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ABSTRACT Automated tire visual inspection plays an extraordinary important role in ensuring tire quality
and driving safety. Due to the anisotropic complex multi texture and defect diversity characteristic of
tire radiographic image, tire intelligent visual inspection has become one of the technical bottlenecks
of intelligent manufacturing. In this work, a novel tire defect detection model using Concise Semantic
Segmentation Network (Concise-SSN) is investigated for automated tire visual inspection. We perform an
end-to-end pixel-wise tire defect detection by combining the power of an optimized semantic segmentation
network and a compact convolutional neural network for classification. It can achieve the end-to-end pixel-
wise full class defect detection and classification. The experimental results show superior performance on
defect segmentation and classification tasks compared to state-of-the-art models with smaller model size
and faster computation. Comparative experiments indicated that our Concise-SSN achieves the mPA score
of 85.13%, the mIoU score of 77.34% on our test set. The accuracy of defect classification is 96.5% on
average. Finally, we show faster computation (0.132 seconds per image) with competitive results on our
dataset, which can meet the needs of online tire detection.

INDEX TERMS Intelligent defect detection, tire, radiographic image, semantic segmentation network.

I. INTRODUCTION
According to World Health Organization, about 1.3 million
people die and 50 million disabled from road accidents each
year, among them 40% are caused by tire failures [1]. Auto-
mated tire visual inspection plays an extraordinary important
role in ensuring tire quality and driving safety. In recent
years, automated vision inspection methods have obtained
increasingly attention by researchers and industries. Numerus
methods were proposed based on traditional methods [2]–[4],
conventional computer vision based techniques [5]–[11], and
deep learning methods [12]–[19].

Since the middle of last century, researchers have been
focusing on applying nondestructive testing techniques
including laser shearography [2], ultrasonic methods [3],
electromagnetic pulse [4] etc. to tire defect detection. Laser
shearography can directly show a wide range of tire internal
defects, and it is easy to judge. However, it needs vacuum
environment to complete the detection, and the detection
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efficiency is relatively slow and cumbersome. Ultrasonic
technology can also detect a variety of tire defects. The
detection process is complex with low efficiency and high
cost. Electric pulse technology can’t detect tire defects com-
prehensively.

Radiography, especially X-ray radiography testing, is an
important and widely used industrial non-destructive testing
(NDT) method because of its cost-effective and intuitive
characteristics which leads to images with a more reliable and
faster interpretation of the objects to be tested. X-ray radio-
graphy was applied to tire defect detection and followed by
naked-eye detection. However, naked-eye detection has a low
detection efficiency, low accuracy (90%-95% on average)
and is sensitive to the tiredness of the inspectors. Thus, tire
automated visual inspection has become one of the technical
bottlenecks of intelligent manufacturing.

To alleviate the problem, by virtue of their efficiency,
accuracy and real-time performance, conventional computer
vision techniques have been playing an increasingly impor-
tant role in the field of NDT and automated visual inspection
applications [5]–[11]. Guo and Wei [5] applied local total
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variation filtering for tire texture decomposition, followed
by vertical mean filtering and thresholding for tire impurity
defect segmentation. Zhang et al. systematically studied tire
defect detection by image enhancement and defect feature
extraction through image decomposition, image transforma-
tion combining edge operators [6]–[8]. In [8], the authors
detected tire bubble and foreign matter defects by combining
the total variation, curvelet transform based image enhance-
ment and edge operator. Bubbles and defects in tires sur-
face can be detected by combining curvelet transform and
Canny operator in tire laser shearography images [6]. In [7],
a tire defect detection method was proposed based on wavelet
multiscale analysis in ways of local regularity analysis and
scale characteristic. This framework distinguishes the defect
features from the background textures. Li [9] proposed a
radial tire defect detection method in radiographic images
based on fuzzy edge detection. The existence of defects in
tires could lead to the transformation of texture in tire radio-
graphy images, such that defect detection can be realized
based on texture analysis. In [10], feature similarity was
analyzed to capture the texture distortion of each pixel by
weighted averaging the dissimilarity between the pixel and
its neighborhoods. This method can be used to detect texture
and foreign body defects in tread and sidewall. Zhao et al.
proposed a detection method using local inverse difference
moment features and received good performance on foreign
object defects [11].

Compared with naked-eye detection conventional com-
puter vision based methods provide great convenience for
automatic online detection. However, except for the high
computational complexity, the most crucial and indispens-
able steps for these techniques are feature extraction and
selection. As the number of categories increases, feature
extraction becomes more and more difficult. It depends on
the judgment of researchers and long-term trial and error
to determine which features best describe different target
categories. In addition, each feature definition also needs to
deal with a large number of parameters, all of which must be
adjusted by performers. Moreover, artificial features provide
insufficient representation for each kind of defect. For the
above reasons, conventional methodsmostly focus on a single
texture structure detection or one particular kind of defect.

