
Received April 27, 2020, accepted June 1, 2020, date of publication June 17, 2020, date of current version July 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002972

Research on Partition Parameter Design Method
for Integrated Modular Avionics Based on
MOEA/D-ADV
HUAKUN CHEN , WEIGUO ZHANG , AND YONGXI LYU
School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding author: Huakun Chen (chenhuakun@mail.nwpu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573286 and Grant 61374032, in part
by the Aeronautical Science Foundation of China under Grant 20180753006, in part by the Fundamental Research Funds for the Central
Universities 3102019ZDHKY07, and in part by the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology.

ABSTRACT In the avionics industry, Integrated Modular Avionics (IMA) which introduces the concept of
partition has been widely adopted for its isolating capability. However, the real-time performance of the IMA
system mainly depends on the partition parameters. This leads to the question of how to design the partition
parameters for satisfying the timing requirements of real-time applications. In this paper, the problem of
partition parameter design for multiprocessors system is investigated. Firstly, the hierarchical scheduling
strategy of IMA is analyzed, and a new schedulability analysis method is proposed to judge the schedulability
of the partitions according to the partition period and execution time. Then, an approximation algorithm is
developed to minimize the allocated bandwidth of the partitions while simultaneously guaranteeing tasks
schedulability within the partitions. The harmonic period partitions, which are used as the constraint of
partition parameter design, are realized by considering the scheduling mechanism of intra-partition and
inter-partition. The total required bandwidth and the system overhead caused by partition scheduling are
regarded as the optimization objective functions. Moreover, Multi-objective Evolutionary Algorithm Based
on Decomposition (MOEA/D) method is improved by applying the Adjustment for the Direction Vectors
(ADV) algorithm. Constrained Dominance Principle (CDP) is embedded into the improved algorithm
to solve the constrained optimization problem. Consequently, simulation results show that the presented
algorithm can achieve better coverage and uniformity than the compared algorithms while obtaining the
partition parameters, and the system overhead and total required bandwidth can also be reduced.

INDEX TERMS Integrated modular avionics, hierarchical scheduling, multi-objective optimization, decom-
position, partition parameter design, constrained optimization.

I. INTRODUCTION
IMA is an integrated platform of advanced electronic equip-
ment for modern combat aircraft to accomplish communica-
tions, navigation, confrontation, control, and other missions.
It is a vital system to ensure the safety of aircraft flight and
the correct execution of flight function. Under the concept of
IMA, the original independent system is integrated into sev-
eral configurable general processing modules. The specific
system functions are achieved by the applications running in
the general processing modules.

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniruddha Datta.

ARINC653 is a real-time operating system standard for
IMA software prepared by the Airline’s electronic engi-
neering committee. It defines the behavior logic of the
real-time operating system under IMA architecture and the
interface specification provided for the application program.
In the ARINC653, the real-time operating system splits
hardware resources into resource partitions with respect to
space(memory partitioning) and time(temporal partitioning).
Applications are loaded on these resource partitions inde-
pendent of time and space [1]. Spatiotemporal independence
of resource partition can prevent the failure of one parti-
tion from spreading to other partitions, and the reliability of
applications can be improved. Partition is the core of IMA

117278 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9184-9493
https://orcid.org/0000-0002-8393-3185
https://orcid.org/0000-0001-8912-3418

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

software. The fault-tolerant ability of the system is greatly
enhanced by using partition management, which achieves
time-sharing and partitioned execution of tasks through par-
tition scheduling.

In order to meet the increasing computing requirements of
avionics system and the limitation on the size, weight, and
power (SWAP) of avionics system, IMA system is committed
to integrating different critical levels of system functions on
a unified shared resource platform. It means that partitions
at different critical levels may be integrated on the same
hardware resource. Therefore, IMA brings new problems and
challenges to avionics system designers. In the integrated
environment with highly shared resources, how to design
partitions rationally to ensure the real-time and reliability of
the whole system becomes an attractive research point.

A. PROBLEM STATEMENT
As a robust real-time system, IMA requires that all tasks
in the system can complete the calculation within deadline
time. Task timeout exception can lead to serious consequence.
Therefore, the design of partition time scheduling is the core
of an IMA system design. In ARINC653 standard, IMA
adopts hierarchical scheduling strategy. Partitions are based
on non-preemptive strictly periodic scheduling, while the
tasks in partition are based on preemptive scheduling with
fixed priority. The core task of the partition scheduling design
is to design the partition scheduling windows for different
modules. The window requirements would define the start
time (offset) of each partition and its duration for the entire
major frame. The major time frame can be defined as the least
common multiple of all partition periods in the module. Each
major frame contains identical partition scheduling windows.
Fig. 1 shows an example of the partition scheduling windows.

FIGURE 1. Partition windows within a major time frame. There are four
partitions in the module, and the major frame for the module is
200 milliseconds. P3 has two windows for each period and 4 windows
with in the major frame. P1 and P2 have two windows and P4 has one
window within the major frame.

Considering a set of independent partitions 0 =

{01, · · · , 0n}, each partition 0i is characterized by an
unknown tuple of (5i,2i), where 5i and 2i are the period
and the execution length of the partition. In each partition 0i,

the set W = {τ1, · · · , τn} of tasks run in the fixed-priority
preemptive schedule. Each task τi ∈ 0i is characterized by
worst-case execution Ci and period Ti. It is clear that the
major frame window for the modules cannot be designed.
Therefore, the partition parameters must be obtained before
designing partition scheduling windows. The problem of par-
tition parameter design is to find an ‘‘optimal’’ schedula-
ble partition parameters {(5i,2i)} which must satisfy the
schedulability of partitions and tasks within partition. The
partitions may execute on uniprocessor or multiprocessor
platform. Thereore, the method which is used to solve the
problem should support the both uniprocessor and multipro-
cessor platform.
In this paper, we research the problem of partition param-

eter design. To design the partition parameters, two different
objectives are proposed. The first one, denoted as F1, aims
at minimizing the required bandwidth of the partitions. Here,
F1 can be presented by

F1 =
n∑
i=1

2i

5i
(1)

The required bandwidth represents the overall timing con-
straint of the partitions along with computational resource
requirements.When the required bandwidth is small, it means
that computational resource which can be allocated to other
application will be larger. In some special case, less band-
width mean the system requires fewer processors. The second
one, denoted as F2, aims at minimizing system overhead
caused by partition scheduling. When all tasks in partitions
are schedulable, the lower the system overhead caused by par-
tition scheduling means that the number of times of partition
context switching is less in unit time. Therefore, if the system
overhead is small, tasks in a partition will not be interrupted
frequently due to partition scheduling and system utilization
will increase. The partition period is negatively correlated
with the times of partition switching. Therefore, the lower
system overhead, and the longer partition period.

B. RELATED WORK
In this section, the past works related to the focus areas are
introduced from three aspects: schedulability analysis of par-
tition scheduling, schedulability analysis of tasks in partition
and partition parameter design.

According to ARINC653 standard, partitions are based
on non-preemptive strictly periodic scheduling. Korst et al.
presented a necessary and sufficient schedulability condition
for two tasks, which is a basic theorem to study the schedula-
bility analysis for non-preemptive strictly periodic scheduling
problem [2]. For harmonic period tasks, Eisenbrand pro-
posed binary search trees to determine whether partitions
are schedulable or not, while Omar kermai proposed FFID
method [3], [4]. In addition, Kermia and Sorel proposed a
necessary schedulability condition which was proven to be
very restrictive [5]. Based on korst’ work, Jinchao Chen and
Kermai presented sufficient condition for more than two tasks

VOLUME 8, 2020 117279

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

[6]. In [7], Zhang studied how to select time slots for strictly
periodic tasks to make them schedulable and propose an
efficient method to solve the problem.

In traditional uniprocessor real-time systems, Liu pre-
sented the utilization bounds of a periodic task set under
EDF and RM scheduling [8]. On the basis of their research,
a large number of scholars have studied and proposed many
improved algorithms, but these algorithms are only suitable
for single-level scheduling. The tasks in the partition are
different from the above research. The impact of partition
resources on task schedulability also needs to be considered.
Research in hierarchical schedulability analysis for unipro-
cessor platforms has matured over years. Tei-Wei Huo and
Ching-Hui Li developed exact schedulabiltiy conditions for
rate-monotonic (RM) system-level scheduler with harmonic
task periods [9]. Lipari and Baruah gave exact conditions [10]
for dynamic priority (EDF) system-level scheduler. In [11],
E. Bini gave conditions for schedulabilitys of an elemen-
tary under periodic model, when partition uses EDF or RM
respectively. Shin and Lee provided the utilization bounds of
a periodic task set over the periodic resource model and the
abstraction bounds of periodic interfaces for a periodic task
set under EDF and RM scheduling [12].

For the problem of partition parameter design, many schol-
ars proposed different partition resource models and used
different methods to solve the problem. Feng and Mok intro-
duced the bounded delay resource model to facilitate hierar-
chical resource sharing [13]. The bounded delay model uses
the maximum time interval to avoid discussing the impact
of other partitions on the designed partition, such a bounded
delay resource model is not suitable for IMA partition design.
The schedulability analysis and partition design problems
for real-time applications under the periodic resource model
(parameters: period 5 and execution time 2) have been
addressed by [12]. Easwaran et al. extended the periodic
resource model to the explicit deadline period (EDP) model
and developed an algorithm to compute a bandwidth opti-
mal EDP model [14]. For the problem of partition parame-
ter design, Nathan Fisher provided a fully-polynomial-time
approximate algorithm for bandwidth allocation in a compo-
sitional real-time system [15], [16]. In [17], the EDP model
was used to analyze hierarchical scheduling and proposed
an algorithm to compute the bandwidth. The algorithms pro-
posed by Nathan Fisher and Van den MMHP Martijn need
to get period before solving the execution time. However,
the impact of other partitions on the same processor is not
considered.

For the problem of task assignment, some researchers
have studied and proposed algorithms to solve the problem.
Al-Sheikh et al. analyzed the non-preemptive and strictly
periodic scheduling problem in Integrated Modular Avionics
(IMA) platform, and presented a best-response algorithm
based on the game theoretic approach to give an optimal
solution [18], [19]. Pira and [20], Jinchao et al. [6] and
Kermai [3] did the similar work and presented the Line Search
Method (LSM), eigentask andmapping function (EMTA) and

TASC respectively to solve the problem. In [4], Eisenbrand
considered the problem of scheduling tasks on a minimum
processor platform. In addition, they proved that there exists
a 2-approximation for the minimization problem.

Similar to this paper, Xiaoguang G described a method to
design the IMA partition parameters [21]. The method used
the response upper bound of tasks under two-level hierarchi-
cal to calculate the partition parameters. With the increase of
the number of partitions and the tasks, the calculation error
and the required bandwidth also increased. Yoon did the same
work and gave Geometric Programming to solve the problem
[22]. However, both methods may only be used to design the
partition parameters for uniprocessor.

For the case of multiprocessor, several partition models
have been proposed in the literature. For the schedulability
problem of task sets scheduled on multiprocessors system,
many global scheduling algorithms such as global preemp-
tive EDF and global preemptive FP have been proposed
for schedulability analysis [23]. Shin et al. extended their
periodic resource model for multiprocessor platforms [24]. In
[25], a Generalized Multiprocessor Periodic Resource model
was introduced to calculate the overall resource consumption.
IMA Partitions are based on non-preemptive strictly periodic
scheduling. Therefore, such algorithms and models are not
suitable for IMA partition design.

