IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 10, 2020, accepted June 15, 2020, date of publication June 17, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003160

Semantic SLAM With More Accurate Point Cloud
Map in Dynamic Environments

YINGCHUN FAN“12, QICHI ZHANG "1, SHAOFENG LIU“, YULIANG TANG ",
XIN JING 2, JINTAO YAO“2, AND HONG HAN""12, (Membetr, IEEE)

1School of Artificial Intelligence, Xidian University, Xi’an 710071, China
2Shaanxi Key Laboratory of Integrated and Intelligent Navigation, Xi’an 710071, China

Corresponding author: Hong Han (hanh @mail.xidian.edu.cn)

This work was supported by the open fund of Shaanxi Key Laboratory of Integrated and Intelligent Navigation under Grant

SKLIIN-20180102 and Grant SKLIIN-20180107.

ABSTRACT Static environment is a prerequisite for most existing vision-based SLAM (simultaneous
localization and mapping) systems to work properly, which greatly limits the use of SLAM in real-world
environments. The quality of the global point cloud map constructed by the SLAM system in a dynamic
environment is related to the camera pose estimation and the removal of noise blocks in the local point
cloud maps. Most dynamic SLAM systems mainly improve the accuracy of camera localization, but rarely
study on noise blocks removal. In this paper, we proposed a novel semantic SLAM system with a more
accurate point cloud map in dynamic environments. We obtained the masks and bounding boxes of the
dynamic objects in the images by BlitzNet. The mask of a dynamic object was extended by analyzing
the depth statistical information of the mask in the bounding box. The islands generated by the residual
information of dynamic objects were removed by a morphological operation after geometric segmentation.
With the bounding boxes, the images can be quickly divided into environment regions and dynamic regions,
so the depth-stable matching points in the environment regions are used to construct epipolar constraints to
locate the static matching points in the dynamic regions. In order to verify the preference of our proposed
SLAM system, we conduct the experiments on the TUM RGB-D datasets. Compared with the state-of-the-art

dynamic SLAM systems, the global point cloud map constructed by our system is the best.

INDEX TERMS Dynamic environment, global point cloud map, noise blocks, semantic SLAM.

I. INTRODUCTION
Simultaneous localization and Mapping (SLAM) plays an
important role in the field of autonomous robots and
unmanned vehicles [1]. The main purpose of SLAM is to use
sensors such as cameras to construct the environment model
without prior knowledge of the scene and to estimate the pose
and motion trajectory of the carrier itself [2]. Recent years
have seen the great development of visual SLAM, which
can be classified into feature-based indirect SLAM systems
[3]-[5] and direct ones based on photometric error [6], [7].
A common assumption for most of these visual SLAM
systems is that the environment is static, which greatly limits
the practical application of these systems. There are many
dynamic objects in the real environment, such as pedestrians,
vehicles, etc. When these dynamic objects enter the camera’s
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field of view, the pose estimation of the camera is directly
interfered [8], and information of these dynamic objects will
be preserved in the constructed map [9]. It’s impossible to
use this kind of contaminated map for robot navigation or
human-computer interaction.

The main idea of these SLAM systems work in the dynamic
environments is to classify the static and dynamic points in
the environment, using the static points to estimate the pose
of the camera and construct the environment map [10]. The
dynamic points can be directly discarded or tracked according
to the requirements of the task.

With the development of deep learning, great progresses
have been made in target recognition and segmentation,
so some researchers have combined the semantic information
of the objects in the environment with SLAM [11]-[15]. The
main idea of the current semantic SLAM systems working in
the dynamic environment is to define the potential dynamic
objects in advance, obtaining semantic information of the
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objects in images through a deep CNN, and then combine
the semantic with geometric information to segment dynamic
regions accurately. Finally, the systems use the static parts of
the environment to estimate the camera pose.