Recently, deep neural networks (DNNs) have demon-
strated remarkable effectiveness and achieved the state-of-
the-art performance in image analysis and recognition. They
have been utilized in visual inspection applications such as
fabric, weld and tire recently [12]. According to the peri-
odicity of fabric texture, Jing et al. [13] divided the fabric
image into blocks, and classify the blocks using the deep
convolution neural network (DCNN) to find out the defec-
tive area. The variation of fabric periodic textures and block
dimension would affect the generalization of the method.
In [14], Ouyang et al. developed a fabric defect inspection
system by combining image processing, fabric motif deter-
mination, candidate defect map generation, and convolu-
tional neural networks (CNNs). Unlike fabric defect detection

problem, tire radiography has the characteristics of multi tex-
ture structure, various defect types, and changeable features
of the same type of defects, which brings great challenges to
tire visual inspection. To solve these difficulties, Cui et al.
designed a multi CNNs model for tire defect classification
by combining 5 CNNs trained on different dataset [15]. The
model achieved satisfied classification accuracy at the cost
of complex network structure and tedious training process.
Zhang et al. [16] proposed a supervised feature embed-
ded deep learning method for tire defects classification by
combining regularization techniques to boost performance.
To perform a pixel-wise detection, a tire defect detection
method was introduced based on a fully convolutional net-
work (FCN) [17] in which defect region can be segmented at
pixel level.

Existing DNNs based methods show attractive defect
segmentation or defect classification results and has
great developmental potentialities. Nevertheless, intelligent
manufacturing industry requires realizing end-to-end tire
defect segmentation and classification in tire visual inspec-
tion application. It is still an unsolved challenge.

To target the aforementioned problems, in this work a novel
tire visual inspection model is investigated for automated tire
visual inspection. We observe that in literature many effi-
cient implementations employ a two ormulti-branch architec-
ture [18], [19].We perform an end-to-end tire defect detection
by combining an optimized SSN for pixel-wise segmenta-
tion and a compact CNN classifier for classification. In the
SSN module, we choose VGG16 as the base model and
designed a novel network for defective region pixel-wise pre-
diction. Predicted defective regions are cropped from original
images and input to the compact CNN classifier module for
re-targeting defect classification.

The main contributions of the paper are as follows.
1. We propose a novel and concise two-branch architecture

Concise-SSN for pixel-wise tire visual inspection in radio-
graphic images.

2. Different from the existing methods, the proposedmodel
can achieve the end-to-end pixel-wise defect segmentation
and classification.

3. We introduce an unsupervised tire texture image seg-
mentation method based on Gabor filter and fuzzy c-means
clustering.

The rest of this paper is organized as follows. Section II
introduces the state-of-the-art semantic segmentation net-
work and the proposed approach. The details of the exper-
imental setup and performance comparison are given in
Section III. The result analysis is carried out in Section IV.
Finally, conclusions and further work are delivered in
Section V.

II. RELATED WORK
A. PRINCIPLE OF TIRE RADIOGRAPHICAL IMAGING AND
INSPCTION
In tire industry, radiographic imaging is widely used for
visual inspection. Due to the difference of tire tread, sidewall,
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FIGURE 1. Conventional local feature descriptions for tire defects.

edge in materials, density and thickness, the different absorp-
tion degree of X-ray in different positions of tire makes
its imaging present different intensity. Compared with other
visual inspection applications like fabrics, paper and IC etc.,
conventional inspection methods based on statistics, tem-
plate, texture, and motif-based etc. are not satisfactory for
intelligent manufacturing.

There are certain major difficulties in intelligent tire defect
detection due to the different texture structures and varied
forms defect features of tire radiographic images [7]. Firstly,
to perform flexible manufacturing a variety of tires with
different tread depths and patterns should be produced via
the same production line, meaning that intelligent visual
inspection should be robust to different textures of different
types of tires as well as texture difference between sidewall
and tread. However, visual inspection system should not be
too sensitive to normal deformation of texture caused by
viscoelasticity of composite polymer. Secondly, tire defect
detection is particularly challenging due to the large number
of defect categories which located in complex anisotropic
textures. To make it worse, different from natural scene
understanding, color space provides guarantee for feature
extraction and expression, tire radiographic images are 8-bit
gray level, not to mention the features of the same kind of
defects are in varied forms as shown in Fig. 5.

Therefore, the intelligent tire defect detection problem is
to automatically detect and recognize the possible defects
of multiple types from complex feature space in anisotropic
multi texture image. For conventional computer vision tech-
niques, it is an ill-posed problem that the overall system
becomes complicated, expensive, and may not be robust to
flexible manufacturing. Fig. 1 shows the representation of

conventional features on tire anisotropic multi texture and
various defects. The conventional artificial features of differ-
ent types of defects varies significantly such that conventional
methods need different features for different defects, which is
not conducive to automatic detection.

B. SEMANTIC SEGMENTATION NETWORKS
As one of the key problems in the field of computer vision,
semantic segmentation is playing an increasingly important
role in the complete understanding of the scene in a variety of
applications including object recognition, autonomous driv-
ing, virtual reality, human-computer interaction etc. Since
2015, the state-of-the-art semantic segmentation networks,
e.g. FCN [20], SegNet [21], U-Net [22], Mask R-CNN [35]
and their successors, have been demonstrated for its effec-
tiveness in end-to-end prediction and have been successfully
applied to real-world applications.