C. MAIN CONTRIBUTIONS
In this paper, the problem of partition parameter design for
multiprocessors system is investigated. The contributions of
this work can be summarized as follow:

• A new algorithm is proposed to determine whether a
given partition set is schedulable. The algorithm sorts the
partitions according to ‘‘Utilization Factor’’, and then
finds the feasible start time of partitions one by one
following the order. Unfortunately, the schedulability
condition is just sufficient.

• An approximation algorithm is developed to calculate
the minimum execution time of partition for a given
partition periodwhile simultaneously guaranteeing tasks
schedulability within the partition.

• For problem of partition parameter design, we develop
an improved MOEA/D algorithm, called MOEA/D-
ADV. In MOEA/D-ADV, in order to maintain better
diversity and convergence of the optimal solutions,
an adaptive strategy is used to detect the effectiveness of
each direction vector. Then positions of the ineffective
direction vectors and the size of each subpopulation are
adjusted.

D. PAPER ORGANIZATION AND NOTATIONS
This paper is organized as follows. After a review of the
related work in Section I, the definitions are formally pre-
sented in Section II. In section III-A, a new schedulabil-
ity analysis method for partition scheduling is proposed.
Section III-B presents an algorithm for determiningminimum

117280 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

capacity of partition. Section IV presents MOEA/D-ADV
algorithm used to solve problem of partition parameter
design. Section V gives some experimentations and results.
Section VI finally concludes and gives some perspectives on
future work.

Table 1 lists the notations used in this paper. Each partition
is associated with a three-tuple (5i,2i, Si), where 5i, 2i
and Si denote the period, the execution time and start time of
partition respectively. Without loss of generality, the period
of task within partition is assumed to be equal to the deadline
of task.

TABLE 1. Summary of key notations.

II. PRELIMINARIES
Definition 1 (Harmonic Period Partitions): Considered a par-
tition set S =

{
01 (51,21) , · · · , 0n (5n,2n)

}
, if 5i <

5j and 5j is an integral multiple of 5i, the partition set will
be called harmonic period partitions.
Definition 2 (Partition): Partition is a task management

unit that the operating system aggregates for a group of
attributes. It is a core concept in ARINC653. A partition
consists of one or more tasks that are executed concurrently.
Tasks within a partition share the system resources occupied
by the partition.
Definition 3 (Conflict Intervals): Conflict intervals of par-

tition 0i, denoted as CIi, are intervals which cannot be used
to execute 0i. Otherwise, partition 0i will conflict with par-
titions which are schedulable on the same processor at some
point.
Definition 4 (Available Intervals): Available intervals of

partition 0i, denoted as AIi, are intervals exclude the conflict
intervals in its period. The available intervals can be allocated
to partition 0i.

III. SCHEDULABILITY OF IMA HIERARCHICAL
SCHEDULING
A. SCHEDULABILITY ANALYSIS OF PARTITION
SCHEDULING
For two partition 0i and 0j, they are schedulable on the same
processor if and only if there is no overlapping time unit

among their instances. The following theorem was first pre-
sented by Korst et al. [2]. The theorem provides a sufficient
and necessary condition to check the schedulability of two
partitions.
Lemma 1: The two partitions 0i = (5i,2i, Si) and 0j =(
5j,2j, Sj

)
are schedulable on the same processor if and only

if

2i ≤
(
Sj − Si

)
mod (g) ≤ g−2j (2)

where g = GCD
(
5i,5j

)
.

Lemma 1 does not require the start time of the partition
0i is smaller than that of partition 0i, and it follows that:
(−a) mod (b) = b− (a) mod (b), if a, b > 0.
Corollary 1: The necessary condition to determine

whether or not two partitions are schedulable can be given
as follow:

2i +2j ≤ g (3)

Corollary 1 is a necessary condition to determine
whether or not two partitions are schedulable when their
start time offsets can be freely assigned by the designers.
Lemma 1 can be used to check the schedulability of two
partitions. However, it requires not only execution time and
period of partitions but also start time of partitions. In most
cases, start time of partitions are unknown. In [5], Jinchao
Chen presented sufficient condition for more than two par-
titions. However, there are some limitations for the method.
The method required that the periods of new partitions are
equal to, or multiple of, either one of the periods or the
Greatest Common Divisor (GCD) of all periods of the exist-
ing partition. The aim of the following section is to propose
sufficient condition without constraints on the periods of
partitions. The condition allows the system designers to check
the schedulability of three or more partitions based on the
partition period and execution time.
Theorem 1: Given a partition set 0 = {01 (51,21) ,

02 (52,22)}, 01 is scheduled before 02. In the interval
[0,52], the total length of conflict intervals of 02 is :

len
(
CI12

)
=

52

GCD (51,52)
21 (4)

The conflict intervals of 02 can be represented as:

CI12 = ∪

k=−
⌊
S1+21−1

g

⌋
,··· ,0,··· ,

⌊
52−S1

g

⌋[
S1 + k∗g, S1 + k∗g+21

)
∩ [0,52) (5)

Proof: Assume that the start instants of partition 01 and
02 are S1 and S2 respectively. They start executing at time
instant T1 = S1+k∗51 = S1+k∗n∗1g and T2 = S2+ l∗52 =

S2 + l∗n∗2g in each of their periods, g = GCD (51,52). In
the interval [0,52], the execution time units of Partition 01
and Partition 02 are:

I1 = ∪

k=0,··· ,
⌊
52
51

⌋ [S1 + k∗n∗1g, S1 + k∗n∗1g+21
)
,

VOLUME 8, 2020 117281

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

I2 = ∪

l=0,··· ,
⌊
52
51

⌋ [S2 + l∗n∗2g, S2 + l∗n∗2g+22
)
.

From Condition (2), if the two partitions are schedulable,
then S2 ⊆

[
S1 + m∗g+21, S1 + m∗g+ g) ,m ∈ Z and

21 + 22 ≤ g. Therefore, in the interval [0,52], conflict
intervals of Partition 02 are :

CI12 = ∪

k=−
⌊
S1+21−1

g

⌋
,··· ,0,··· ,

⌊
52−S1

g

⌋[
S1 + k∗g, S1 + k∗g+21

)
∩ [0,52) .

The conflict interval units of Partition 02 is composed of 52
g

intervals of length 21. Therefore, length of conflict intervals
of Partition 02 is:

len
(
CI12

)
=

52

GCD (51,52)
21.

According to the definitions of conflict intervals and available
intervals, the available intervals of Partition 02 are:

AI12 = [0,T)− CI12 .

Theorem 2: Given a partition set 0 = {01(51,21), · · · ,
0n(5n,2n)}, the partitions are schedulable on the same pro-
cessor. Add a new partition 0n+1 (5n+1, 1) into partition set
0. The new partition set 0′ is schedulable if :

21

g1,n+1
+

22

g2,n+1
+ · · · +

2n

gn,n+1
+

1
5n+1

≤ 1 (6)

Proof: According to Theorem 1, in the interval
[0,5n+1], conflict intervals of Partition 0n+1 are:

CI in+1 = ∪

ki=−
⌊
Si+2i−1

g

⌋
,··· ,0,··· ,

⌊
5n+1−Si

g

⌋[
Si + k∗i gi,n+1, Si + k

∗
i gi,n+1 +2i

)
∩ [0,5n+1) .

Available intervals of Partition 0n+1 are:

AIn+1 = [0,5n+1)− CIn+1,

len (AIn+1) ≥ 5n+1 −
2∗15n+1

g1,n+1
−
2∗25n+1

g2,n+1
− · · ·

−
2∗n5n+1

gn,n+1
.

The length of available intervals is greater than or equal to
1. So there is at least one subinterval [t, t + 1) ⊆ AIn+1.
In Partition 0n+1’s period, the execution time unit of Partition
0n+1 is:

In+1 = [Sn+1, Sn+1 + 1) , Sn+1 ∈ [0,5n+1)

Therefore, In+1 ⊆ AIn+1 and I1 ∩ I2 · · · ∩ In+1 = ∅. The new
partitions 0′ are schedulable.
Theorem 3 Given a partition set 0 = {01 (51,21) , · · · ,

0n (5n,2n)}, the partitions are schedulable on the same pro-
cessor. Add a new partition 0n+1 (5n+1,2n+1) into partition
set 0. The new partition set 0′ is schedulable if :

2n+1 ≤ LLEN (AIn+1) (7)

where LLEN (AIn+1) is the longest consecutive duration of
available intervals.

Proof: According to Theorem 1, in the interval [0,5n+1],
available intervals of Partition 0n+1 are :

CI in+1 = ∪

ki=−
⌊
Si+2i−1

g

⌋
,··· ,0,··· ,

⌊
5n+1−Si

g

⌋[
Si + k∗i gi,n+1, Si+k

∗
i gi,n+1+2i

)
∩[0,5n+1) ,

AIn+1 = [0,5n+1)− CIn+1.

When 2n+1 ≤ LLEN (AIn+1), there is at least one interval
[t, t +2n+1] ⊆ AIn+1. In partition 0n+1’s period, the execu-
tion time unit of Partition 0n+1 is:

In+1 = [Sn+1, Sn+1 +2n+1) , Sn+1 ∈ [0, 0n+1) .

If Si = t , then In+1 ⊆ AIn+1 and I1 ∩ I2 · · · ∩ In+1 = ∅. New
partition set 0′ is not overlap in the interval [0,5n+1].
In the interval [0,LCM (51, · · · ,5n+1)], there are a set of

intervals
[
t, t+k∗5n+1+2

] (
k=0, 1 · · · , LCM (51,··· ,5n+1)

5n+1

)
.

⊆ AIn+1. Therefore, new partition set 0′ is schedulable.
Both Theorem 2 and Theorem3 give the condition to

check the schedulability of partitions. For schedulability test,
Theorem 2 is simpler than Theorem 3. It can check the
schedulability of partitions not involving partitions start time
parameters. However, Theorem 2 requires that execution time
of partitions is equal to 1.

Consider a partition set 0 (01, 02, 03) with 01 (4, 1),
02 (6, 1), 03 (8, 1). We assume three different partition
orders: {01, 02, 03}, {02, 01, 03}, {03, 02, 01}. Thus, when
02 has been scheduled before 01 and 03, the partition set 0 is
not schedulable. In some case, the partition scheduling is per-
formed according to an increasing order of partition periods.
In fact, sometimes the scheduling according to an increasing
order of periods is infeasible. However, according to other
orders, the same system is schedulable. For another example,
there is a partition set with three partitions 0 (01, 02, 03)
with 01 (8, 2), 02 (16, 2), 02 (20, 2). A partition sort accord-
ing to an increasing periods order is {01, 02, 03}. However
this system is not schedulable if02 has been scheduled before
03. On the other hand, if 03 has been scheduled before 02,
the partition set is schedulable. As can be seen from the above
two examples, for the same partition set, the partition order
affects the final feasibility result.
It is assumed that partitions0 = {01, · · · , 0i−1} are sched-

uled before 0i. In the interval [0,5i],
5i
gi,j

intervals of length
2i are considered as busy and cannot be used to schedule 0i
because of 0j scheduling. The sum of busy intervals length
can be represented as follow:

Li =
2∗15i

g1,i
+
2∗25i

g2,i
+ · · · +

2∗i−15i

gi−1,i
(8)

When 2i > 5i − Li, it is mean that time units may not be
sufficient to execute 0i. Therefore, it is recommended that
partition 0i would not be scheduled at last. The ‘‘Utilization
Factor’’, denoted as Ci, is proposed to represent the sum of

117282 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

time fractions utilized to execute 0i, which is computed as
follows:

Ci =
∑
0k 6=0i

2k

gk,i
+
2i

5i
(9)

If Ci > 1 and Cj ≤ 1, 0i would be scheduled before 0j.
Therefore, ‘‘Utilization Factor’’ can be used as a condition to
sort partitions. The process of sorting partitions is described
as follow:

First, the ‘‘Utilization Factor’’ of partitions is computed by
equation (9). Then the algorithm browses the partition set0 to
find the partition with Ci > 1 and inserts it to a new partition
set0a. After loop, remaining partitions are inserted to another
partition set 0b. At last, 0a and 0b are sorted in an increasing
periods order respectively. A new partition set 0′ is obtained
by inserting 0′b to the end of 0

′
a.