In this paper, we proposed a novel semantic SLAM system
with more accurate point cloud map in dynamic environ-
ments. The semantic information of our proposed SLAM sys-
tem is provided by BlitzNet [16], which can simultaneously
generate bounding boxes and masks of the potential dynamic
objects, such as people. In order to remove the noise blocks
formed by the leaked information of the dynamic objects,
we extend the masks of the dynamic objects by the depth
statistical information of the masks in the bounding boxes
of the dynamic objects. Then a geometric segmentation is
operated on the depth image. The residual information of the
dynamic objects which is still not included in the extended
masks can be segmented as some islands, and we can delete
these islands by a simple morphological operation to obtain
the clean local point map. In the feature matching stage,
we only use depth-stable feature points, which can effectively
eliminate the influence of missing depth values and a sudden
change of depth values. The images are divided into environ-
ment regions and dynamic ones by the bounding boxes of the
dynamic objects. The static matching points in the dynamic
regions can be located by the epipolar constraint constructed
by inliers in the environment regions. The main contributions
of this paper are as follows:

1) We extend the mask of the dynamic object to include
more information about the object.

2) A bidirectional search strategy is proposed to track the
bounding box of the dynamic object.

3) We integrate our approach with ORB-SLAM?2 sys-
tem [5]. Evaluations and method comparisons are per-
formed with the TUM RGB-D dataset [17]. Our SLAM
system can obtain clean and accurate global point cloud
maps in both highly and lowly dynamic environments.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III presents our proposed
method. Section IV shows the experiment results and discus-
sion. Section V, finally, concludes the work.

Il. RELATED WORK

A. DYNAMIC SLAM

CoSLAM [18] divides points into four types: static, dynamic,
false and uncertain based on the assumption that the projected
position of a static point in space follows a Gaussian distri-
bution, and the type of the point can be changed according to
the motion state of the object. At the same time, the system
adopts a multi-camera combination observation strategy to
effectively deal with the situation that the number of the
static points captured by a certain camera is small or does not
exist at all. Evers and Naylor [19] proposed a GEM-SLAM
based on probability hypothesis density filters for dynamic
scenes, the method probabilistically anchors the observer
state by fusing the observer information inferred from the
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scene with the observer motion reports. Bahraini et al. [20]
proposed an approach to segment and track multiple
dynamic objects based on the multilevel- RANSAC algo-
rithm. DMS-SLAM [21] uses the sliding window model to
achieve feature matching between two discontinuous image
frames, and adopts the Grid-based Motion Statistics (GMS)
algorithm [22] to filter the initial feature matching points.
This approach not only eliminates the impact of the dynamic
objects, but also has more feature matching points than
ORB-SLAM?2, which has a great advantage for estimating
camera pose accurately.

RGB-D camera can provide both vision and depth infor-
mation of the scene and is convenient to install. In recent
years, many researchers have used RGB-D camera to study
SLAM in dynamic environment. Sun et al. [23] proposed a
motion removal approach based on RGB-D data as a prepro-
cessing stage of DVO SLAM [24] to filter out data related to
moving objects. The approach consists of two on-line parallel
processes: learning and inference. The functions of these two
processes are to construct and update the foreground model,
and perform pixel-wisely segmentations on the foreground
model. Scona et al. [25] segmented the input RGB-D image
pair into K geometric clusters by applying K-means on the
3D coordinates of the scene points, and assume that each
geometric cluster behaves as a rigid body, the segmentation of
static and dynamic objects are converted to the analysis of the
states of geometric clusters. This method focuses on building
the static environment model rather than analyzing the motion
state of objects. Li and Lee [26] proposed a SLAM system
based on the static point weight. Static point weight indicates
the possibility that a point is part of the static environment.
Kim and Kim [27] proposed a nonparametric background
model from depth scenes, which can reduce influence of
dynamic objects, and the motion of camera is estimated by
an energy-based dense-visual-odometry approach based on
the background model. Dai ef al. [28] used the consistency
of point’s geometric correlations to resist the interference
caused by moving objects, and the geometric correlations
between map points are created by Delaunary triangulation.
The dynamic objects can be separated from static environ-
ment by removing non-consistency connections.

