multiple frequency band (CSP-R-MF) approach described
in [18] selects the MI-relevant channels for each frequency
band and extracts features from selected channels of each fre-
quency band using the least absolute shrinkage and selection
operator (LASSO) algorithm [22]. The frequency-optimized
local region CSP (LRFCSP) approach described in [19]
selects MI-relevant channels using the variance ratio disper-
sion score (VRDS) and inter-class feature distance (ICFD)
of small EEG channel groups and outperforms existing
CSP-based channel selection MI classification algorithms.
Recently, MI-relevant channel selection approaches have
been proposed based on time domain parameters (TDPs)
that utilize the frequency-band-insensitive characteristics of
time domain signals [23]. TDP Fisher’s discriminant analysis
(TDP-FDA) described in [20] selects the MI-relevant chan-
nels with high Fisher ratios of TDPs. The feature compressing
and channel ranking (FCCR) approach described in [21]
attempts to reduce the TDP feature dimension by clustering
and selects theMI-relevant channels based on a robust feature
selection (RFS) algorithm [24].

These channel selection algorithms rely on temporal, spec-
tral, or spatial EEG features, which have been used effectively
for MI classification related to regionally well-separated
ERD/ERS patterns. However, these features may exhibit lim-
itations in terms of classifying subtle and mixed ERD/ERS
pattern [25]. It is known that execution of even simple MI
tasks require the participation of multiple brain regions that
are mutually and subtly interconnected [26], [27]. Hence,
features based on brain neural dynamic patterns (regarded as
brain connectivity) have attracted considerable attention and
may provide performance improvement for binary MI tasks.
Recently, a correlation-based channel selection regularized
CSP (CCS-RCSP) approach proposed in [28] selects the
MI-related channels using correlation coefficient of EEG sig-
nal. CCS-RCSP performs the regularized-CSP [6] using the
MI-related channels which are highly correlated with others
and improves the classification performance. However, this
approach still uses too many channels for classification.

In this paper, a novelMI-relevant channel selectionmethod
based on correlation coefficients that represent brain connec-
tivity is proposed to improve MI classification performance.
For a given channel, the differences in average correlation

coefficients between two MI tasks, relative to other chan-
nels, is computed. The differences are normalized using the
t-statistics and the number of channels with which a given
channel has a p-value below the significant level is counted
and referred to as the MI-score. The channels that have
higher MI-scores than their average are selected as distinc-
tive channels. For each distinctive channel, we construct a
group of supporting channels that are strongly correlated with
the channel (i.e., channels with which the given distinctive
channel yields a correlation coefficient higher than a prede-
termined threshold). To identify the best supporting channel
group for MI classification, FBCSP is performed to calcu-
late the Fisher score, (i,e., the Fisher ratio of the resulting
FBCSP features). Finally, we choose the supporting channel
group with the highest Fisher score to determine the optimal
channel set for MI classification. The FBCSP features of
the optimal channel set are used as input for the support
vector machine (SVM) classifier [29]. The performance of
the proposed method is evaluated by simulation using the
BCI competition III dataset IVa and BCI competition IV
dataset I. The proposed algorithm selects the smallest number
of channels (on average), but yields the best performance, in
comparison with existing MI classification algorithms.

The paper is organized as follows. Section II explains the
proposed channel selection method. Section III provides the
data and experiments. Section IV analyzes the results. Finally,
conclusion for this paper is made in Section V.

II. METHOD
A. SYSTEM MODEL
Let us consider the K channel binary MI EEG signals.
The sampled EEG signal at the k-th channel is denoted
as x(k)(n) for k = 1, 2, . . . ,K and n = 1, 2, . . . ,N ,
where N is the number of samples per channel. We assume
that M trials of training EEG signals are available and the
i-th trial EEG signal for channel k is denoted as x(k)i =

[x(k)i (1), x(k)i (2), . . . , x(k)i (N )]T . Each trial of EEG signal con-
sists of N time samples. As we consider binary MI classi-
fication, each trial belongs to index set I1 or I2 (I1 ∪ I2 =
{1, 2, . . . ,M}) corresponding to eachMI task and |Ic| denotes
the number of training trials for the task c(∈ {1, 2}).
In this paper, we consider the correlation coefficient to

identify distinctive channels. The (sample) correlation coeffi-
cient of the i-th trial EEG channel signal pair for the channel
k and the channel p, denoted by ρ(k,p)i , is defined as