Considering real-world applications, runtime is becom-
ing an essential factor in semantic segmentation architec-
tures. Among the state-of-the-art semantic segmentation
DCNNs, SegNet utilizes the joint encoder-decoder module
architecture and pooling indices strategy to reduce network
parameters and the computational cost. Derived from simple
classification DCNN method, e.g. VGG16 [23], the encoder
module is topologically identical to its convolutional lay-
ers to extract DCNN features. The fully connected layers
of VGG or ResNet are removed to make it smaller. The
decoders use the pooling indices strategy received from the
corresponding encoder to perform non-linear up-sampling of
their input feature maps. The reduction of parameters enabled
end-to-end training.
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To perform real-time online tire inspection, efficacy and
efficiency in terms of memory and computational time are
two important requirements for the system. SegNet, as one
of the most efficient semantic segmentation models, achieves
high scores for road scene understanding on large and
well-known datasets. Most importantly, it only stores the
max-pooling indices of the feature maps and uses them in
its decoder network such that it is more efficient than those
architectures which store the encoder network feature maps
in full to achieve good performance.

Real-time semantic segmentation has recently enjoyed sig-
nificant gain in popularity in real-world applications because
of its performance [24]–[26]. Although all the tricks adapted
by semantic segmentation networks improve performance
on challenging benchmarks, it is unfortunately difficult to
disentangle the key design factors necessary for real-life real-
time applications to achieve satisfactory performance even
with the help of high-end GPUs. For most such applications,
how to keep efficient inference speed and high accuracy with
high resolution images is a critical question. Another prob-
lem faced by applications, such as medical diagnosis, indus-
trial visual inspection etc., is that samples from a real-life
application may not always evenly distribute among classes,
in other words, they are brimming with imbalanced datasets
or there are not enough samples for a certain class in the
neural network learning process. SegNet was designed to
perform efficient road and indoor scene understanding with
evenly distributed nature classes. In the following section,
we will reveal the inappropriateness of conventional SegNet
model in tire visual inspection. For the major difficulties
mentioned above in intelligent tire inspection and real-time
semantic segmentation applications, we therefore cope with
the intelligent tire inspection problem by construct a novel
and concise DCNN architecture based on semantic segmen-
tation and reveal its pros and cons. Different from the existing
methods, we probe into employing a two-step lightweight
network architecture to provide sufficient receptive field for
real-time end-to-end tire defect inspection at pixel level.

III. PROPOSED METHOD
A. OVERVIEW
Inspired by the SegNet, in this work we propose a con-
cise encoder-decoder architecture for tire radiographic image
feature learning. The problem space is different from road
and indoor scene understanding such that we probe into
designing a more compact and effective network structure
by removing layers that have little influence on tire radio-
graphic image feature learning to perform the efficiency and
accuracy of real-time detection. The encoder network of
SegNet consists of 13 convolutional layers which correspond
to the first 13 convolutional layers in the VGG16 network
to obtain the feature maps. The fully connected layers from
the VGG16 network which consists of about 90% of the
parameters of their entire network are discarded to be able
to train the network using the relevant training set using

SGD optimization. This would therefore significantly reduce
memory consumption and improve inference time without
sacrificing performance. Since input resolution and network
depth are main factors for runtime, to further improve model
efficiency to make it suitable for such type of applications, a
shallower andmore efficient network structure is constructed.

In this section, we first describe our preprocessing method
for simplifying problem space and then detail the specific
network architecture and configurations of Concise-SSN in
Section III C.

B. TIRE RADIOGRAPHIC IMAGE PREPROCESSING
METHOD
The structure of tire, especially radial tire, is complex, which
is composed of multi composite materials which determine
the multi texture distribution structure of tire radiographic
image. This multi texture background and high resolution
of input images brings challenges to the design of a unified
robust and automatic tire visual inspection algorithm. To alle-
viate this problem, we first propose a texture segmentation
method based on Gabor filter and fuzzy c-means clustering
to segment different regions of tire radiographic images. Seg-
mented image blocks are then input to the proposed tire visual
inspection model for further detection. This trick would how-
ever significantly reduce the complexity and computation of
the problem space in this application.

C. CONCISE-SSN NETWORK ARCHITECTURE
The proposed Concise-SSN network architecture is designed
to be efficient for intelligent real-time tire visual inspection
at pixel level. We employ a two-step lightweight network
architecture, namely pixel-wise defective region semantic
segmentation module and defect classifier module consider-
ing the characteristics of such applications. Fig. 2 presents
the proposed Concise-SSN network architecture for defect
inspection in tire radiographic image. In defective region
semantic segmentation module, a concise encoder network
and a corresponding decoder network is applied for pixel
wise defective region prediction. The encoder network pro-
duces these low-resolution representations of input tire gray
level images. The role of the decoder network is to map the
low-resolution encoder feature maps to full input resolution
feature maps for pixel-wise predication. And thus, the pixel-
wise defective region semantic segmentation module solves
a lower complexity binary classification problem. Defective
regions are then cropped as input for further classification in
a shallow CNN.