In order to deal with the motion blur caused by high-speed
motion of camera in highly dynamic environments, the event
camera was introduced into the research of SLAM by the
researchers at the University of Zurich [29]-[33], and the
output of the event camera is an asynchronous stream of
events. However, because the output of the event camera is
different from the traditional camera output, the traditional
visual algorithm cannot be directly applied to the SLAM
system built on the event camera, and the higher price also
limits the use of the sensor.

B. SEMANTIC SLAM

Dyna-SLAM [34], MaskFusion [35], MID-Fusion [36] and
a RGB-D SLAM system proposed by Zhao et al. [37] use
Mask R-CNN [38] as the semantic segmentation approach.
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Dyna-SLAM removes all the potential dynamic objects such
as people, cars, and animals. Considering that some dynamic
objects cannot be detected by Mask R-CNN, because they are
not previously defined as potential dynamic objects, such as a
rotated chair, or a book hold by a moving person, the authors
utilize multi-view geometry to locate these movable objects.
The working environment of MaskFusion is mainly indoors,
so the authors proposed two strategies to judge whether an
object is dynamic or static: firstly, consistence of object
motion; secondly, object in contact with people is movable.
MID-Fusion consists of four parts: segmentation, tracking,
fusion and raycasting. The system creates sub-maps for every
possibly rigidly moving object in the environment, and fuses
the geometric, semantic, and motion properties information
of dynamic objects into these sub-maps. And in the process
of camera tracking, MID-Fusion discards the matching points
in the human mask area. The system proposed by Zhao et al.
refined the boundaries of the detected dynamic objects by
integrating the Canny edges of the RGB images with the mask
boundaries, because the contours of the dynamic objects
obtained by the semantic segmentation are not precise.

DS-SLAM [39], SOF-SLAM [40] and SDF-SLAM [41]
use SegNet [42] as the semantic segmentation algorithm. The
authors of DS-SLAM assume that the feature points on the
people are most likely to be outliers, so they exclude the
people in the images and construct epipolar line constraint
by the matching points in the environment regions. Then
the constraint is utilized to detect whether the people are
static. If a person is determined to be static, then matching
points on the person can be used to predict the pose of the
camera. SOF-SLAM proposed a dynamic features detection
algorithm which utilizes the semantic information to aid
the calculation of epipolar geometry, and this system can
remove the dynamic feature points effectively. SDF-SLAM
is the continuation of SOF-SLAM, which outperforms SOF-
SLAM, because SDF-SLAM solves these two problems: first,
the matching points on the slow-moving objects may be rec-
ognized as static matching points, and second, the dynamic
information in adjacent frames is easy to be interfered by
noise. Brasch et al. [43] proposed a joint probabilistic model
based on the semantic prior information provided by a
CNN, using temporal motion information to determine the
state of a certain map point. This method can deal with
the slow-moving and temporarily static objects effectively.
Sun et al. [44] proposed a movable object aware SLAM
system via weakly supervised semantic segmentation, and
the main advantage of this system is that it avoids expensive
annotations for training. DDL-SLAM [45] detects dynamic
objects with semantic masks obtained by DUNet [46] and
multi-view geometry, and then reconstructs the background
obscured by dynamic objects with the strategy of image
inpainting.

Instead of obtaining masks of potential dynamic objects,
some researchers directly utilize the bounding boxes to
remove the dynamic regions. Yang et al. [47] used
Faster-RCNN [48] to detect the potential dynamic objects,
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and refined the data association by removing the mismatching
points, so the camera pose are calculated by the better data
association and the graph optimization. Zhang et al. [49]
used YOLO [50] to detect and recognize objects, so that
the relationship between keyframes and objects are built
to filter the dynamic feature points and generate semantic
maps. Dynamic-SLAM [51] uses an SSD [52] object detec-
tor to detect the dynamic objects defined by a dynamic
characteristic score based on life experience, and the sys-
tem adopts a compensation algorithm based on the speed
invariance in adjacent frames to deal with missing detec-
tion. Aiming at the three problems that the dynamic SLAM
needs to solve, namely obtaining accurate camera localiza-
tion, getting navigation maps and real-time segmentation of
dynamic objects, Sun et al. [53] proposed a multi-purpose
dynamic SLAM framework which is compatible with dif-
ferent segmentation methods for different purposes and
situations.