ρ
(k,p)
i :=

C(x(k)i , x
(p)
i )√

P(x(k)i )
√
P(x(p)i )

, k, p = 1, 2, . . . ,K (1)

where C(x(k)i , x
(p)
i ) is the sample covariance and P(x(k)i ) is the

sample variance, defined as the following:

C(x(k)i , x
(p)
i )

:=

N∑
n=1

(
x(k)i (n)−

1
N

N∑
n=1

x(k)i (n)

)(
x(p)i (n)−

1
N

N∑
n=1

x(p)i (n)

)
(2)
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FIGURE 1. Process of the proposed method.

P(x(k)i ) :=
N∑
n=1

(
x(k)i (n)−

1
N

N∑
n=1

x(k)i (n)

)2

(3)

Figure 1 shows a block diagram of the proposed channel
selection method. First, we select the distinctive channels
based on correlation coefficient using t-statistic. Second, the
strongly correlated supporting channel groups for each dis-
tinctive channel are constructed. Then, the Fisher score of
FBCSP features for each supporting channel group is calcu-
lated to select the optimal channel set with the highest Fisher
score. The FBCSP features of the optimal channel set is used
as the final output features of the proposed method. In the
following subsections, each step of the process is described
in detail.

B. DISTINCTIVE CHANNEL SELECTION BASED ON THE
CORRELATION COEFFICIENT
The correlation coefficient of the EEG channel pair represents
brain connectivity and has been used for analysis of the
relationship between two channel EEG signals [30]. The
MI-relevant channel typically possesses a distinct signal
property for different MI tasks (e.g., signal power). In terms
of correlation coefficient, defining the distinctiveness of a
channel with respect to different MI tasks is not straightfor-
ward, as the correlation coefficient cannot be computed for
a single channel. Therefore, our measure of distinctiveness
comprises the number of channels with which a channel has
a significant difference in correlation coefficient with regard
to MI tasks.

To statistically quantify the difference in correlation coef-
ficient between two MI tasks for a number of different trials,
we use the t-statistic [31]. The t-statistic of the correlation
coefficient for channels k and p, denoted by T (k,p), given I
trials is expressed as [31]:

T (k,p)
=
ρ̄
(k,p)
1 − ρ̄

(k,p)
2√

σ 21
|I1|
+

σ 22
|I2|

(4)

where

ρ̄(k,p)c =
1
|Ic|

∑
i∈Ic

ρ
(k,p)
i (5)

σ 2
c =

1
|Ic − 1|

(
ρ
(k,p)
i − ρ̄(k,p)c

)2
(6)

and |Ic| denotes the number of training trials for the task
c(∈ {1, 2}). It has known that T (k,p) has the Student’s
t-distribution with degree of freedom |I1| + |I2| − 2; the
probability of T (k,p) occurring by chance from the given
trials is designated as p-value and given by P(X ≥ |T (k,p)

|),
where X is a random variable with Student’s t-distribution of
freedom |I1|+|I2|−2 ( [32]). Let P(k,p) denote the p-value of
t-statistic for channel k and p. To measure the distinctiveness
of a channel k , we define theMI-score, denoted by S(k), which
is the number of channels in which P(k,p) is below a given
significant level (Pthr ):

S(k) =
∣∣∣{p ∈ {1, 2, . . . ,K } ∣∣∣P(k,p) < Pthr

}∣∣∣ (7)

The significant level Pthr is typically set to 0.05; in this
paper, it is set by cross-validation through training data. After
MI-scores are calculated for each channel, we select the dis-
tinctive channels that have MI-score higher than the average
MI-score and define an index set of distinctive channels asH :

H =

{
k ∈ {1, 2, . . . ,K }

∣∣∣∣∣S(k) > 1
|S(k)|

K∑
k=1

S(k)
}

(8)

C. SUPPORTING CHANNEL GROUP OF A DISTINCTIVE
CHANNEL
For each distinctive channel in set H , we construct a group
of channels that are strongly correlated with the distinctive
channel. Specifically, for a distinctive channel h ∈ H , the
supporting channel group of h, denoted by D(h), is formed
by the channels with which the channel h has an average
correlation coefficient higher than a predetermined threshold,
ρthr :