Due to the different adaptability and characterization of
different kinds of defects to the network architecture, less
convolution usually leads to worse semantics and more noise,
while too many convolutions result in lower resolution and
poor perception of details. An appropriate network structure
is essential to improve the efficiency of defect segmenta-
tion. Too many network layers may lead to too much com-
putation and feature overlearning. For the defective region
semantic segmentation module, three network architectures
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FIGURE 2. The proposed Concise-SSN Network architecture for defect inspection in tire radiographic image.

FIGURE 3. The detailed architecture of the CNN classifier module.

are designed for comparison. The parameter settings are given
in Table 1. The encoder network performs convolution with
a filter bank to produce a set of feature maps. Identical to
SegNet in which the encoder network consists of 13 con-
volutional layers, 5 pooling layers which correspond to the
VGG16 network, we apply the first 7 convolutional layers
as in VGG16 and followed with 3 pooling layers aiming at
allowing for real-time computation. The 3 max-pooling lay-
ers are used to achieve more translation invariance for robust
classification. Similarly, fully connected layers of VGG16 are
removed to make the encoder smaller and easier to train.

The decoder is a symmetric network of the encoder net-
work. It is used to upsample its input feature maps using
the memorized max-pooling indices from the corresponding
encoder feature maps. The feature maps are convolved with
a trainable decoder filter bank to produce dense feature maps
from sparse feature maps.

The dense feature maps of the decoder are input into a
trainable soft-max layer as a classifier which classifies each
pixel independently. As shown in Fig. 2, considering the goal
of the defective region semantic segmentation module is to
predict defective regions, such that the output of the softmax
classifier is a two-channel image of probabilities, namely the
output of semantic segmentation module are defect-free and
defective classes.

For further defect category classification, in the following
compact CNN classifier module predicted defective regions
are cropped from original images. If the input resolution is too
large, the number of neurons in the full connection layer will
increase, and the network parameters will increase; on the

other hand, if the input resolution is too small, it will affect the
field of vision and defect feature extraction of the network.
We have made statistics on the geometric dimensions of tire
defects in the data set. The result shows that the defect width
and height are within the range of 20 pixels to 120 pixels [15].
Therefore, in order to maintain the vision field and network
performance, we mapped into them to a fixed-size of 128 ×
128 resolution as input for re-targeting defect classification.
In the classifier module, 4 convolution layers, 3 pooling
layers and 2 full connection layers are employed. The detailed
architecture of the CNN classifier module is illustrated in
Fig. 3.

IV. EXPERIMENTS AND DISCUSSION
In this section, we perform experiments on tire radiographic
image dataset and present experimental results to validate
the effectiveness of the proposed model. We investigate the
performance of our proposed Concise-SSN Network with the
state-of-the-art segmentation networks and DCNNs. In the
following, we first introduce the implementation details, the
tire radiographic image dataset, the training and implementa-
tion details the proposed architecture, then conduct the pixel
accuracy (PA), mean pixel accuracy (mPA), intersection over
union (IoU), mean intersection over union (mIoU) and classi-
fication accuracy (CA) results on the same dataset compared
with the existing algorithms.

A. IMPLEMENTATION DETAILS
In this work, all the experiments were implemented on the
MATLAB 2019a and conducted with Intel(R) Core (TM)
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TABLE 1. Parameters for three segmentation modules.

i7-8700 CPU @ 3.20GHz 3.19GHz processor, 8.0 GB RAM
and NVIDIAGEFORCEGTX 1080ti GPU. The initial learn-
ing rate is set to 0.001. For quantitative evaluation, three com-
monly used image segmentation evaluation metrics, namely
PA, IoU, and CA, are applied to evaluate the segmentation
effect of each compared algorithm over all classes. PA is the
ratio of the correct segmented pixel to the total pixel, which
reflects the accuracy of single category defect segmentation.
As an evaluation index of semantic segmentation, IoU is the
ratio of intersection and union of ground truth and predicted
segmentation. CA is used as the evaluation standard of clas-
sification network.

B. DATA AUGMENTATION, PREPROCESSING AND
DATASET DESCRIPTION
The original tire radiographic images are of high resolution
(11400 × 2469 pixels) with 8-bit gray levels captured from
a variety of different tires in a real-life production line.
Preprocessing stage is composed by three main operations
including down-sampling, texture segmentation and image
blocking. Firstly, image down-sampling is implemented to
reduce computational complexity and improve efficiency.
Secondly, texture segmentation is performed using Gabor
wavelet and fuzzy clustering method. Thirdly, test images
are divided into blocks based on texture segmentation results.
The complexity of problem space is reduced such that theo-
retically it helps to achieve better inspection results.