Summarizing the above SLAM systems working in
dynamic environment, it can be found that most of these
works focus on improving the camera positioning accuracy,
but there is almost no research on noise blocks removal in
the obtained point cloud map. The quality of the global map
constructed by SLAM is related to two factors. One is the
accuracy of camera pose estimation, and the other is whether
the noise blocks in the map are effectively removed. Since
the existing semantic segmentation algorithms are not per-
fect [35], some information of the dynamic objects will leak
into the environment, and this information will be retained in
the constructed local point cloud maps to form a large number
of noise blocks. These noise blocks will greatly affect the
actual use of the map. In addition, if these point cloud maps
with a large number of noise blocks are converted to other
forms of maps, such as octomaps [54], the quality of maps
will not be significantly improved.

IlIl. SYSTEM DESCRIPTION

The overview of our proposed semantic SLAM system in
dynamic environments is shown in Fig. 1. First of all,
the RGB images pass through a CNN (Convolution Neu-
ral Network) that performs object detection and pixel-wise
segmentation at the same time. Considering the practical
application of the system, the selection of CNN for semantic
segmentation of potential dynamic objects requires a bal-
ance between real-time and accuracy. We choose BlitzNet,
which is a real-time deep neural network that performs object
detection and semantic segmentation in one-time forward
propagation, as the basic network of our semantic SLAM
system. The detected objects include people, tvmonitors,
chairs, etc., which are common indoors. We roughly divide
the objects in the environment into three categories: dynamic
objects, such as people; potential dynamic objects, such as
chairs, books, keyboards, whose status are determined by the
dynamic objects; static objects, such as tvmonitors, whose
positions in the environment are relatively fixed and do not
change easily.
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RGB Images

Detection

Depth Images

Local Point Cloud Maps

FIGURE 1. Overview of the system.

The essence of the global point cloud map P¢ constructed
by SLAM system is to stitch the local point cloud P; obtained
by each group of key frames, namely

n
Pg = Z (R,'Pi + t,')

i=

ey

where, n is the total number of key frames, i = 1,...,n,
R; and t; are the rotation matrix and translation matrix for
converting the local point cloud map to the coordinate system
where the global point cloud map is located. The values of R;
and #; are determined by the camera’s pose in space.

The quality of the global cloud map obtained after stitching
in a dynamic environment is related to two factors: first,
the accuracy of camera pose estimation; second, the removal
of noise blocks formed by the dynamic objects in the local
point cloud map.

Smears will occur in the constructed point cloud map
because of the dynamic objects. Although removing the
image information corresponding to the mask regions of
dynamic objects can improve this situation, the dynamic
object mask obtained by the existing semantic segmentation
is not perfect. Especially the edges of the dynamic object
might not be included in the mask, so these parts would leak
into the environment. The noise blocks formed by this edge
information greatly affect the quality of the point cloud map,
and even cause the point cloud map to look chaotic. In this
paper, we extend the mask of dynamic object through ana-
lyzing the depth information of the mask within the bounding
box of the dynamic object. The extended mask can contain as
much information of the dynamic object as possible. Then we
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Global Point Ciodd Map

Visual Odometry

Static Matching Points

segment the depth image by geometric method, and remove
the islands formed by the residual information of the dynamic
objects. After that, a clean local point cloud map can be
obtained.

In a dynamic environment, the main reason for the large
error of camera pose estimation is that the matching points
on the dynamic objects participate in the camera positioning
process. Especially when the dynamic objects occupy a large
space in the image and the texture information on the dynamic
objects is rich, the matching points cannot be effectively
removed by traditional algorithms such as RANSAC [55].
In this paper, we quickly divide the image into the environ-
ment regions and dynamic regions by the bounding boxes of
the dynamic objects, and the matching points in the envi-
ronment regions are used to construct epipolar constraint
to locate the static matching points in the dynamic regions,
so as to ensure that the final matching points for camera
localization are static.