Although Theorem 3 gives the condition to check the
schedulability of partitions, it can’t be used directly to deter-
mine whether a given partition set is schedulable. Therefore,
the proposed sufficient schedulability test is based on Algo-
rithm1 which can be summarized as follows.

Algorithm 1 Sufficient Schedulability Test
Input: partition set 0 = {01, · · · , 0n}
Output: Determination whether 0 is schedulable and
valid start time of 0i if it is schedulable.

1 if condition(3) is not met then
2 return 0 is not schedulable;
3 end if
4 for i = 1; i ≤ n; i++ do //sort partitions
5 Ci is computed by equation (9).
6 if Ci > 1 then
7 0a← 0a ∪ {0i};
8 else
9 0b← 0b ∪ {0i};
10 end if
11 end for
12 Sort 0a and 0b in an increasing periods order
13 0′← 0′a ∪ 0

′
b// insert 0

′
b to the end of 0

′
a

14 for i = 2; i ≤ n; i++ do
15 Si←−1,AIi← [0,5i)

16 for j = 1; j ≤ i; i++
17 CIi is computed by equation (5).
18 AIi← AIi − CIi
19 end for
20 if 2i ≤ LLEN (AIi) then
21 [t, t +2i) ⊆ AIi, Si← t
22 end if
23 if Si = −1
24 return no answer;
25 end if
26 end for
27 Return 0 is schedulable;

The Algorithm1 is consisted of two parts. The first part
(lines 4-12) is to sort partitions, while the second part (lines

14-26) is to calculate the start time of all partitions. To
calculate the start time of all the partitions, the start time
of partition are assigned one by one following the order of
partition set 0′. The second part of algorithm 1 has a structure
of double closed loops. At each iteration of the outer loop,
Partition 0i is selected from the partition set 0′ and available
intervals of 0i are updated (Lines 16-18). Then, available
intervals are reviewed to examine if there is any consecutive
duration larger than or equal to 2i (Lines 20-22). If so, such
a consecutive duration is legal for the partition 0i execution
and the beginning instant is set to 0i’s start time. Notice
that, if more than one intervals satisfy the condition, the first
appeared interval will be selected. If 0i’s start time is equal
to −1, the loop is terminated and the algorithm returns ‘‘no
answer’’.

The idea of Algorithm1 is to compute the necessary avail-
able intervals to schedule all the partitions. This can be
seen as the classical Bin Packing problem which is an NP-
hard problem. Before calculating the start time of partitions,
the the partitions order is sorted according the ‘‘Utilization
Factor’’. Therefore, Algorithm1 is a First Fit Decreasing
(FFD) algorithm.

The main computation part of Algorithm 1 is from
line 4 to 26, which is consisted of two parts. For the
first part, main computation part is Line 5. According
to equation (5), complexity of Line 5 is O (n). How-
ever, complexity of all greatest common divisor computa-
tion should also be considered. Greatest common divisor
can be computed very efficiently using Euclid’s algorithm,
with computational complexity O

(
b2
)
bits for b-bit num-

bers. Therefore, the computational complexity of line 5 is
O
(
b2n

)
, and the computational complexity of the sorting

partitions is O
(
b2n2

)
. For the second part, the computa-

tional complexity of calculating the start time of partitions
is O

(
n2 + n∗5max

)
.The total computational complexity of

Algorithm 1 is O
(
b2n2 + n2 + n∗5max

)
.

Although Algorithm 1 can be used to check the schedula-
bility of harmonic period partitions and non-harmonic period
partitions, there are some limitations of our algorithm:

(1) Note that, Algorithm 1 is First Fit Decreasing (FFD)
algorithm, it is not an optimal method. In the process of
start time setting for a selected partition, we directly choose
the first suitable available intervals for the partition. There-
fore, the longest consecutive duration obtained by Algo-
rithm 1 is not the best solution. The partitions which do not
satisfy the condition (7) cannot be deduced that the parti-
tions are not schedulable. Therefore, the proposed schedu-
lability test algorithm is a sufficient but not a necessary
condition.

(2) The computational complexity of the algorithm pre-
sented by Jinchao Chen is O (5maxn), while the computa-
tional complexity of the FFID algorithm presented by Kermai
is O

(
25max
5min

n
)
. The computational complexity of algorithm

1 is much greater than the above two algorithms. For the
harmonic period partitions, the partitions can be sorted in an
increasing periods order, instead of algorithm1. Therefore, it

VOLUME 8, 2020 117283

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

is not recommended to use algorithm 1 to check the schedu-
lability in harmonic case.

An example is given below to describe the execution pro-
cess of algorithm 1. In this example, we consider a partition
set 0 (01, 02, 03, 04) with 01 (8, 2), 02 (16, 1), 01 (16, 2),
04 (20, 2). The process of algorithm1 is given as follows:

First, condition (3) is met for all partitions. Then the uti-
lization factors of partitions are computed according to the
equation (9): C1 = 1.125 > 1, C2 = 0.9375 < 1, C3 =

0.9375 < 1, C4 = 1.35 > 1. Therefore, 0a = {01, 04} and
0b = {02, 03}. 0a and 0a are sorted in an increasing periods
order respectively. The new partition set is: {01, 04, 02, 03}.
In what followed, the start time of partitions are computed,
and the start time of 01 is 0.
First iteration: AI4 = {[2,4) ,[6,8) ,[10,12) ,[14,16) ,

[18,20)}. Therefore, LLEN (AI4) = 2 ≥ 24 and S4 = 2.
Second iteration: AI2 = {[4, 6) , [12, 14)}.Therefore,

LLEN (AI2) = 2 ≥ 22 and S2 = 4.
Third iteration: AI3 = {[5, 6) , [12, 14)}. Therefore,

LLEN (AI3) = 2 > 23 and S3 = 12.
Therefore, the partitions {01, 04, 02, 03} are schedulable

on the processor. However, if the partitions execute in order:
{01, 02, 03, 04}, the partitions will be not schedulable on the
processor.

B. AN ALGORITHM FOR DETERMINING MINIMUM
CAPACITY OF PARTITION
In order to analyze the schedulability of tasks in partition, it is
necessary to calculate the resource supply of the scheduling
partition. A resource model is to specify resource allocations
that are provided to a scheduling partition and to calculate
the resource supply to the component. For schedulability
analysis, it is important to calculate the minimum supply of
partition resources accurately. To solve the problem, Shin and
Lee proposed a periodic resource model (5,2) in [12], and
its supply-bound function is as follows:

sbf (t)

=

{
k2 otherwise
t − (k + 1) (5−2) t ∈ [(k + 1)5−2, (k + 1)5]

(10)

where k =
⌊ t
5

⌋
. Since the supply-bound function sbf (t) is a

discrete function, its linear low-bound function lsbf (t) is as
follows:

lsbf (t) =

{
2
5
(t − (5−2)) t ≥ (5−2)

0 otherwise
(11)

For a periodic task setW under RM scheduling, Lehoczky
proposed a demand-bound function rbf (W , ti) that computes
the worst-case cumulative resource demand of a task Pi for an
interval of length t [26].

rbf (W , t, i) =
⌈
t
Ti

⌉
Ci +

∑
Pk∈HP(i)

⌈
t
Tk

⌉
· Ck (12)

where HP (i) is the set of higher-priority tasks than Pi in W .

Lemma 2 [12]: Consider task setW = {P1 (C1,T1) , · · · ,
Pn (Cn,Tn)}, where for each i, Pi = (Ci,Ti) is peri-
odic or sporadic task with relative deadlines equal to periods.
W is schedulable in partition, if and only if:

∀Pi ∈ W∃ti ∈ [0,Ti] rbf (W , ti) ≤ sbf (ti) (13)

For schedulability analysis of tasks within partition, Jung-
Eun Kim proposed a new method to obtain schedulability
bound for tasks in a given IMA partition without any informa-
tion on task execution time [27]. The computation complexity
of method is superior to Lemma 2. For the method, partition
period should not be longer than any task’s period within
the partition. If partition period is larger than any task’s
period, the method will not be suitable for determining the
schedulability of tasks. In many cases, task’s period may be
larger than themajor cycle. The Lemma 2 is used to determine
the schedulability of tasks, no matter whether the period of
partition is less than or greater than task’s period.
Lemma 2 gives sufficient and necessary condition to check

whether tasks within a partition are schedulable, but it cannot
be used to compute the optimal execution time. In this section,
pseudo code of our algorithm is presented. The algorithm
takes the task set and partition period as input parameters to
calculate the minimum bandwidth allocated to the partition.
According to Lemma 2 and the resource supply function of
the periodic resource model, the minimum bandwidth satis-
fies the inequality rbf (W , ti) ≤ sbf (ti).
From the definition of sbf , when t ∈ [k5, (k + 1)5−2],

it follows that2 ≥ rbf (t)
k .When t ∈ [(k+1)5−2, (k+1)5],

it follows that 2 ≥ 5+ rbf (t)−t
k+1 .

To calculate 2min, the parameters 5, rbf (t) , t are used
as known conditions to determine whether 2 ≥ 5 +
rbf (t)−t
k+1 or 2 ≥ rbf (t)

k .When 5 + rbf (t)−t
k+1 ≥

rbf (t)
k , we have

y (k) = k25 + k (5− t) − rbf (t) ≥ 0. y (k) is a

quadratic function. If k ≥ (t−5)+
√
(5−t)2+45rbf (t)
25 or k ≤

(t−5)−
√
(5−t)2+45rbf (t)
25 , then y (k) ≥ 0 and 5 + rbf (t)−t

k+1 ≥

rbf (t)
k . Since k is an integer greater than zero, the following

conclusions are drawn:
When k ≥ bnc + 1,2min = 5 +

rbf (t)−t
k+1 , where n =

(t−5)+
√
(5−t)2+45rbf (t)
25 . When k ≤ dne − 1, 2min =

rbf (t)
k .

The complexity of algorithm 2 depends on the number
of tasks in the task set and the period of each task Ti. The
outer loop of algorithm iterates for each task, thus n times in
total. The number of iterations of inner loop is related to the
period of each task. According to equation (12), complexity
of computing the worst-case cumulative resource demand is
O (n). Therefore, the computational complexity of algorithm
2 is at most O

(
n2∗T

)
(T is the maximum period of tasks)

times. In the section, it has been shown that algorithm 2 gives
a valid answer when the partition period 5 is given. The
main problem of algorithm 2 is how to determine the partition
period 5. Therefore, the impact of partition period on parti-
tion utilization will be introduced in following paragraph.