D(h)
=

{
p ∈ H

∣∣∣ρ̄(h,p)1 ≥ ρthr and ρ̄
(h,p)
2 ≥ ρthr

}
(9)

In this paper, ρthr is set by cross-validation through training
data. Note that some of the distinctive channels may share
the same supporting channel group; consequently, the total
number of supporting groups can be fewer than the number
of distinctive channels H .
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D. OPTIMAL CHANNEL SET SELECTION USING FISHER
SCORE
Among the supporting channel groups, we select the best
group for MI classification using the Fisher ratio [34],
or Fisher score, of FBCSP features [7]. FBCSP approach
extracts frequency optimized log-variance features of spa-
tial filtered EEG signals with maximum variance difference
between two MI tasks and consists of three stages: a fil-
ter bank of multiple bandpass filters, spatial filtering using
the CSP algorithm, and frequency band selection based on
mutual information [7]. In the first stage, a filter bank withM
bandpass filters is used to generateM bandpass EEG signals
for each supporting channel group. We denote the i-th trial of
the m-th bandpass filtered EEG signals of D(h) as X (h,m)

i ∈

R|D(h)
|×N . The CSP algorithm is applied to each X (h,m)

i with
two spatial filters to extract two CSP features, {v(h,m)i,max and
v(h,m)i,min }, where v

(h,m)
i,max is the output power of the maximum

CSP filter for X (h,m)
i and v(h,m)i,min is the output power of the

minimum CSP filter for X (h,m)
i ( [19]). In the third stage, only

the two best frequency bands for each supporting channel,
denoted as M (h)

1 and M (h)
2 , are selected using the mutual

information based individual feature (MIBIF) algorithm [33].
The vector of four CSP features for the selected bands is
called the FBCSP feature [19], and the FBCSP feature for
the supporting group h and the i-th trial is given as

u(h)i =
[
v
(h,M (h)

1 )
i,max , v

(h,M (h)
1 )

i,min , v
(h,M (h)

2 )
i,max , v

(h,M (h)
2 )

i,min

]
(10)

After the FBCSP feature vectors are extracted for each sup-
porting group, we use the Fisher score to measure the distin-
guishable power of extracted features [34]. The Fisher score
of FBCSP features, denoted as Z (h), is given by:

Z (h)
=

‖
1
|I1|

∑
i∈I1 u

(h)
i −

1
|I2|

∑
i∈I2 u

(h)
i ‖

1
2

∑2
c=1

1
|Ic|

∑
i∈Ic‖u

(h)
i −

1
|Ic|

∑
i∈Ic u

(h)
i ‖

, h ∈ H (11)

where ‖ · ‖ denotes the `2 norm. Finally, the supporting
channel group with the highest Fisher score is selected as
the optimal channel set for MI classification. The selected
optimal channel set is denoted as D(q). The FBCSP feature
of the D(q) is the final output feature of the proposed channel
selection method and is used as the input value of the support
vector machine (SVM) classifier [29].

III. EXPERIMENTAL STUDY
A. DATA DESCRIPTION
To evaluate the performance of the proposed method, we use
two publicly available MI-EEG datasets: BCI competition III
Dataset IVa [35] and BCI competition IV Dataset I [36]. The
BCI competition III dataset IVa is widely used to evaluate
binaryMI classification performance with small training sets.
EEG signals with 118 channels (K = 118) were recorded
from five healthy subjects (‘al’, ‘aa’, ‘av’, ‘aw’, and ‘ay’),
with a 100 Hz sampling rate. All subjects performed 280
trials, 140 per class.

TABLE 1. The number of trials for the training data and the test data for
BCI Competition III dataset IVa.

The BCI competition IV dataset I was recorded from seven
subjects with 59 channels (K = 59) for binary MI tasks [36].
EEG data were recorded at a sampling rate of 1000Hz and
bandpass filtered between 0.05Hz and 200Hz. The downsam-
pled signal at 100Hz was used and each subject performed
200 trials (i.e., 100 trials per class).