A. DYNAMIC OBJECT MASK EXTENSION

The masks of the dynamic objects obtained by BlitzNet are
not complete, and some information of the dynamic objects
will leak into the environment. In this section we take the
human mask extension as an example. As shown in Fig. 2,
when comparing the RGB image with the obtained human
mask image, it can be clearly seen that parts of the sitting
person’s body are not included in the mask, which are marked
by the red boxes in the figure. In order to observe the informa-
tion of the human bodies leaking into the environment more
intuitively, we set the depth values of the areas in the depth
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Local Point Cloud

FIGURE 2. Human information leaked into the environment.

image corresponding to the human masks to 0. And the parts
of the human bodies leaked into the environment are marked
with green boxes. It can be seen from the depth image that a
part of the edge of the walking person is also leaked into the
environment. A lot of noise blocks will exist in the local point
cloud generated by such depth image and RGB image, which
are marked with blue boxes.

We use the depth statistical information in the human mask
regions to find the pixels that belong to the human body
but leak into the environment within the human’s bounding
box, that is, to extend the human body mask. As shown
in Fig. 3, the depth values corresponding to the two human
mask regions are counted. Considering that there may be
some pixels with a depth value of 0 and some noise in the
human mask regions, the 0 value is not counted in the process
of statistics. After that, the outliers would be removed. Dp;
is used to represent the set of depth values within the human
mask, where P (i) represents the person’s label that appears
in the image. The maximum and minimum values in Dp(;) are
used as the upper and lower bounds of the depth value in the
bounding box of P (i) respectively, that is

Ud = max (Dp(i)) (2)
Ld = min (DP(i)) (3)

Human mask can be extended according to (4)

P(i) (u,v) € MP([)

Lq < DBBY (u,v) < Uy, @
else, (u, v) ¢ Mp(;

where Dgﬁf (u, v) denotes the depth value of the pixel (u, v)

in the bounding box of P (i), Mp(;) represnts the mask of P (i).

If a dynamic object is far away from the camera, or the
segmentation algorithm performs poorly on a certain type of
object, the area of the obtained mask would be very small,
so the depth values in the mask would not be enough to
represent the depth information of the dynamic object effec-
tively. In this case, we remove the information in the whole
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bounding box of the dynamic object to eliminate its impact
on the local point cloud map, as follows:

Smask Smask — SBBX

Do) < Tls Opog) DO(i) (5)
else Smask _ Smask
) DOG) = °DO)

where Sggsf represents the mask area of the i-th dynamic
object, Sgg(i) denotes the area of the bounding box of the
i-th dynamic object, i is the number of the detected dynamic
object, 7 is a preset threshold value, in this paper t; = 5000,
the unit is pixel.

At the same time, we have noticed that some contents of
the dynamic object may leak into the environment beyond the
bounding box. The shape of this leaked information is usually
long and narrow. Due to the continuous movement of the
dynamic object in the environment, the difference between
depth values in the edge of the dynamic object in the two
adjacent frames is much larger than that of the environment.
We can use this feature to remove these narrow and long
edges, as follows:

Subtract the previous depth image from the current depth
image and take the absolute value, as shown below:

d_sub = |F¢c — Fp]| (6)

If the value of d_sub (u, v) is large, there are two situations
for pixel (u, v). One is the point at the edge of the object in
the environment. This type of point can be removed because
there will be a lot of redundant information in the process of
constructing the global point cloud map, and the depth value
at the edge of an object changes a lot, which is the reason for
the obvious layering at the object edge in the obtained point
cloud. Another is the point that the dynamic object leaked into
the environment. In this paper, the current frame is operated
as follows:

d_sub (u,v) > 1o, Fc@,v)=0

else, Fc (u,v) = Fc (u,v)

(N

where 17 is a preset threshold value, in this paper t, = 5000.
The dynamic object mask extension algorithm processing is
shown in Algorithm 1.