117284 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

Algorithm 2 Pesude Code for Computing Minimum Execu-
tion

Input: partition set S
Sort all partition in an increasing periods order, then

T1 ≤ T2 ≤ · · · ≤ Tn
Output: The minimum execution time of partition

1 2max← 0
2 For all τi ∈ T do
3 2min← Ti
4 t ← Ti
5 While t > 0 do
6 new_demand ← computeRBF (i,Ti)
7 if(new_demand == old_demand)
8 Continue
9 end if
10 k ← t

5

11 21←
w(t)
k

12 22← 5+
w(t)−t
k+1

13 M ←
⌊
(t−5)+

√
(5−t)2+45rbf (t)
25

⌋
+ 1

14 if M ≥ k
15 2← 22
16 else
17 2← 21
18 end if
19 2min← min (2,2min)

20 end for
21 2max← max (2max,2min)

22 end for
23 2opt ← 2max

Theorem 4: Given a task set W = {P1 (C1,T1) , · · · ,
Pn (Cn,Tn)} within the partition 05,t = (5,2), where dt
is worst-case cumulative demand of all tasks, the minimum
execution time of partition 2opt is as follows:

2opt ≤ Exec(5, t, dt) =
5− t +

√
(5− t)2 + 45dt

2
(14)

BWopt =
2opt

5
≤ BW (5, t, dt)

=
5− t +

√
(5− t)2 + 45dt
25

(15)

Proof: according to Lemma 2, rbf (W , ti) ≤ sbf (ti).
When rbf (W , ti) = sbf (ti), the execution time 2 is equal
to the minimum execution time of partition 2opt . Since
lsbf (t) ≤ sbf (t), when rbf (W , ti) = lsbf (ti), the execution
time 2′ can be obtained which is larger than 2opt .

lsbf (t) = rbf (W , t) = dt

⇔
2

5
(t − (5−2)) = dt

⇔ 22
+2(t −5)−5dt = 0

⇔ 2 =
5− t ±

√
(5− t)2 + 45dt

2

Since 2 ≥ 0, the above equation has a unique solution:

2 =
5− t +

√
(5− t)2 + 45dt

2

In otherwords,2opt ≤ Exec(5, t, dt) =
5−t+
√
(5−t)2+45dt
2 .

As a result, the minimum bandwidth of 05,t is BWopt =

2opt
5
≤ BW (5, t, dt) =

5−t+
√
(5−t)2+45dt
25 .

Theorem 5: The function BW (5, t, dt) defined in Theo-
rem 4 is increasing on the domain of 5.

Proof:

dBW (5, t)
5

=

(
5− t +

√
(5− t)2 + 45dt
25

)′

⇔ t5

√
(5− t)2 + 45dt

52 + (t − 2dt)− t2

dBW (5, t)
5

≥ 0

⇔ t
√
(5− t)2 + 45dt ≥ (t − 2dt)− t2

⇔

(√
(5− t)2 + 45dt

)2

≥

(
(t − 2dt)− t2

t

)2

⇔

(
(5− t)2 + 45dt

)
t2 −

(
(t − 2dt)− t2

)2
= 4dt5t2 − 4d2t 5t

⇔ 4dt5t (t − dt)

Since t ≥ dt ,
dBW (5,t)

5
≥ 0, BW (5, t) is increasing with

the increase of the partition period.
For a task set W , Theorem 5 shows that the larger the

partition period, the greater the partition utilization. When
partition period is very small, the scheduling overhead is large
because of the increase of context switching. On the contrary,
when the partition period becomes larger, the bandwidth
requirement of the partition will become larger and the band-
width left for other partitions will become smaller. Without
considering the impact of partition scheduling, we suggest
selecting the partition period close to the minimum period
among all tasks in W .

IV. PARTITION PARAMETER DESIGN METHOD
A. OBJECTIVE FUNCTIONS AND CONSTRAINTS FOR
PARTITION PARAMETER DESIGN
This section demonstrates the objective functions and con-
straints for partition parameter design. Two different objec-
tives have been considered in the optimization procedure.

As a first optimization goal, minimizing the required band-
width is considered. When tasks execute in partition, it is
hoped that tasks execution are not interrupted frequently by
partition scheduling. As a second optimization goal, we con-
sider minimizing the system overhead caused by partition

VOLUME 8, 2020 117285

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

scheduling, which is defined as

F2 =
n∑
j=1

k∑
i

⌈
Ri

αj ·5j

⌉
·
Tq
5j

(16)

where αj is the bandwidth of partition j,Ri is the worst-case
response time of task i,Tq is task-switching time spending
and 5j is the period of partition j. Through the analysis
of IMA hierarchical scheduling, the partition period is neg-
atively related to the system overhead, while the partition
period is positively related to the required of the partitions.
When designing the partition parameters, two opposite objec-
tives must be balanced:

1) The required bandwidthF1 should be small, and the total
processors capacity would not be wasted.

2) The value of F2 should be small, then the partition
period should be large. Otherwise, the time wasted in context
switches performed by the global scheduler will be too high.
The platform with a low value of F2 has a higher chance to
schedule tasks due to the lower degree of fragmentation of
the overall computing capacity.

In fact, when designing the partition parameters, the com-
puting capacity of the system must be considered. The parti-
tions are mapped to the limited number of processors, and the
constraint condition is defined as follows:

g (51, · · ·5n,21, · · ·2n) ≤ M (17)

where M is the number of processors.
Through the schedulability analysis of hierarchical

scheduling in the past section, partition period 5 needs to
be designed before the execution time of partition can be
obtained. The partition period is a key factor affecting the
schedulability of partitions. According to Lemma 1, it can
be easily deduce that when GCD

(
5i,5j

)
is a small value,

the likelihood of meeting 0i and 0i strict periodicity and
deadlines are also small. Therefore, GCD

(
5i,5j

)
should

be designed to be as large as possible. If so, the available
intervals for other partitions will be larger. According to the
partition period, the partition set can be divided into harmonic
period partitions and non-harmonic period partitions. For
the problem of partition assignment, the computational com-
plexity of algorithm used for non-harmonic period partitions
is much greater than that of algorithm used for harmonic
period partitions. When the system is designed as harmonic
period partitions, the number of required processors is m.
When system is designed as a non-harmonic period partitions,
the number of required processors is m′. In most cases,
m is less than or equal to m′. The difference between m
and m′ becomes larger with the increase of the number of
partitions. Therefore, it is recommended that all partitions are
designed as harmonic period partitions. In [3], experiments
show that the performance of TASC algorithm in terms of
execution time and number of required processors is better
than EMTA, Line Search Method and Best-response algo-
rithm for harmonic case. Therefore, the TASC algorithm is

used to calculate the number of required processors in the
optimization procedure.

FIGURE 2. Process of partition reconfiguration.

The reliability of integrated avionics system is critical
to the flight safety of aircraft. Therefore, when a proces-
sor in the IMA system fails, the critical partitions running
on the processor need to be migrated to other processors.
It is assumed that the IMA system has n processors, and
the processor M1 has two partitions P11 and P13 which are
related to the safety of the aircraft. Therefore, when the
processor M1 fails, it is necessary to migrate P11 and P13
to other processors. The migration process is shown in the
Fig. 2. In fact, partition migration is related to the remaining
time space and partition period of other processors. In this
example, because the period P11 is smaller, it can only be
migrated to the processorMn, while the number of processors
to which P13 can be migrated is relatively larger. Therefore,
the smaller partition period is, the harder it will be to find
sufficient processor resources in the reconfiguration process.
Therefore, the difference between the maximum partition
period and minimum partition period is not too large. It is
suggested that 5n

51
≤ 4(51 and 5n are the minimum and

maximum periods of the partition).
Therefore, the objective functions and constraints of parti-

tion parameter design are as follows:

F1 (51,52, · · · ,5n,W)

= min

 n∑
j=1

αj

 (18)

F2 (51,52, · · · ,5n,W)

= min

 n∑
j=1

k∑
i

⌈
Ri

αj ·5j

⌉
·
Tq
5j

 (19)

Subject to
5i

51
= k, (k = 1, 2, 4)

Tmin ≤ 51 ≤ Tmax

g (51, · · ·5n,21, · · ·2n) ≤ M

where W represents the task set, Tmin is the minimum
period among all tasks, and Tmax is the maximum period
among all tasks. Therefore, the problem of partition param-
eter design is transformed into a constrained multi-objective

117286 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

problem. The input parameters for calculating objective func-
tions F1 and F2 are partition periods 51,52, · · · ,5n and
task set W . The parameter αj in the objective function
F1 (51,52, · · · ,5n,W) is solved by the algorithm 2 in
section III-B. For Ri, N. Audsley gave an iterative formula
for computing the worst execution time of a task [28].

wn+1i = C i +
∑
∀j∈hp(i)

⌈
wni
Tj

⌉
Cj (20)

where hp(j) is the set of tasks with priorities higher than
the task i. Recurrence begins with w0

i = Ci and ends when
wn+1i > Di in which case the task is not schedulable or when
wn+1i = wni in which case w

n+1
i gives the worst-case response

time of the task.

B. THE MOEA/D-ADV ALGORITHM
Based on the above analysis, the problem of partition param-
eter design can be translated to constrained multi-objective
optimization problems (CMOPs). Then the objective function
and constraints can be converted to the following formulas:

F1 (5, k1, · · · , kn,W)

= min

 n∑
j=1

αj

 (21)

F2 (5, k1, · · · , kn,W)

= min

 n∑
j=1

k∑
i

⌈
Ri

αj · kj ·5

⌉
·
Tq
5

 (22)

Subject to k1, · · · , kn = 1, 2, 4

Tmin ≤ 5 ≤ Tmax

TASC (51, · · ·5n,21, · · ·2n)−M ≤ 0

where TASC is the algorithm proposed byKermai to calculate
the number of required processors.

CMOPs are consisted of a few objectives and constraints.
To solve CMOPs, the constraint-handling technique should
be applied to the framework of multi-objective evolutionary
algorithm (MOEA).

According to different selection strategies, MOEAsmainly
can be classified into three types: (1) Pareto-domination-
based; (2) decomposition-based; (3) indicator-based. The
typical examples of domination-based MOEAs include
NSGA-II [29], PAES-II [30], SPEA-II [31]. For indicator-
basedMOEAs, they use a scalar metric to assist the selection,
typical examples of this type are IBEA [32], HypE [33].
In recent years, decomposition-based MOEAs attract a lot of
attention. The most representative algorithm of this type is
Multi-objective Evolutionary Algorithm Based on Decompo-
sition (MOEA/D)whichwas proposed byQingfu Zhang et al.
in 2007 [34]. Given a series of uniform distributed weight
vectors, the algorithm decomposed the multi-objective prob-
lem into N scalar subproblems, and each scalar subproblems
related to one solution.