Dataset is one of the most critical aspects of successful
deep learning applications. Normally, limited labeled data
leads to overfitting, whichmeans themodel will not be able to
generalize to unseen examples. This can be mitigated by data
augmentation, which effectively increases the amount and
diversity of data seen by the network. Limited by industrial
production conditions, the dataset for semantic segmentation
architecture is limited. To improve the generalization ability
and detection accuracy of the network, data augmentation
techniques are applied including random resizing between
0.2 to 4, rotation, scale, translation and stretch as shown in
Fig. 4. After data augmentation, the dataset reached 3234
image samples with high label quality.

Among them the 3234 test images used in this work,
there are 738 tread-impurity samples, 1011 sidewall-impurity
samples, 468 sidewall-overlap samples, 549 sidewall-split,
234 defect-free samples for tread and sidewall respectively,
in which 70% are randomly chosen as training set, 20% are
randomly chosen as test set and 10% are randomly chosen

FIGURE 4. Sample data augmentation techniques implied.

as validation set. High-quality pixel labels for the training set
and validation set are available.

For texture segmentation, 40 groups of Gabor filters in
8 directions are designed to filter the test image, from which
the filter directions and parameters with strong class rep-
resentation ability are preselected, as shown in Fig. 6. Six
groups of filter banks with σ = 1.0, σ = 1.5, σ = 2.0,
σ = 2.5, σ = 3.0 and σ = 4.0; ω = 1.0, ω = 1.5, ω = 2.0,
ω = 2.5, ω = 3.0 and ω = 3.5; Gabor filter directions 0,
π /4, π /2 and 3π /4 were used for cross comparison. Experi-
mental results on our dataset indicated that with Gabor filter
directions 0, π /4, π /2 and 3π /4, the Gabor filter banks have
strong class representation ability and can achieve better seg-
mentation effect with fewer filters. These parameters can thus
effectively reduce the Gabor feature dimension. A detailed
illustration on texture segmentation can be found in Appendix
A. Fig. 11 shows the segmentation results of test images in the
test set based on Gabor filter texture analysis using different
parameters. Fig. 12 shows texture segmentation result of the
proposed method.

C. TRAINING AND IMPLEMENTATION DETAILS
In the later comparative experiment, the networks U-net [27],
SegNet [28], Faster R-CNN [29], Mask R-CNN [35] and
FCN [17] used for comparison follow the same training strat-
egy as our method. The networks were trained using Adam
optimizer with mini-batch of size 5. Our proposed segmen-
tation network is migrated from convolutional pooling layer
parameters of vgg16 pre-trained on ImageNet as the initial
parameters of our encoder network. The samemigration strat-
egy is used in the feature extraction part of the networks for
comparison.

The cross-entropy loss function is used as the objective
function to train the proposed network. In order to improve
the training speed and give consideration to the quality of
training, we achieve the benefits of decaying the learning rate
during training. The decay rate is set to 0.1, and the initial
learning rate is to 0.001 to accelerate convergence. When the
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FIGURE 5. Defective samples, from top to bottom: sidewall-impurity, tread-impurity, sidewall-split and
sidewall-overlap.

FIGURE 6. Experimental results on test image using 40 Gabor filters with
different scales and orientations.

FIGURE 7. Schedules for the learning rate during the training process.

loss does not decrease for 3000 iterations, the new learning
rate is updated as 0.1 × lr. At this time, when the val-loss
of the network does not decrease for 5000 iterations, stop
network training. Fig. 7 shows schedules for the learning rate
during the training process.

It is worth noting that, in the comparative experiment,
label settings of the SegNet [28] and Mask R-CNN [35] are
different from that of our method. The former sets five types

TABLE 2. Training result of the state-of-the-art networks and ours.

of labels, namely, impurity, sidewall split, sidewall overlap,
tread and sidewall background. In Faster R-CNN [29], four
kinds of rectangular box labels, namely tread impurity, side-
wall impurity, sidewall split and sidewall overlap, are used.
We show the training result in Table 2.

According to the training results shown in Table 2, the
proposed network has less network parameters and shorter
training time than the others. The detection time for tire
radiographic test set images is 0.132s per image on average,
which can meet the needs of online tire detection. In order
to verify the effect of texture segmentation preprocessing on
defect semantic segmentation, we compared the samples after
texture segmentation with the original samples without tex-
ture segmentation. 200 original tire images are selected as test
samples, which contain 50 defects of 4 types. Experimental
results show that the average test time for a single tire is
3.76s in the dataset without preprocessing however, for the
preprocessed dataset, the average test time of a single tire is
only 2.85s.Moreover, themPA of the proposedmethod on the
dataset preprocessed by texture segmentation is 1.21% higher
than that of the dataset without preprocessing. These results
indicate that the preprocessing method can reduce the com-
putational complexity and, improve the detection efficiency
and network performance.
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TABLE 3. Comparative experimental results of the three architectures.