B. INTERACTION JUDGMENT BETWEEN POTENTIAL
DYNAMIC OBJECT AND DYNAMIC OBJECT

The state of the potential dynamic object is determined by
whether the dynamic object interacts with it. For example,
when someone adjusts the position of a chair or sits on it,
we should regard the chair at this time as a dynamic object.
If the chair is isolated in the environment, it can be considered
to be a static object. When a chair is a dynamic object,
the camera cannot use the matching points on it for pose
estimation, and the information of it should be removed from
the constructed point cloud map. When a chair is a static
object, the matching points detected on it can participate in
the camera pose estimation, and the information of it is also
an essential part of the point cloud map. So, it is necessary to
judge the status of the potential dynamic object.
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Depth value statistical
histogram of person

FIGURE 3. Human mask extension.

Algorithm 1 Dynamic Object Mask Extension Algorithm

Input: Current depth image Fc, previous depth image Fp,
bounding box of the i-th dynamic object BBXpo(;), mask
of the i-th dynamic object Mpo;y;

Output: Processed mask M /Do(l.), processed depth image
Fg;

1: DDO(i) = RecordDepthValue (Fc, MDO(i));
2: Remove outliers in Dpoyi);

3: Ly = GetMin (DDO(z’))’ Ug = GetMax (DDO(i));
4: for each point (u, v) within BBXpo; do

5. if Ly < GetDepth (u,v) < U, then

6: M’DO(Z.) <~ (u,v);

7. end if

8: end for

9: Sg‘o”(]l‘.) = CalculateArea (MDO(i));

10: if Spav < 71 then

11: MbO(i) = GetArea (BBXDO(i));

12: end if

13: Fl. =Fc;

14: d_sub = |F¢c — Fp|;

15: for each point (u, v) within d_sub do

16:  if d_sub (u,v) > 1, then

17: Fg (u,v) =0;

18:  end if

19: end for

People are the main dynamic objects in the indoor
environment, so we should consider that the state of a
potential dynamic object to be dynamic, when it is in
contact with a person. We utilize the bounding boxes
and the depth information in the masks of the person
and the potential dynamic object to judge the status of
the potential dynamic object. The flow diagram is shown
in Fig. 4.

First, we label people and potential dynamic objects
in the image and get the corresponding labels, such as
P),....,.Pm}L{01),...,0(k)}.
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4

Extended human mask

Human information leaked
into the environment

Label the Persons and the
Potential dynamic objects

Whether the BBX of
Person(i) intersects with the
BBX of Object( /)

There is no intersection between
Person(7) and Object( /)

Get the depth interval in the mask
region of Person(i) and Object( /)

Whether the depth interval of
Person(i) intersects with the
depth interval of Object( /)

Person(i) interact with Object( /)

FIGURE 4. Flow diagram of interaction judgment between human and
potential dynamic object.

When the bounding box of P (i) intersects that of O (j),
it is considered that P (i) may interact with O (j), and the
label group {P (i) , O (j)} is saved. Otherwise, the label group
{P (@), O (j)} is deleted, as follows:

Slljg)x N Sggi( #@, Save{P (i), O (j)} (8)

else, Delete {P (i), O (j)}
where S gg_)x , S gB.i( respectively represent the areas occupied

by the bounding boxes of P (i) and O (j) in the image, i =
I,...,n,j=1,...,k.

Next, for the label group {P (i) , O (j)} saved in the previous
step, the depth information is used to further determine the
intersection between P (i) and O (j). We count the depth
values in the masks of P (i) and O (j), and obtain the sets
of depth values D’},”g;k and D%gﬁk in the masks of P (i) and
O (j) respectively after removing the O values and the outliers.
The label groups {P (i) , O (j)} saved by (9) are those which
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(b)

FIGURE 5. Judgment of interaction between human and chair.
(a) Bounding boxes of people and chairs; (b) Histogram of depth values
within the masks of the people and the chairs.