B. DATA PROCESSING
For the experiments, the EEG signals from 0.5s to 3s
after cue are used. The data are band-pass filtered using
a filter bank consisted of the eight fourth-order Butter-
worth filter dividing the frequency range from 4 to 36Hz
evenly with 4Hz for FBCSP. In the BCI competition III
dataset IVa, 5 × 5 cross-validation is used to determine the
Pthr and ρthr (Pthr ∈ {0.2, 0.15, 0.1, 0.05, 0.01}, ρthr ∈
{0.75, 0.8, 0.85, 0.9, 0.95}). The Pthr and ρthr are chosen
as 0.05 and 0.9, respectively, shows the highest validation
accuracy.

In the BCI competition IV dataset I, we use data
from four healthy subjects (‘a’, ‘b’, ‘f ’, and ‘g’) to
evaluate performance. The parameters Pthr and ρthr are
set by 5 × 5 cross-validation using training data for
each subject (Pthr ∈ {0.2, 0.15, 0.1, 0.05, 0.01}, ρthr ∈
{0.75, 0.8, 0.85, 0.9, 0.95}). Since the statistical property of
the subject ‘b’ is quite different from the rest; the correla-
tion coefficient coefficients values are generally small and,
hence, the differences are small too, we use different cross-
validation parameter candidate sets for subject ‘b’ (Pthr ∈
{0.6, 0.5, 0.4, 0.3, 0.2}, ρthr ∈ {0.55, 0.6, 0.65, 0.7, 0.75}).
After cross-validation, Pthr is chosen as 0.05 for subjects ‘a’,
‘f ’, and ‘g’, and chosen as 0.4 for subject ‘b’. ρthr is chosen
to 0.9, 0.6, 0.85, and 0.85 for subjects ‘a’, ‘b’, ‘f ’, and ‘g’,
respectively.

IV. RESULTS AND DISCUSSION
In this section, we present the experimental results for BCI
competition III Dataset IVa andBCI competition IVDataset I.
For the BCI competition III dataset IVa, the performance
measure is the number of correctly classified test trials
divided by the total number of test trial data specified by BCI
competition III. The number of trials for the training data
and the test data of the five subjects are shown in Table 1.
Note that the proposed method is evaluated using whole
118 channels. However, the conventional CSP-basedmethods
are evaluated using only carefully chosen 18 channels as
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TABLE 2. Classification accuracies of the proposed method and
CSP-based classification methods without channel selection for BCI
Competition III dataset IVa.

presented in their original paper, since they perform better
with the 18 channels than with 118 channels.

For BCI competition IV dataset I, 5×5 cross-validation is
performed to evaluate performance. The trials are divided into
five sets and one set is selected as test data while all others
are selected as training data.

A. PERFORMANCE COMPARISON FOR BCI COMPETITION
III DATASET IVa
1) PERFORMANCE COMPARISON OF THE PROPOSED
METHOD WITH CSP-BASED CLASSIFICATION METHODS
In this experiment, we compared the performance of the
proposed method with the performances of conventional
CSP-based classification methods without channel selection,
CSP [1], FBCSP [7], sub-band regularized CSP (SBRCSP)
[8], and filter-bank regularized CSP (FBRCSP) [9]. Table 2
lists the classification accuracies of the proposed method and
the conventional methods. Although the FBRCSP algorithm,
which is the frequency optimized version of regularized
CSP, outperforms the proposed method for some subjects,
FBCSP with the proposed channel selection method shows
the highest mean classification accuracy. The Figure 2 plots
the distributions of the most significant two CSP features
derived by FBRCSP and proposed method from subject ‘aw’
of BCI Competition III dataset IVa. Clearly the features of the
proposed method are more separable with respect to different
tasks.

2) PERFORMANCE COMPARISON OF THE PROPOSED
METHOD WITH CHANNEL SELECTION-BASED
CLASSIFICATION METHODS
In this experiment, the performance of the proposed method
is compared with the performances of existing chan-
nel selection methods, including filter bank-sparse CSP
(FBSCSP) (a frequency optimized version of SCSP [17]),
CSP-R-MF [18], LRFCSP [19], TDP-FDA [20], FCCR [21],
and CCS-RCSP [28]. Table 3 shows the classification accu-
racies of each method for the BCI competition III dataset IVa.
The numbers of selected channels are shown in parentheses.
As shown in Table 3, our proposed method shows the best
mean classification accuracy (88.62%) than the conventional
ethods.