The decomposition-based multi-objective evolutional
algorithm (MOEA/D-M2M), introduced by Liu et al. [35] in

2014, is a variant of MOEA/D. However, unlike MOEA/D
using aggregation methods, MOEA/D-M2M decomposes
the multi-objective optimization problems (MOPs) in to a
number of simple multi-objective optimization subproblems,
and then solves them in a collaborative way [36]. Compared
with SPEA-II, NSAG-II, and so forth, MOEA/D-M2M pro-
tects every subpopulation by decomposition and solves every
subproblem using multi-objective optimization approaches,
which balances the diversity and convergence simultaneously
at each generation. Recently, MOEA/D-M2M has shown its
great advantages in dealing with many kinds of continuous
MOPs. For problem of partition parameter design, as the
number of partition and processor increases, the optimal
solutions of many subproblems are not Pareto-optimal. It
may affect the diversity and convergence performance of
MOEA/D-M2M. To maintain better diversity and conver-
gence of the optimal solutions, in this paper, we propose a
variant of MOEA/D, called MOEA/D-ADV. In MOEA/D-
ADV, an adaptive strategy is used to detect the effectiveness
of each direction vector. Then positions of the ineffective
direction vectors and the size of each subpopulation are
adjusted.

To solve CMOPs, the constraint-handling technique should
be applied to the framework of the multi-objective evolution-
ary algorithm (MOEA). According to [37], the constraint-
handling techniques mainly include six categories: con-
strained dominance principle (CDP), penalty functions,
stochastic ranking, ε constrained method, multi-objective
optimization-based methods, and hybrid methods [38]. Com-
pared with other constraint-handling techniques mentioned
above, CDP is simple, flexible, and non-parametric, making it
easy to be embedded intoMOEA. In this paper, we embed the
CDP into MOEA/D-ADV to solve the problem of partition
parameter design.

The pseudo code of the proposed method is shown in
Algorithm 3. The MOEAD-ADV shares a common frame-
work that is employed by many evolutionary algorithms.
First, a population with N solutions is randomly initialized
in the whole decision space. Next, more potential solutions
are selected into the mating pool according to the constraint
violation value of each individual. Then a set of offspring
solutions Q is generated by applying crossover and mutation
operations. In what followed, direction vectors and the size
of subpopulation are adjusted according to the union set of
P and Q. Finally, N solutions are selected from the union set
of P and Q by adopting an association selection procedure.
In the following paragraphs, the four main components in
Algorithm3 will be introduce, i.e., constrained tournament
selection, adjustment for the direction vectors, adjustment for
the size of the subpopulations and association selection.

1) CONSTRAINED TOURNAMENT SELECTION
For the problem of partition parameter design, the con-
straint violation value of a solution x, denotes as CV (x), is

VOLUME 8, 2020 117287

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

Algorithm 3 General Framework of MOEA/D-ADV
Input: Genmax: the maximum number of generation

S : the size of each subpopulation
K : the number of the subproblems
G : parameters update frequency

Output: a set of feasible nondominated solutions
1 [P,W] ← Intialization();P is the parent population,
W is K unit direction vectors W 1, · · · ,WK

2 While termination criterion is not fulfilled do
3 P′← Constrained_Tournament_Selection (P) ;
4 Q← Variation

(
P′
)
;

5 P← P ∪ Q
6 if Mod(gen,G) == 0 then
7 DV ← DV_Adjustment (P,W , S)
8 S ′← Subsize_Adjustment (P,DV , S)
8 else
9 DV ← W , S ′← S
10 end if
11 P← Association_Selection

(
P,DV , S ′

)
12 end for
Find all the non-dominated and feasible solutions and

output them

calculated by the following form:

CV (x) =

{
TASC (x)−M TASC (x) > M
0 TASC (x) ≤ M

(23)

It is obvious that the smaller is the CV (x), the better is the
quality of x, and the CV of a feasible solution is always 0.
The pseudo code of the constrained tournament selection

procedure is given in Algorithm 4. Given any two solutions
p1 and p2, the better one is chosen as themating parent.When
both of p1 and p2 are feasible, the one which dominates the
other is chosen. If p1 and p2 are non-dominated solutions,
we choose one at random. When at least one of p1 and p2 are
infeasible, the one with a smaller CV is chosen. If both of p1
and p2 have the same constraint violation value, we choose
one at random. In order to select other mating parents, another
pair of solutions is randomly chosen, so on and so forth, until
N solutions are selected.

2) ADJUSTMENT FOR THE DIRECTION VECTORS
With the update of the population, many ineffective direction
vectors may exit in MAOPs with irregular Pareto Front (PF).
And much search effort will be unavoidably wasted since
many single objective subproblems will share the same opti-
mal solutions. These ineffective direction vectors are needed
to be adjusted. Based on this consideration, direction vectors
are adjusted according to the population at each generation.
The direction vectors are adjusted by calling Algorithm 6.

In Algorithm 6, the effective and ineffective direction vec-
tors are first detected. The detection of the effective direction
vectors is given in Algorithm 5. Each nondominated solution
is associated with a direction vector. If a direction vector

Algorithm 4 Constrained Tournament Selection Procedure
Input: population P and Constrained condition CV
Output: mating parent P′

1 tour1← randperm(N), tour2← randperm(N)
2 for i← 1 to N do
3 p1← tour1 (i) , p2← tour2 (i)
4 if CV (p1) ≤ 0&CV (p2) ≤ 0 then
5 if p1 ≺θ p2 or p2 ≺θ p1
6 P′ (i)← p1 or P′ (i)← p2
7 else
8 P′ (i) = RANDOM_PICK (p1, p2)
9 end if
10 else
11 if CV (p1) < CV (p2) or CV (p1) > CV (p2)
12 P′ (i)← p1 or P′ (i)← p2
13 else
14 P′(i) = RANDOM_PICK (p1, p2)
15 end if
16 end if
17 end for

contains no associated nondominated solutions, this direction
vector is considered to be ineffective; otherwise it is consid-
ered to be effective.

Algorithm 5 Detection of the Effective Direction Vectors
(DETECTION)

Input: P : current population;
W =

{
w1, · · ·wK

}
: direction vectors;

Output: effective direction vectors DV
1 Pdom = NONDOMINATED (P)
2 for each x i in Pdom do
3 k ← argminwk arccos

(
xi·wk

‖xi‖‖wk‖

)
4 Pk ← Pk ∪

{
x i
}

5 end for
6 for k = 1 to K do
7 if Pk 6= ∅ then
8 DV ← DV ∪ wk

9 end if
10 end for

After detecting effective direction vectors DV , the rest
(K − |DV |) direction vectors are generated by inserting new
ones at the midpoints between every two effective direction
vectors. It can be known that possible pairs of effective direc-
tion vectors, whose indexes can be denoted by

Pair = {(1, 2) , · · · , (i, j) , (|DV | − 1, |DV |)} . (24)

The number of the solutions in each subregion can be
denotes as Subreg ← {Subreg(1,2), · · · , Subreg(i,j), Sub-
reg(|DV |−1,|DV |)}. There are |DV |−1 subregions in the objec-
tive space. The subregion index set, denoted by Len, in which
the number of solution is greater than or equal to 2∗S. |Len|
new direction vectors are generated by inserting midpoints of

117288 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

Algorithm 6 Adjustment for Direction Vectors
(DV_Adjustment)

Input: P : current population;
W = {w1, · · · ,wK } : direction vectors;
Output: direction vectors DV

1 DV ← DETECTION (P,W)
2 Pdom = NONDOMINATED(P), S = b|P|/|W |c
3 While |DV | < K do
4 Subreg←

{
Subreg(1,2), · · · , Subreg(i,j),

Subreg(|DV |−1,|DV |)
}
//determine the number of nondomi-

nated solutions in each subregion
5 Len → find (Subreg ≥ 2∗S) , r → |Len| or r ←
K − |DV |
6 for k = 1 to r // Generate new direction vectors
7 w∗←

(
wSubreg(k).1 + wSubreg(k).2

)
/2

8 DV = DV ∪ w∗

9 end for
10 Pair ← {(1, 2) , · · · , (i, j) , (|DV | − 1, |DV |)}
11 for i = 1 to |DV | do
12 for j = i+ 1 to |DV | do
13 di,j←

∣∣wi − wj∣∣
14 end for
15 dmin (i)← min

(
di,j
)

16 end for
17 dmax→ max (dmin(1), · · · , dmin(|DV |))
18 [d, I]← sort (d) ,Pair ← Pair (I)

// Select K − |DV | or |Mid | pairs of the direction
vectors
19 Mid ← find(d == dmax), r ← max (Mid) , l ←
min (Mid)
20 While r − l + 1 < K − |DV |&l > 1
21 r++, l −−
22 end
23 for k = 1 to r
24 w∗←

(
wPair(k).1 + wPair(k).2

)
/2

25 DV = DV ∪ w∗
26 end for
27 end for

vector pairs (Line 5-Line 9). Most of time, |Len| is less than
K−|DV |. Therefore, anothermethod to find the new direction
vectors will be introduced in following paragraph.

The distance of every ith direction vector to its nearest
neighbor, denoted by dmin (i), is computed (lines 11–16).
The pair index set, denoted by Mid , that has the maximum
distance dmax out of all possible dmin (i), is selected (lines 17–
19). The range between the low index of Mid and the upper
index of Mid are expanded, first move l backwards and then
move r forwards, until the range |r − l + 1| reachesK−|DV |
(lines 19–22). K − |DV | new direction vectors are generated
by inserting midpoints of (upper-lower) vector pairs in DV
(lines 23–26).

3) ADJUSTMENT FOR THE SIZE OF EACH SUBPOPULATION
After the direction vectors are adjusted, the number of solu-
tions Sk for subregion�k is needed to determine. The pseudo
code of this update procedure is present in Algorithm 7.
At lines 1, the solution set P is allocated to each subregion
according to direction vectors W . In order to select the next
generation solutions from the double population, Sk can be
set to |Pk |/2 in each subregion. If |Pk | ≤ 1, Sk is set to 1.

When the whole population size
K∑
k=1

Sk is larger than |Pk |/2,

it indicates some subproblems have been over-crowed. So the
number of solution Sk in each subregion is set tom. When the

whole population size
K∑
k=1

Sk is less than |Pk |/2, the number

of solution Sk is updated at lines 12-14.

Algorithm 7 Adjustment for the Size of Each Subpopula-
tion(Subsize_Adjustment)

Input: P : current population;
W = {w1, · · · ,wK } : direction vectors;
m : the size of the subpopulation

Output: number of the solution in subregions S
1 [P1, · · · ,PK] = Assocation (P,W)
2 for i = 1 to K do
3 if Pk == ∅ or |Pk | == 1 then
4 Sk ← 1
5 else
6 Sk ← b|Pk |/2c
7 end if
8 end for

9 if
K∑
k=1

Sk > |Pk |/2 then

10 the number of solution Sk in each subregion is set
as m
11 else
12 Sort Sk (k = 1, · · · ,K), such that 0 < Ski ≤
Ski+1 · · · ≤ SkK ;

13 While
K∑
k=1

Sk <|P|/2 do

14 Ski ← Ski + 1, i← i+ 1;
15 end
16 end if

4) ASSOCIATION SELECTION
After combining the parent population P with the offspring
population Q, association selection(Algorithm 8) is called,
where solutions are selected from the merged population as
follow.