10000

12000

intersect with each other.
max (DYE) < min (DY), Delete (P (). O ()}
max (Dﬁ,’l(‘f)sk) < min (DAO’IS;]‘) ., Delete{P (i), 0 ()} )
else, Save {P (i), O (j)}

Taking the case shown in Fig. 5 as an example, the dynamic
objects in Fig. 5(a) are two persons which are marked by
green boxes, while a swivel chair and an ordinary chair are
the potential dynamic objects which are marked by red boxes.
The labels of the sitting person and the walking one are P (1)
and P (2), respectively. C (1) and C (2) represent the swivel
chair and the ordinary one. It is obvious in Fig. 5(a) that the
bounding box of the sitting person intersects with that of the
swivel chair, and the bounding box of the walking person
intersects with that of the ordinary chair. That is, the label
groups need to be saved are {P (1), C (1)} and {P (2), C (2)}.

Next, the depth values within the masks of the two people
and the two chairs are counted respectively. For the conve-
nience of observation, we display the statistical histograms
of the depth values of the two people and two chairs on one
graph, as shown in Fig. 5(b). It can be seen from Fig. 5(b) that
the depth interval of P (1) intersects with that of C (1) and
C (2). According to the label groups saved in the previous
step, we can know that the label group that needs to be
actually saved is {P (1), C (1)}, that is, P (1) interacts with
C(1).

C. BOUNDING BOX TRACKING
In some cases, Blitz-Net cannot effectively detect the
dynamic object, because the dynamic object is too small,
or because only part of the dynamic object appear in the
image, as shown in Fig. 6. Therefore, it is necessary to
re-detect the dynamic objects when the detection is missing,
that is, to track the bounding boxes of the dynamic objects.
Based on the assumption that the moving speed of the
dynamic object relative to the camera is constant for a short
period of time, this paper proposes a bidirectional search
strategy to track the bounding box of the dynamic object.
D' = {0, 1} is used as the indicator of whether

“indicator . . .
Blitz-Net detects dynamic object in the K; frame. When

fodi cator = 05 1t inlgicates that no dynamic object is detected
in the frame. If D; ;... = 1, it denotes that the dynamic
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FIGURE 6. Examples of Blitz-Net unable to effectively detect dynamic
objects.

Blitz-Net

' D

eee K3 Ki—» Ki—1 Ki+1 Ki+2 Kiy3 | oo

[ |
[ I | t

FIGURE 7. Bounding box tracking for dynamic object.

object Dygreer is detected in the K; frame. Let BBXK: =
(xtllif, yﬁé, xllfé, yﬁ’c) represent the bounding box of dynamic

object Dygrger in the K, frame, where (xtll{cl , yffé) are the upper

left corner coordinates of the bounding box, and (xllfé, yﬁ’c)
are the lower right corner ones.

As shown in Fig. 7, the red rectangle represents the current
frame K;. When no dynamic object is detected in Kj, that is
Dﬁ’di cator = 0, then 3 frames backward and 3 frames forward
are searched. The bounding box of the dynamic object in the
current frame K; can be tracked by the values recorded in the
indicators of the 6 frames. How to determine whether there
is a dynamic object in the current frame, and if there is a
dynamic object, how to get the bounding box of the object,
as follows:

1) Dynamic objectis detected in the previous 3 frames and
the later 3 frames, the dynamic object is considered to
exist in the current frame K;, and the bounding box of
the dynamic object can be obtained by

(BBXKitn — BBXKXi=w) % np

BBxKi = BBxXi-w
(nl + np)

(10)

where K;_p, and K;,; are the previous frame and the
later frame closest to K;, and a same dynamic object is
detected in K;_pp and K, np < 3,nl < 3.

2) When the dynamic object is detected only in the previ-
ous 3 frames or only in the later 3 frames, the dynamic
object is considered to exist in the current frame K;, and
the bounding box of the dynamic object in the image
closest to K; is used as the bounding box in Kj.
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FIGURE 8. Tracking results of dynamic object bounding box.

3) When Blitz-Net does not detect dynamic object in these
6 frames, we consider that there is no dynamic object
in the current frame K;.
The proposed bounding box tracking algorithm can effec-
tively track the bounding box of the dynamic object missed
by Blitz-Net in Fig. 6. The results are shown in Fig. 8.