For the defect classifier module, the classification network
uses random normal distribution to initialize the network
weight.We set iteration to 1000 times. In the network training
process, batch size, as the most important parameter of net-
work, affects the training and performance of network.With a
small batch size, the training is difficult to converge. With the
increase of batch size, the speed of processing is faster. How-
ever, the larger batch size increases the calculation burden and
it easily falls into the local optimal solution, which affects
the detection accuracy of the model. To explore the optimal
batch size, we use different batch sizes to train the network.
The change of test set CA with batch size is shown in Fig. 8.
According to the experimental results, we choose batchsize
= 32. To prevent network over fitting, we set Dropout = 0.5.

D. EXPERIMENTAL RESULTS
We evaluate overall performance of the proposed scheme
on our test set. We validate the architecture of defective
region semantic segmentation module through comparison
experiment. Comparison experiments with the state-of-the-
art DCNN and semantic segmentation methods are per-
formed.

1) SEMANTIC SEGMENTATION MODULE PARAMETER
VALIDATION
Based on the baseline model, we first perform a comparison
experiment on the three semantic segmentation module archi-
tectures that designed for comparison to evaluate the impact

FIGURE 8. The CA of test set with different batch Size.

of each choice in the segmentation performance, as shown in
Table 1.

We use the same data set to train the three models respec-
tively. We evaluate and investigate the impact of different
modules on each type tire defects respectively. Table 3 shows
the comparative experimental results of the three architec-
tures and ground truth segmentation. We can observe that
the completeness of defective regions segmented by Model
A is poor for sidewall impurity and sidewall split defects.
Most importantly, as the features extracted are not enough,
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FIGURE 9. The result of comparative experiments between the proposed Concise-SSN and the state-of-the-art deep learning methods. From top
to bottom: Result on sidewall impurity, tread impurity, sidewall split and sidewall overlap defects respectively.

TABLE 4. Semantic segmentation accuracy.

Model A does not detect the defects of tread impurities and
sidewall overlap defects. On the other hand, the complete-
ness of defective regions segmented by Model B is also
poor for two kinds of cord defects. Model C has a good
detection effect for all defect categories, the impurity defects
segmented are slightly oversaturated than the ground truth.
To comprehensively conclude our results, it could be regarded
that Model C outperforms the other two models in tire
defective region feature detection and extraction for semantic
segmentation.

As shown in Table 4, segmentation accuracy between
ground truth and the results of semantic segmentation module
based on Model C is assessed by employing comparison
metrics of PA and IoU.

The module reaches satisfactory results in PA, especially
for impurity defect it achieves the highest scores as compared
to other defects. It can be seen from the metrics that the
defective semantic segmentation module can satisfy real-life
tire defect segmentation application.

2) COMPARATIVE STUDY
In order to evaluate the defect segmentation and classification
performance of the proposed Concise-SSN, we compare the
semantic segmentation and classification performance of our
method with that of existing methods respectively.

The result of comparative experiments between the pro-
posed Concise-SSN and conventional state-of-the-art deep
learning methods (U-net [27], FCN [17], SegNet [28], Mask
R-CNN [35], Faster R-CNN [29]) is shown in Fig. 9.

As can be seen from Fig. 9, the effect of end-to-end defect
segmentation with single SegNet is poor which is because
the gray value of impurity defects is close to the tread back-
ground. In the process of pixel semantic expression with a
single SegNet, two kinds of defects, i.e. sidewall impurity
and sidewall overlap, were mistakenly classified as tread
background, resulting in the wrong classification of defects.
Even though U-net has a good performance in the segmen-
tation of medical images [27], the effect of using it in the
detection of tire defects is unsatisfactory, especially for the
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TABLE 5. Comparison results of tire defect classification.

FIGURE 10. The comparative experimental results using PA as evaluation
index.

tread impurities defects and sidewall overlap defects. Faster
R-CNN based detection method uses the region recommen-
dation network (RPN) to recommend candidate regions, and
then using the bounding box regression to modify the anchors
to obtain accurate proposals. Through the ROI pooling layer,
the input feature maps and proposals are collected. After
synthesizing these information, the proposed featuremaps are
extracted and sent to the subsequent full connection layer to
determine the category. As shown in Fig. 9, Faster R-CNNhas
a good effect on tire defect target detection, and can achieve
the classification of defects in the target area. However, its
detection accuracy is low, and most importantly, it cannot
achieve the pixel-wise segmentation of defects. Compared
with SegNet, Mask R-CNN has better result on all defect
categories and background segmentation. Even though FCN
andMaskR-CNNhave better segmentation results thanU-net
and SegNet, further investigation is need for this real-life
application.