First and foremost, each solution is associated with its
closest direction vector. After that, the remaining Sk − |Pk |
solutions are randomly chosen from the combined population
when the number of solutions of Pk is less than Sk . When the
number of solutions of Pk is greater than Sk , we select Sk

VOLUME 8, 2020 117289

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

Algorithm 8 Association Selection
Input: P : current population;

W = {w1, · · · ,wK } : direction vectors;
S = {S1, · · · Sk} : number of the solution in each

subregion;
Output: the selected population Q

1 [P1, · · · ,Pk] = Assocation (P,W) // the codes are the
same as Line2-Line5 in Algorithm 5;
2 for k = 1 to K do
3 if |Pk | < Sk then
4 randomly select Sk − |Pk | solutions from Pk and
add them to Q
5 end if
6 if |Pk | > Sk then
7 Pinfeasiblek ← max(Pk)+ CVInfeasible
8 Pk ← Pfeasiblek ∪ PInfeasiblek
9 (FrontNo,MaxFont)← ENS_SS (Pk , Sk),
10 Fl ← P(MaxFront),Distance ←

CrowingDistance(Fl)
11 Ps ← Select(Front,Dis tan ce)//Select solu-
tions from Pk by non-dominated sorting and crowding
distance and add them to Q
12 end if
13 end for

solutions from Pk by non-dominated sorting and crowding
distance. It is better to select the solutions which have small
acute angles with the direction vector in the objective space,
since they can conduct to a better front for the subregion �.
Thus, the method to allocate the remaining individuals in this
situation can be defined as the following steps.

Step1. Find the infeasible solutions from the current popu-
lation, and calculate the new objective value of the infeasible
solutions (Line 7 in Algorithm 8). The objective value can be
formulated as:

f
(
x i
)
= max(f (P))+ CV (x i) (25)

Step2. A non-dominated sorting procedure is used to rank the
solutions Pk by the ENS_SS method [39], and the solutions
with the last acceptable rank are determined (lines 9–10).

Step3. Solutions from the best ranks are chosen until all
members of the last acceptable rank cannot be all chosen.
The remaining solutions having worse ranks are deleted.
Solutions from the last acceptable rank are assigned a crowd-
ing distance value based on their sparsity in the objective
space, and solutions with higher crowding distance values are
chosen.

5) COMPUTATIONAL COMPLEXITY
The computational time complexity of MOEA/D-ADV is
dependent mainly on three main components: adjustment for
the direction vectors, adjustment for the size of the subpopu-
lations and association selection. The adjustment for direction
vectors (Algorithm 6) includes two steps: 1) the detection of

the effective direction vector (Algorithm 5) and 2) the subse-
quential adjustments. The computational complexity of direc-
tion vectors adjustment isO (mNK), wherem is the number of
objectives, N is the current population size, K is the number
of the subproblems. The computational of association selec-
tion (Algorithm 8) isO

(
mN 2/K

)
, while the computational of

adjustment for the size of the subpopulations (Algorithm 7)
is O (NK).In summary, the worst computational complexity
of MOEA/D-ADV within one generation is O (mNK).

V. EXPERIMENT SIMULATION AND RESULT ANALYSIS
To explain the effectiveness of the proposed partition param-
eter design method, this section presents a number of experi-
ments aiming at comparing the performance of our partition
parameter design method. For the sake of generality, all tim-
ing parameters are expressed in generic time units, which are
microsecond. In experiments, it is assumed that Tq in (11) is
equal to 1.

A. EVALUATION OF THE ALGORITHM TO CALCULATE THE
MINIMUM EXECUTION TIME OF PARTITION
The algorithm 2 is used to calculate the minimum execution
time of partition while simultaneously guaranteeing tasks
schedulability. To illustrate the effectiveness of the algorithm,
this section presents two experiments aimed at comparing the
performance of the algorithm.

Consider an ARIN653 partition consisting of three tasks,
where P1 = (2, 35), P2 = (3, 45), P3 = (2, 50). Algo-
rithm 2 is used to calculate the minimum execution time
and bandwidth in different partition periods, and the range
of period is 5 ≤ 5 ≤ 100. In the first experiment, we
compare the bandwidth obtained by our algorithm with the
algorithm in [40], which is denoted as Exhaust in the plot.
The bandwidth of partition is represented as follows:

BandWith =
N∑
i=1

c∗1δ + c
∗

22i

5i
(26)

where δ = 1, c1 = 1, c2 = 1.
To calculate the worst-case response time of the task,

R.I.Davi gave an iterative formula for computing the worst
execution time of hierarchical scheduling [41].

Li (w) = C i +
∑
∀j∈hp(j)

⌈
w
Tj

⌉
Cj (27)

w = Li (w)+
⌈
Li (w)
2

⌉
(5−2) (28)

where Li (w) is the task load,
⌈
Li(w)
2

⌉
(5−2) is the gaps

of the task, and hp(j) is the set of tasks with priorities higher
than task i. Recurrence begins with w0

i = Ci+
⌈
Ci
2

⌉
(5−2)

and ends when wn+1i > Di in which case the task is not
schedulable or when wn+1i = wni in which case wn+1i gives
the worst-case response time of the task.
As shown in Fig. 3, the worst respond time of three tasks

are less than the deadline of tasks, so the tasks are schedulable

117290 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

FIGURE 3. Worst-case response time of the task with different partition
periods.

FIGURE 4. Bandwidth of partition obtained by algorithm 2 and Exhaust.

on the partition which is designed by algorithm 2. In Fig. 4,
the minimum bandwidths calculated by the two algorithms
are plotted as a function of partition period. The results indi-
cate that the bandwidths achieved by algorithm 2 are smaller
than bandwidths achieved by Exhuast. With the increase of
system utilization, the difference between the algorithm 2 and
Exhuast reduces. For algorithm 2, the bandwidth increases
rapidly when 5 ≥ 45, while the bandwidth does not change
much when 15 ≤ 5 ≤ 45. Without considering partition
scheduling, it is a great option to set partition period as Tmin.

In the second experiment, we show the simulation results
for our proposed algorithm and compare it with the heuristic
algorithm proposed by Dewan and Fisher [16], the algorithm
presented by Yoon et al. [22] and the sufficient algorithm
proposed by Shin I [12]. These algorithms are denoted as
Heuristic, GP and Suff respectively in the plots. The exper-
iment parameters and value ranges are shown below:

1) The number of tasks executed in the partition is taken
from the set {4, 6, 8, · · · , 18}.

2) The tasks utilization is taken from the range [0.1, 0.7] at
0.05-increments and individual task utilizations are generated
using UUniFast algorithm [41].

3) Task period Ti is generated randomly in the interval
[20, 100] and is subject to a logarithmic uniform distribution.
4) The parameter k is set to be 3 for Suff, while the

parameter5 is set to be the minimum period of the tasks for
algorithm 2 and Heuristic.

FIGURE 5. Bandwidth of partition with different task system utilizations.

In Fig. 5, the bandwidths of partition calculated by the four
algorithms are plotted as a function of task system utilization.
The performance of algorithm 2 and Heuristic are better than
GP than Suff. In most cases, the bandwidths obtained by
algorithm 2 are less than the bandwidths obtained by com-
pared algorithmsWhen task system utilization is greater than
0.5, the bandwidths obtained by Suff are larger than 1. The
bandwidths obtained by algorithm 2 and Heuristic are almost
same. With the increase of system utilization, the difference
between the algorithm 2 and Suff becomes larger.

FIGURE 6. Bandwidth of partition with different task system sizes.

The Fig. 6 shows the effect of task system size on the band-
width for the four algorithms. In this plot, system utilization is
u = 0.4, and task system size is varied from 2 to 28. It can be
seen that the task system size has no influence on bandwidths
obtained by Suff. The task system size increases from 2 to 15,
and the bandwidths obtained by algorithm 2 and Heuristic
are almost same. In some cases, Heuristic performs better
than algorithm 2. When task system size is greater than 15,
algorithm 2 perform better than other algorithms. The result
shows that the task system size does not have a significant
effect on algorithm 2 and Heuristic. This is due to the fact
that for algorithm 2 and Heuristic, bandwidths depend on the
minimum period of the tasks. From the experiment, it is found
that the algorithm 2 works well in both task system utilization
and task system size increasing cases.

Since the supply-bound function is a discrete function, it is
difficult to obtain the minimum execution time through a

VOLUME 8, 2020 117291

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

numerical analysis. GP and Suff use the linear low-bound
function to obtain the minimum execution time through the
numerical analysis, while algorithm 2 and Heuristic use the
supply-bound function to obtain the minimum execution time
through heuristic method. Therefore, the bandwidth achieved
by GP and Suff is greater than the bandwidth achieved by
algorithm 2 and Heuristic. In Heuristic, Request-bound func-
tion is replaced by approximate cumulative request-bound
function to reduce the number of points in the testing set. This
may affect the bandwidths obtained by Heuristic. Therefore,
in many cases, algorithm 2 performs better than Heuristic.
Although the algorithm 2 performs better than the compared
algorithms, the computation complexity of algorithm 2 is
higher than the compared algorithms.

B. EVALUATION OF THE PARTITION PARAMETER DESIGN
METHOD
In this section, we present simulation results and compare
the performance of our proposed partition parameter design
method with the exact algorithm proposed by Xiaoguang
et al. [21], Tianran and Xiong [42] which is denoted as POA.

1) EXPERIMENT OF PARTITION PARAMETER DESIGN
In the first experiment, we considered the application shown
in Table 2, consisting of three partitions.We should design the
parameters of three partitions to confirm that the partitions are
schedulable on the same processor.

TABLE 2. Partitions within system and task parameters within partitions.

FIGURE 7. System schedulability partition parameters.

For the application given in Table 2, the POA algorithm
is used to search the partition parameters satisfying the sys-
tem scheduling. The results are shown in Fig. 7. From the
figure, it is found that the minimum value of the bandwidth

requirement of the partitions is
3∑
j=1
αj = 0.87, while the max

value of the major frame time is 35. In order to reduce the
task context switching, the major frame time should be larger.
Therefore, for the system given above, the major frame time
of the system is MainFrame = 35, and the bandwidths of
three partitions are α1 = 0.54, α2 = 0.25, α3 = 0.17.
Equation (15) is used to obtain the system overhead which
is F2 = 0.628.
For the MOEA/D-ADV, constraint condition of the param-

eter 5 in the objective function F1 and F2 is 20 ≤ 5 ≤

60. The parameters of MOEA/D-ADV algorithm are set as
follows:
• The population size is 80;
• Maximum number of iterations is 100;

FIGURE 8. Pareto optimal solutions obtained by MOEA/D-ADV algorithm.

Pareto optimal solutions obtained by MOEA/D-ADV are
shown in Fig. 8, and the minimum value of the required

bandwidth of the partitions is
3∑
j=1
αj = 0.7. To compare with

the POA algorithm, we select a Pareto optimal solution with
the smallest value of F1, whereG1 = (25, 8),G2 = (50, 14),
G1 = (100, 14), α1 = 0.32, α2 = 0.28, α3 = 0.14, F2 =
0.34. The major frame time of the system is MainFrame =
100. Compared with POA algorithm, both the system over-
head and the total bandwidth of the system designed by our
algorithm are smaller. This is because the periods of partitions
designed by POA algorithm are the same. In this experiment,
the minimum period among all tasks in G1 is 20 ms, while
the minimum period in G3 is 100 ms. The periods of G1
and G3 designed by POA algorithm are 35 ms, For G1,
the partition period is too large, while for G3, the parti-
tion period is too small. Time wasted in context switches
performed by the global scheduler is high. The period of
G1 and G3 designed by our algorithm are 25 ms and 100 ms,
which are close to the minimum period among all tasks in
partitions. If the difference of minimum period among tasks

117292 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

within different partitions is large, for the system designed
by the POA algorithm, time wasted in context switches per-
formed by the global schedule will be high. Therefore, the
more difference between minimum periods among the tasks
within different partitions is, our algorithm performs better.
Formultiprocessor systems, the POA algorithm is not suitable
for partition parameter design, while our algorithm can be
extended to multiprocessors system design by modifying the
limitation of processor number.