FIGURE 2. Distributions of the most significant two features obtained by
FBRCSP and proposed method from subject ‘aw ’ of BCI Competition III
dataset IVa.

FIGURE 3. Location of all distinctive channels for BCI Competition III
dataset IVa.

Table 3 also shows the number of selected channels for
each subject. The average number of selected channels in
the proposed method is 9, which is lower than the numbers
in conventional methods. Our proposed method achieves the
best classification performance using the smallest number of
MI-relevant channels.

Similarly to the proposedmethods, the CCS-RCSPmethod
uses the correlation coefficients to selectMI-related channels.
The mean classification accuracy of CCS-RCSP tends to be
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TABLE 3. Classification accuracies of the proposed method and channel selection-based classification methods for BCI Competition III dataset IVa.

TABLE 4. Classification accuracies of the proposed method and channel selection based classification methods for BCI Competition IV dataset I.

FIGURE 4. Location of optimally selected channels by the proposed
method for BCI Competition III dataset IVa.

higher than conventional channel selection methods. This
implies that the correlation coefficients are useful features
for channel selection. Comparing CCS-RCSP with the pro-
posed method, the proposed algorithm substantially outper-
forms CCS-RCSP. CCS-RCSP quantifies the distinctiveness
of a channel using mean correlation coefficient values with
other channels, while the proposed method quantifies the
distinctiveness of a channel using the number of channels
with which it yields large difference in correlation coefficient
values between tasks. The proposed method exhibits higher
mean classification accuracy with fewer channels.

Figure 3 shows the location of the distinctive channels, H .
The sizes of H is 55, 34, 38, 42, and 54 for subjects ‘al’,
‘aa’, ‘av’, ‘aw’, and ‘ay’, respectively. As shown in Figure 3,
the locations of H varies among subjects, but are mostly
distributed in the motor areas of the cerebral cortex. Figure 4
shows the finally selected supporting channel of the proposed
channel selection method.

B. PERFORMANCE COMPARISON FOR BCI COMPETITION
IV DATASET I
Table 4 compares the 5 × 5 classification accuracies of the
proposed method and channel selection based classification

TABLE 5. Complexity of the proposed method and conventional methods.

methods, including FBSCSP [17], CSP-R-MF [18], LRFCSP
[19], TDP-FDA [20], FCCR [21], and CCS-RCSP [28]. The
numbers of channels selected by each algorithm are shown in
parentheses. The proposed method achieves the highest mean
classification accuracy.

The proposed method selects the smallest number of chan-
nels for each subject. This result shows that sufficiently high
classification accuracy could be achieved when using a small
number of channels, based on accurate channel selection.

The Figure 5 shows the optimal channels finally selected
by the proposed method for each subject. The selected chan-
nels are generally located in the motor areas of the cerebral
cortex for subjects ‘b’, ‘f ’, and ‘g’. However, the selected
channels of subjects ‘a’ aremainly located at rightmotor area.

C. COMPLEXITY ANALYSIS
In this subsection, we analyze the computational complex-
ity of six methods by comparing their complexity of the
algorithm. Table 5 lists the complexities of the proposed
method and the conventional channel selection methods.
Our proposed method requires a relatively high computa-
tional complexity mainly due to the additional computation
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FIGURE 5. Location of optimal selected channels for BCI Competition IV dataset I. For each subject, five cross-validation
results are displayed.

of correlation coefficients, O((MK )2), especially for a large
channel sizeK unlike other methods. However, this increased
computational complexity does not necessarily result in
increased computational time, since a parallel computation
of correlation coefficients can dramatically reduce the com-
putational time.

V. CONCLUSION
In this paper, a novel MI-relevant channel selection method
is considered based on correlation coefficients. First, our
proposed method determines the distinctive channels, with
respect to MI, which have significant correlation coefficient
differences with as many other channels as possible. For each
distinct channel, a supporting channel group is formed by
gathering strongly correlated channels. By comparing the
Fisher score of each supporting channel group, the channel
set with the highest Fisher score is finally selected. Channel
selection using two criteria, the correlation coefficient and
the Fisher score of FBCSP features, effectively reduces the
number of channels used and improves classification accu-
racy, compared to conventional channel selection methods.
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