Fig. 10 shows the comparative experimental results using
PA as evaluation index. Consider that Faster R-CNN can’t
achieve pixel level target segmentation such that it can’t be
evaluated with PA. In Fig. 10, the data of Faster R-CNN
method is the correct detection accuracy of defects. Among
these methods, single SegNet method achieves worst the
segmentation results in tread impurity, sidewall impurity
and sidewall overlap, it achieves 42.2% for sidewall over-
lap defects. Mask R-CNN can achieve the correct semantic
expression of the background texture and defects. In the
detection of sidewall impurity, the PA value of Mask R-CNN

reaches 91.1% and the mPA value reaches 80.13%, but the
segmentation performance is not as good as our method, the
mPA value is 4.9% lower than our method. Faster R-CNN’s
performance is slightly better than that of single SegNet
method. U-net performs slightly better than the previous two
approaches and achieves 82.12% for tread impurity defects.
Our method, by contrast, has the best performance among the
five methods, it achieves 92.32% in PA for tread impurity
defects and 90.13% for sidewall impurity, 72.15% for side-
wall overlap and 85.90% for sidewall split defects respec-
tively, and therefore it achieves the mPA score of 85.13%,
the mIoU score of 77.34%. FCN achieves good detection
accuracy (75.2%) on sidewall overlap defect segmentation,
which is 3.05% higher than our method. However, for the
other three kind of defects, the segmentation accuracies are
not as good as that of ours, and its class averagemPA is 2.12%
lower than our method.

From the above results, we can also find that compared
with the above methods, the segmentation accuracy of impu-
rity defects is higher than that of cord defects. The overall
segmentation accuracy of the proposed method is better than
that of other methods.

To evaluate the classification performance of the compact
CNN classifier module proposed in this paper, we com-
pared the method with the commonly used machine learn-
ing based image classification methods, including BP neural
network (BP) [30], support vector machine based on hog
features (HOG + SVM) [31], kernel principal component
analysis and neural network (KPCA + BP) [32], artificial
neural network based on wavelet decomposition features [33]
(Wavelet + ANN) and AlexNet [34]. Table 5 shows the
comparison results of classification accuracy. As shown in
Table 5, although traditional methods use artificial features
to represent prior knowledge and then combine with machine
learning to classify defects, they have lower classification
accuracies. The reason is that, as previously described, there
are many kinds of tire defects, and the features of various
defects are quite different within and between categories,
such that it is difficult to achieve a better classification effect
with a single artificial feature. The proposed compact CNN
classifier module in this paper realizes end-to-end defect
classification and achieves a classification accuracy as high
as 96.5%. More experimental results of the proposed method
are shown in Fig. 13 in Appendix B.

V. CONCLUSION
In this paper, we proposed a novel defect inspection
model Concise-SSN which is a concise two-step approach
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FIGURE 11. Clustering experimental results on test image using Gabor
filters with different parameters. (a) Experimental results using different
σ (ω = 1.75); (b) Experimental results using different ω (σ = 2).

combining semantic segmentation module and lightweight
CNN defect classifier module for intelligent tire defect
inspection application. Considering the anisotropic and com-
plex multi texture characteristics of tire radiographic image,
for preprocessing, we proposed a texture segmentation
method based on Gabor filter and fuzzy c-means clustering
which significantly reduce the complexity and computation
of the problem space in this application. The concise seman-
tic segmentation module used an encoder-decoder frame-
work for pixel wise defective region prediction, in which
the encoder network produces these low-resolution represen-
tations of input tire gray level images. The corresponding
decoder map the feature maps to full input resolution fea-
ture maps for pixel-wise predication. The proposed compact
CNN classifier module classifies defective regions. From the
experiments on our dataset, the proposed model achieved
satisfactory performance compared to the existing state-of-
the-art models. The results of comparative experiments also
demonstrated the efficiency and effectiveness of our model to
provide a real-time reliable automatic tire defect inspection
scheme.

FIGURE 12. Experimental results on test images using the proposed
method. (a) and (b) Test image; (c) and (d) Feature image filtered by
Gabor filters; (e) and (f) Final segmentation result after clustering.

APPENDIX A
Two-dimensional Gabor function g(x, y) can be defined as

g(x, y)=
(

1
2πσxσy

)
exp

(
−
1
2

(
x2

σ 2
x
+

y2

σ 2
y

)
+ 2π jωx

)
(1)

For a given gray image I (x, y), the two-dimensional Gabor
wavelet transform can be defined as

Wmn =

∫∫
I (x, y)g∗mn(x − x1, y− y1)dxdy (2)

where ∗ denotes the conjugate complex, (x1, y1) is a pixel
in the image. The non-orthogonality of Gabor wavelet deter-
mines the information redundancy among the filtered images.
To reduce redundancy, multi-channel filtering is designed.
Let Ul and Uh be the range of center frequency from low
to high, the ratio of the amplitude growth of the filter’s two
consecutive spectrum half peaks is a, the half peak amplitude
of the minimum filter is t, then the width between Ul and Uh
is

uh − ul = t + 2at + 2a2t + · · · + 2aS−2t + aS−1t (3)

namely

uh − ul =
a+ 1
a− 1

(aS−1 − 1)t (4)

where K denotes the number of orientations, S is the number
of scales used in multi-scale decomposition.

For a Gaussian function with given σ , its half peak value is
σ
√
2 ln 2, then the maximum half peak value of Gabor filter

can be expressed as

aS−1t = σu
√
2ln2 (5)

We have

uh = aS−1ul (6)
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FIGURE 13. From top to bottom: Result on sidewall impurity, tread
impurity, sidewall split and sidewall overlap defects respectively.