2) ALGORITHM PERFORMANCE EVALUTION
When designing partition parameters, it is hoped that both
the total bandwidth requirement and the system overhead are
small. For this test, the total bandwidth requirement and the
system overhead designed by two algorithms is compared.
The experiment parameters and value ranges are shown
below:

1) The number of partitions executed on the processor is
taken from the set {2, 4, 6}.
2) The task system utilization is taken from the range

[0.3, 0.7] at 0.1-increments and individual task utilizations
are generated using UUniFast algorithm.

3) The generated tasks are randomly assigned to different
partitions, and the number of tasks in one partition is less
than 5.

In this experiment, according to given partition size and
task system utilization, we randomly generate task parame-
ters Ci and Ti for each task and the number of tasks in the
partition. The MOEA/D-ADV and POA algorithm are imple-
mented to obtain the partition parameters. Our comparison
metrics is the ratio of the system overhead. For the plots which
vary the system utilization, each point in the plots represents
mean of 30 simulation runs.

FIGURE 9. Ratio of the cost of system overhead between MOEA/D-ADV
algorithm and POA algorithm.

In Fig. 9, the ratio of the system overhead for the two
algorithms is plotted as a function of task system utilization,
where ratio denotes the ratio of the system overhead between
MOEA/D-ADV and POA algorithm. In two partitions case,
the ratio is almost equal to 1. In four partitions case and six
partitions case, the ratios are less than 1, and the ratio in four
partitions case is larger than that in the six partitions case.
Therefore, the ratios decrease with the increase in the number

of partitions, while the ratios increase with the increase the
system utilization. It means that our algorithm performs better
with increasing the number of the partition.

3) SUCCESS RATIO EVALUATION
In this subsection, we focus on the evaluation of the proposed
approach in terms of success ratio, i.e., the percentage of
partition sets designed by POA and MOEA/D-ADV to be
schedulable upon a limited processors platform. A higher
success ratio indicates a more accurate and useful method.
To this end, a series of partition sets with cardinality from
4 to 12 are generated, and the system utilization is 0.6. For
the exact algorithm, if the bandwidth requirement is greater

than 1(
n∑
j=1
αj > 1), the partitions are not schedulable. For

the MOEA/D-ADV algorithm, if the number of required
processors by TASC is greater than 1, the partitions are not
schedulable.

FIGURE 10. Success ratios of MOEA/D-ADV and POA when the system
utilization is 0.6.

Fig. 10 presents the success ratio of POA algorithm and
MOEA/D-ADV algorithm. At first glance, success ratios
decrease with the increase of partition sets cardinalities.
While the number of partition increases, the required band-
width of partitions also increases. Then it may be hard to find
the parameters to satisfy the partition scheduling condition.
Both of the algorithms perform well when a number of par-
titions are less than 7, nevertheless, our approach performs
better than POA when the number of partitions is larger than
7. It can be found that the difference in success ratios between
POA and our approach enlarge gradually while the number of
partitions increases. The largest difference values of success
ratios are 43%.

In summary, it can be observed that the partition param-
eters designed by our method are better than that designed
by the POA algorithm, on all the experiments. The partition
parameters designed by our method have smaller bandwidth
and the system overhead. The computational complexity of
our method is O (2NKGMT), where N is the current popula-
tion size,K is the number of the subproblems,G is the number
of the iterations, M is the number of the partitions, and T is
the maximum period of tasks. The computational complexity

VOLUME 8, 2020 117293

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

of POA algorithm is O
(
M2T 2

)
. However, the computational

complexity of our method is greater than POA algorithm.

C. EVALUATION OF THE MOEA/D-ADV METHOD
To illustrate the effectiveness of the MOEA/D-ADV algo-
rithm, in this section, MOEA/D-ADV is compared with nine
multi-objective evolutionary algorithms: 1) MOEA/D-M2M;
2) NSGAII-CDP; 3) MOEA/DD [43]; 4)MOEA/D-SR [44];
5) SPEA2-CDP [31], [45]; 6) C-RVEA [46]; 7) NSGAIII-
CDP [47]; 8) VaEA [48]; 9) HypE. In this experiment, five
groups of partition sets will be generated according to the
method in Section V-B. The experiment parameters and value
ranges are shown below:

1) The number of partitions executed on the processors is
taken from the set {8, 20, 24, 32, 40} and system utilization
is taken from the set {1.5, 3, 4.2, 4.8, 6.0}. The number of
processors is as follow 3, 5, 6, 8, 9. According to the number
of partitions and processors, the test instances are denoted as:
M3P8, M5P20, M6P24, M8P32, M9P40.

2) The population size of all algorithms is 100, and the
maximum number of iterations is 300. All algorithms use
the same analog binary crossover operator and polynomial
mutation operator.

3) Probability of selecting individuals in the neighborhood
is δ = 0.9;

4) Parameters setting in MOEA/D-ADV and MOEA/D-
M2M are K = 50 and S = 2;

5) Parameter of MOEA/D-SR is Sr = 0.005;
6) Parameter of CRVEA is fr = 0.01;
The performance of the multi-objective algorithm is eval-

uated by hyper volume (HV). The hyper volume evaluates
the quality of Pareto optimal solution set by calculating the
volume of the hypercube surrounded by the given reference
points. Hyper volume is a comprehensive measure of the
approximation, comprehensive and uniformity of the algo-
rithm. The larger the value of the hyper volume is, the better
the performance of the algorithm is. The value of the refer-
ence point for calculating hyper volume is set to themaximum
value of the union of Pareto optimal solution sets obtained by
ten algorithms on each optimization objective.

In the experiment, MOEA/D-ADV and all the comparing
EMO algorithms independently run 15 times for each test
problem. The performance of ten compared algorithms in
terms of HV is presented in Table 3, where the performance
of the algorithm with the best mean HV value is highlighted
in boldface. It can be observed that, MOEA/D-ADV signifi-
cantly outperforms other compared algorithms on all the test
problems in terms of HV mean, except for M3P8. NSGAIII-
CDP achieves the best performance on M3P8. It should be
pointed out that there is no significant difference among the
performance of ten compared algorithms on M3P8. On the
other hand, the standard deviation of MOEA/D-ADV is obvi-
ously smaller than other nine algorithms, which indicates that
the performance of MOEA/D-ADV is more stable. From the
simulation result, it can be observed that MOEA/D-ADV is
significantly better than other nine algorithms.

FIGURE 11. Pareto optimal solutions obtained by ten compared
algorithms (partition number: 24, system utilization: 4.2, processor
number: 6).

To visually view the performance of those algorithms,
the Pareto optimal solutions on M6P24 obtained by the ten
compared algorithms are plot in Fig. 11. As can be seen,
solutions distribution of MOEA/D-SR and SPEA2-CDP are
worse than other algorithms. Compared with other algo-
rithms, the solutions of MOEA/DD, NSGAIII-CDP, CVaEA
and MOEA/D-ADV are distributed more uniformly. It is
obvious that MOEA/D-ADV has the best diversity and con-
vergence among the ten algorithms.

VI. CONCLUSION AND FURTHER WORK
While the IMA architecture has great advantages, it is quite
challenging for system integrators to integrate partitions

117294 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

TABLE 3. Mean values of HV mean, obtained by MOEA/D-ADV, NSGAII-CDP, SPEA2-CDP, NSGAIII-CDP, C-RVEA, MOEAD-SR, CVaEA, MOEAD-M2M,
CMOEAD/D, and HypE.

into IMA architecture efficiently. In this paper, the suffi-
cient schedulability condition of partitions scheduling is pro-
posed, which can be applied to industrial applications such
as TTEthernet protocol. The complexity of the sufficient
schedulability condition for harmonic period partitions is lin-
ear, while that for non-harmonic period partitions is pseudo-
linear. If partitions are designed as non-harmonic period

TABLE 4. List of acronyms.

partitions, it will be hard to assign partitions to a number of
processors.We suggest designing IMApartitions as harmonic
period partitions.

In this paper, the MOEA/D-ADV is introduced to solve the
problem of partition parameter design. Our proposed method
can be extended to multiprocessor systems design by mod-
ifying the limitation of processor number. The experiment
results show that the solutions obtained by MOEA/D-ADV
have better convergence and diversity than compared algo-
rithms. However, there are two limitations of our research:

(1) Although the partition parameters designed by our
method are better than that designed by the POA algorithm,
the method is more complex and computationally expensive.

(2) The mainly goal of this paper is to propose methods
to optimize the partition parameters under the schedulability
constraints of partitions and tasks. However, in the optimiza-
tion procedure, we use the sufficient condition to determine
the schedulability of partitions.

There are several possible directions for further work. First,
to improve the analysis precision of Algorithm 1, we will
investigate how to assign feasible start time of partition more
effectively instead of directly choosing the first suitable time
unit. Second, we would like to study how to distribute the
designed partitions to different processors, in order to meet
the real-time and reliability requirements of IMA.

APPENDIX
See Table 4.

REFERENCES
[1] Avionics Application Software Standard Interface, docu-

ment ARINC653P1-2, Aeronautical Radio, Annapolis, MD, USA,
Mar. 2006, pp. 2–45.

[2] J. Korst, E. Aarts, J. Lenstra, and J. Wessels, ‘‘Periodic multiprocessor
scheduling,’’ in Parallel Architectures and Languages Europe, vol. 505.
Berlin, Germany: Springer, 1991, pp. 166–178.

[3] O. Kermia, ‘‘An efficient approach for the multiprocessor non-preemptive
strictly periodic task scheduling problem,’’ J. Syst. Archit., vol. 79,
pp. 31–44, Sep. 2017.

[4] F. Eisenbrand, K. Kesavan, R. S. Mattikalli, M. Niemeier,
A. W. Nordsieck, M. Skutella, J. Verschae, and A. Wiese, ‘‘Solving
an avionics real-time scheduling problem by advanced IP-methods,’’ in
Proc. ESA. Berlin, Germany: Springer, 2010.

[5] O. Kermia and Y. Sorel, ‘‘Schedulability analysis for non-preemptive
tasks under strict periodicity constraints,’’ in Proc. 14th IEEE Int. Conf.
Embedded Real-Time Comput. Syst. Appl., Aug. 2008, pp. 25–32.

[6] J. Chen, C. Du, F. Xie, and Z. Yang, ‘‘Schedulability analysis of non-
preemptive strictly periodic tasks in multi-core real-time systems,’’ Real-
Time Syst., vol. 52, no. 3, pp. 239–271, May 2016.

[7] T. Zhang, N. Guan, Q. Deng, and W. Yi, ‘‘Start time configuration for
strictly periodic real-time task systems,’’ J. Syst. Archit., vols. 66–67,
pp. 61–68, May 2016.

[8] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

VOLUME 8, 2020 117295

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

[9] T.-W. Kuo and C.-H. Li, ‘‘A fixed-priority-driven open environment for
real-time applications,’’ inProc. 20th IEEEReal-Time Syst. Symp., Madrid,
Spain, Dec. 1999, pp. 256–267.

[10] G. Lipari and S. K. Baruah, ‘‘Efficient scheduling of real-time multi-task
applications in dynamic systems,’’ in Proc. 6th IEEE Real-Time Technol.
Appl. Symp. (RTAS), May/Jun. 2000, pp. 166–175.

[11] G. Lipari and E. Bini, ‘‘Resource partitioning among real-time appli-
cations,’’ in Proc. 15th Euromicro Conf. Real-Time Syst., Jul. 2003,
pp. 151–158.

[12] I. Shin and I. Lee, ‘‘Compositional real-time scheduling framework with
periodic model,’’ ACM Trans. Embedded Comput. Syst., vol. 7, no. 3,
pp. 1–39, Apr. 2008.

[13] X. Feng and A. K. Mok, ‘‘A model of hierarchical real-time virtual
resources,’’ in Proc. 23rd IEEE Real-Time Syst. Symp. (RTSS), Dec. 2002,
pp. 26–35.

[14] A. Easwaran, M. Anand, and I. Lee, ‘‘Compositional analysis framework
using EDP resource models,’’ in Proc. 28th IEEE Int. Real-Time Syst.
Symp. (RTSS), Dec. 2007, pp. 129–138.

[15] N. Fisher and F. Dewan, ‘‘A bandwidth allocation scheme for composi-
tional real-time systems with periodic resources,’’ Real-Time Syst., vol. 48,
no. 3, pp. 223–263, May 2012.

[16] F. Dewan and N. Fisher, ‘‘Bandwidth allocation for fixed-priority-
scheduled compositional real-time systems,’’ACMTrans. Embedded Com-
put. Syst., vol. 13, no. 4, pp. 1–29, Dec. 2014.

[17] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, ‘‘Budget
allocations for hierarchical fixed-priority scheduling of sporadic tasks with
deferred preemptions upon EDP resources,’’ ACM SIGBED Rev., vol. 12,
no. 1, pp. 19–27, Mar. 2015.

[18] A. Al Sheikh, O. Brun, P. E. Hladik, and B. J. Prabhu, ‘‘A best-response
algorithm for multiprocessor periodic scheduling,’’ in Proc. 23rd Euromi-
cro Conf. Real-Time Syst., Jul. 2011, pp. 228–237.

[19] A. Al Sheikh, O. Brun, P.-E. Hladik, and B. J. Prabhu, ‘‘Strictly periodic
scheduling in IMA-based architectures,’’ Real-Time Syst., vol. 48, no. 4,
pp. 359–386, Jul. 2012.

[20] C. Pira and C. Artigues, ‘‘Line search method for solving a non-preemptive
strictly periodic scheduling problem,’’ J. Scheduling, vol. 19, no. 3,
pp. 227–243, Jun. 2016.

[21] G.Xiaoguang, X.Yayong, andW. Zengkui, ‘‘Task schedulability analyzing
method of two-level hierarchical scheduling algorithm in integrated mod-
ular avionics,’’ Acta Aeronautica Et Astronautica Sinica, vol. 36, no. 2,
pp. 585–595, 2015.

[22] M.-K. Yoon, J.-E. Kim, R. Bradford, and L. Sha, ‘‘Holistic design param-
eter optimization of multiple periodic resources in hierarchical schedul-
ing,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2013,
pp. 18–22.

[23] H. S. Chwa, J. Lee, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin,
‘‘Global EDF schedulability analysis for parallel tasks on multi-core plat-
forms,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp. 1331–1345,
May 2017.

[24] I. Shin, A. Easwaran, and I. Lee, ‘‘Hierarchical scheduling framework for
virtual clustering of multiprocessors,’’ in Proc. Euromicro Conf. Real-Time
Syst., Jul. 2008, pp. 181–190.

[25] A. Burmyakov, E. Bini, and E. Tovar, ‘‘Compositional multiproces-
sor scheduling: The GMPR interface,’’ Real-Time Syst., vol. 50, no. 3,
pp. 342–376, May 2014.

[26] J. P. Lehoczky and S. Ramos-Thuel, ‘‘An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems,’’ in Proc. Real-
Time Syst. Symp., Phoenix, AZ, USA, Dec. 1992, pp. 110–123.

[27] J.-E. Kim, T. Abdelzaher, and L. Sha, ‘‘Schedulability bound for integrated
modular avionics partitions,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Grenoble, France, Mar. 2015, pp. 37–42.

[28] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
‘‘Applying new scheduling theory to static priority pre-emptive schedul-
ing,’’ Softw. Eng. J., vol. 8, no. 5, pp. 284–292, Sep. 1993.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[30] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, ‘‘PESA-II:
Region-based selection in evolutionary multiobjective optimization,’’ in
Proc. 3rd Annu. Conf. Genetic Evol. Comput., 2001, pp. 283–290.

[31] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘SPEA2: Improving the strength
Pareto evolutionary algorithm,’’ in EvolutionaryMethods for Design, Opti-
misation and Control. 2002, pp. 95–100.

[32] E. Zitzler and S. Kunzli, ‘‘Indicator-based selection in multiobjective
search,’’ in Proc. 8th Int. Conf. Parallel Problem Solving Nature, 2004,
pp. 832–842.

[33] J. Bader and E. Zitzler, ‘‘HypE: An algorithm for fast hypervolume-based
many-objective optimization,’’ Evol. Comput., vol. 19, no. 1, pp. 45–76,
Spring 2011.

[34] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[35] H.-L. Liu, F. Gu, and Q. Zhang, ‘‘Decomposition of a multiobjective opti-
mization problem into a number of simple multiobjective subproblems,’’
IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014.

[36] H.-L. Liu, L. Chen, K. Deb, and E. D. Goodman, ‘‘Investigating the
effect of imbalance between convergence and diversity in evolutionary
multiobjective algorithms,’’ IEEE Trans. Evol. Comput., vol. 21, no. 3,
pp. 408–425, Jun. 2017.

[37] Jordehi, and A. Rezaee, ‘‘A review on constraint handling strategies
in particle swarm optimisation,’’ Neural Comput. Appl., vol. 26, no. 6,
pp. 1265–1275, 2015.

[38] T. P. Runarsson and X. Yao, ‘‘Stochastic ranking for constrained evolution-
ary optimization,’’ IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284–294,
Sep. 2000.

[39] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, ‘‘An efficient approach to
nondominated sorting for evolutionarymultiobjective optimization,’’ IEEE
Trans. Evol. Comput., vol. 19, no. 2, pp. 201–213, Apr. 2015.

[40] R. I. Davis and A. Burns, ‘‘Hierarchical fixed priority pre-emptive schedul-
ing,’’ in Proc. 26th IEEE Int. Real-Time Syst. Symp. (RTSS), Miami, FL,
USA, Dec. 2005, pp. 389–398.

[41] E. Bini and G. C. Buttazzo, ‘‘Biasing effects in schedulability measures,’’
in Proc. 16th Euromicro Conf. Real-Time Syst. (ECRTS), Catania, Italy,
2004, pp. 196–203.

[42] T. Zhou and H. Xiong, ‘‘Design of energy-efficient hierarchical scheduling
for integratedmodular avionics systems,’’Chin. J. Aeronaut., vol. 25, no. 1,
pp. 109–114, Feb. 2012.

[43] K. Li, K. Deb, Q. Zhang, and S. Kwong, ‘‘An evolutionary many-objective
optimization algorithm based on dominance and decomposition,’’ IEEE
Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Oct. 2015.

[44] M. A. Jan and R. A. Khanum, ‘‘A study of two penalty-parameterless
constraint handling techniques in the framework of MOEA/D,’’ Appl. Soft
Comput., vol. 13, no. 1, pp. 128–148, Jan. 2013.

[45] E. Zitzler and L. Thiele, ‘‘Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,’’ IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[46] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, ‘‘A reference vector guided
evolutionary algorithm for many-objective optimization,’’ IEEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.

[47] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using Reference-Point-Based nondominated sorting approach, part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

[48] Y. Xiang, Y. Zhou, and M. Li, ‘‘A vector angle-based evolutionary algo-
rithm for unconstrained many-objective optimization,’’ IEEE Trans. Evol.
Comput., vol. 21, no. 1, pp. 131–152, Feb. 2017.

HUAKUN CHEN received the M.S. degree in
navigation, guidance, and control from North-
western Polytechnical University, in 2007, where
he is currently pursuing the Ph.D. degree. His
main research interests include integrated modular
avionics, airborne networks, avionics fault diagno-
sis, and health management.

117296 VOLUME 8, 2020

H. Chen et al.: Research on Partition Parameter Design Method for IMA Based on MOEA/D-ADV

WEIGUO ZHANG was born in February 1956.
He received the D.Eng. degree from Northwestern
Polytechnical University. He currently supervises
11 master’s degree students 19 Ph.D. degree stu-
dents. He is currently a Professor with Northwest-
ern Polytechnical University. He presided over a
number of projects such as the National Natu-
ral Resources Fund and the Aviation Fund, and
published more than 50 scientific research articles
and two monographs. His main research works

include active control, flight control system design and optimization, control
allocation, non-linear control, and robust control.

YONGXI LYU was born in June 1990. He received
the D.Eng. degree. He is an Assistant Researcher.
He has participated in a number of research
projects such as the National Natural Resources
Fund, and he also published nearly ten papers
in academic conferences and journals, including
two SCI indexed four EI indexed. He holds two
patents. His research interests include high-angle-
of-attack flight control technology, high-angle-
of-attack aerodynamic modeling technology, and
multi-control plane control allocation technology.

VOLUME 8, 2020 117297

	INTRODUCTION
	PROBLEM STATEMENT
	RELATED WORK
	MAIN CONTRIBUTIONS
	PAPER ORGANIZATION AND NOTATIONS

	PRELIMINARIES
	SCHEDULABILITY OF IMA HIERARCHICAL SCHEDULING
	SCHEDULABILITY ANALYSIS OF PARTITION SCHEDULING
	AN ALGORITHM FOR DETERMINING MINIMUM CAPACITY OF PARTITION

	PARTITION PARAMETER DESIGN METHOD
	OBJECTIVE FUNCTIONS AND CONSTRAINTS FOR PARTITION PARAMETER DESIGN
	THE MOEA/D-ADV ALGORITHM
	CONSTRAINED TOURNAMENT SELECTION
	ADJUSTMENT FOR THE DIRECTION VECTORS
	ADJUSTMENT FOR THE SIZE OF EACH SUBPOPULATION
	ASSOCIATION SELECTION
	COMPUTATIONAL COMPLEXITY

	EXPERIMENT SIMULATION AND RESULT ANALYSIS
	EVALUATION OF THE ALGORITHM TO CALCULATE THE MINIMUM EXECUTION TIME OF PARTITION
	EVALUATION OF THE PARTITION PARAMETER DESIGN METHOD
	EXPERIMENT OF PARTITION PARAMETER DESIGN
	ALGORITHM PERFORMANCE EVALUTION
	SUCCESS RATIO EVALUATION

	EVALUATION OF THE MOEA/D-ADV METHOD

	CONCLUSION AND FURTHER WORK
	REFERENCES
	Biographies
	HUAKUN CHEN
	WEIGUO ZHANG
	YONGXI LYU