The maximum filter parameter σu can be given by

σu =
a− 1
a+ 1

uh
√
2ln2

(7)

TheGabor filter bank θ = π/K can be obtained by rotating
and scaling the Gabor function g(x, y), K indicates the total
number of directions. And the response of Gabor filter banks
can contact each other without overlapping in the upper half
of the spectrum, thus we have

(u− uh)2

2ln2σ 2
u
+

v2

2ln2σ 2
v
= 1 (8)

and

tg
θ

2
=
u
v

(9)

The maximum filter parameters σv can be given as follows

σv = tg
θ

2

√
u2h
2ln2
− σ 2

u (10)

For (7) and (10), the standard deviation of themth filter can
be obtained by changing uh to um(m = 1, 2, · · · , S)

σmu =
a− 1
a+ 1

am−1ul
√
2ln2

(11)

σmv = tg
θ

2

√
(am−1ul)2

2ln2
− σ 2

mu (12)

In (1), the relationship between the standard deviation σ of
Gaussian function along two coordinate axes and the central
frequency ω of filter is

Wt
√
2σ ≈

√
2π/ω (13)

where Wt is Gabor wavelet time window. When the param-
eter σ is fixed, the center frequency of frequency domain is
inversely proportional to the window width of time domain.
If the real domain window is small, the center frequency of
the Gabor filter is large (the frequency domain window is
large). The filter can extract the high-frequency features to
highlight the details of the image such that it is vulnerable to
noise interference and vice versa.

Considering the arrangement of steel cord of radial tire,
the complexity of calculation and the feature of image tex-
ture direction, the optimal parameters of Gabor filter bank
corresponding to the segmented image are obtained through
experiments. The direction parameters of Gabor filter are
determined as 0, π / 4, π / 2 and 3 π / 4, that is, the direction
parameter k= 4. After obtaining the texture image features in
all directions through filter banks, the image features are clas-
sified by fuzzy clustering method, and then the segmentation
results are obtained.

Assuming that every sample xj belongs to a certain class,
its membership function is equivalent to
P̂(ωi|xk , θ̂ )

=
(xk |ωi, θ̂i)P̂(ωi)∑c

j=1 P(xk |ωj, θ̂j)P̂(ωj)

=

| 6̂i |
1/2 exp

[
−

1
2 (xk − µ̂i)

t 6̂
−1
i (xk − µ̂i)

]
P̂(ωi)∑c

j=1 | 6̂j |
1/2 exp

[
−

1
2 (xk − µ̂j)

t 6̂
−1
j (xk − µ̂j)

]
P̂(ωj)

(14)
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where

P̂(ωi) =
1
n

n∑
k=1

P̂(ωi|xk , θ̂ ) (15)

where θ = (θ1, · · · , θc)t is the unknown parameter vector, θ̂
is the maximum likelihood estimation of θ , P(ωi) is the prior
probability of the class ωi, P̂(ωi) is the maximum likelihood
estimation of P(ωi), µi is the unknown mean vector of the
class i, and µ̂i is the maximum likelihood estimation of µi.

The goal of fuzzy c-means clustering algorithm is to min-
imize the global cost function

Jfuz =
c∑
i=1

n∑
j=1

[
P̂(ωi|xj, θ̂ )

]2
‖xj − µi‖2 (16)

where b is a free parameter used to control the mixing degree
of different categories. When b = 0, Jfuz is just the sum of
squares error criterion, where each sample belongs to only
one cluster. When b > 0, the criterion allows each sample to
belong to multiple clusters.

The clustering membership function of each sample point
is normalized

c∑
i=1

(ωi|xj) = 1, j = 1, . . . , n (17)

,
Let P̂j denote the prior category probability P̂(ωi). when

solving (Jfuz reaches the minimum), there are

∂Jfuz/∂µi = 0 (18)

∂Jfuz/∂Pj = 0 (19)

Therefore, the solution is as follows

µi =

∑n
j=1[P̂(ωi|xj)]

bxj∑n
j=1[P̂(ωi|xj)]b

(20)

P̂(ωi|xj) =
(1/dij)1/(b−1)∑c
r=1(1/drj)1/(b−1)

(21)

dij = ‖xj − µi‖2 (22)

Compared with the traditional clustering methods, the
fuzzy c-means clustering algorithm improves the conver-
gence performance.

Fig. 11 shows the segmentation results of test images in the
test set based on Gabor filter texture analysis using different
parameters. It is shown that when σ = 2 and ω = 1.75 Gabor
filter banks have strong texture class representation ability,
and can achieve satisfactory segmentation effect with fewer
filters, thus effectively reducing the Gabor feature dimension.

It can be seen from Fig. 12 (c) and (d) that Gabor filter
banks can accurately segment different textures of tire radio-
graphic image using the selected parameters. As shown in
Fig. 12 (e) and (f), after fuzzy c-means clustering a binary
segmentation can be achieved.

APPENDIX B
See Figure 13.
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