D. GEOMETRIC SEGMENTATION OF DEPTH IMAGE
After removing the dynamic objects, we found that some of
the information of these objects is still left in the environ-
ment. In order to remove this residual information, geometric
segmentation is performed on the depth image. The residual
information is usually some small isolated patches in the
segmented depth image, which can be removed by a simple
morphological operation. In the depth image, the depth of
the junction between different objects is not continuous, that
is, the depth value between the objects and the background
changes a lot. According to this property, the segmentation
edges of the depth image can be placed in the depth disconti-
nuities.

Our segmentation method for depth image is as follows:

We traverse the depth image with a slider of size 2 % 2.
Image coordinates corresponding to the pixel in the upper left
corner of the slider is (u, v), and depth values in the slider are
recorded, as follows:

Dp=dm:u+1,v:v+1) (11)

where d represents the depth image. The depth image can be
segmented quickly by the following formula:

{max (Dp) —min (Dp) > 13, dWu,v) =0 (12)

else, dw,v)y=d u,v)

where 73 is a preset threshold value, in this paper t3 = 500.

Perform area statistics on the image patches with depth
information in the segmented depth image to obtain Sparcn(i)»
i =1,...,m, where m is the number of image patches. The
islands formed by the residual information of the dynamic
objects can be removed as follows:

Spatch(iy < T4, Delete {patch (i)} (13)
else, Save {patch (i)}
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RGB Image Depth Image Image Block

FIGURE 9. Image block centered on the integer pixel coordinates of the
feature point.

where 74 is a preset threshold value, in this paper t4 = 1000,
the unit is pixel.

E. FEATURE POINTS WITH STABLE DEPTH VALUES
Assume that we get two sets of matching points A =
{Pa1,...,Pan}and B = {Pp1, ..., Ppy}. The external param-
eter matrix of the camera can be obtained by solving the least
squares problem shown below:

N
: 2
rg;trl; IPai — (RPyi +1)] (14)

For two adjacent frames of depth images, there are regions
where the depth values are missing, and the depth values
of these regions are 0. Matching points in these regions
cannot provide any useful information for solving ICP (Iter-
ative Closest Point). In addition, there is a sudden change
in the depth values of feature points at the edge of objects,
which will directly affect the solution of (14). At the same
time, the depth values of some matching points on the
dynamic targets will also change greatly. In this paper,
we solve (14) by using matching points with stable depth
values.

Feature points with stable depth values are usually on the
surface of certain objects, such as the desk baffle region
marked by the red dotted frame [56], as shown in Fig. 9.
The red cross on the RGB image represents the location
of a detected feature point, an image block of size 3 * 3
centered on (i, j) is taken on the depth image for later pro-
cess, (i,j) are the integer pixel coordinates of the feature
point.

Firstly, we detect whether the depth value in the image
block corresponding to each feature point is missing. If there
is a pixel with a depth value of 0 in the image block, the corre-
sponding feature point is considered to be in the region where
the depth value is missing, and the feature point is deleted.
Fig. 10 is a detailed view of part regions where feature points
with missing depth values in Fig. 9. It can be seen from
the figure that some parts in the computer keyboard region
lose depth values. Although the roof region contains a lot of
texture information, the depth values of the feature points in
this region are completely missing, since it is far from the
camera and exceeds the effective measurement range of the
depth camera.

Next, we calculate the standard deviation of the depth
values in the image block corresponding to each feature point
that is retained. The standard deviation of the depth values is
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(b)

FIGURE 10. Feature points with missing depth values. (a) Feature points
detected in the computer keyboard region. (b) Depth value of the
computer keyboard region is partially missing. (c) Feature points detected
in the roof region. (d) Depth value of the roof region is completely
missing.
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FIGURE 11. Find image blocks with stable depth values. (a) Standard
deviations of depth values in image blocks. (b) Eliminate outliers in the
sequence.

typically small in the image block where the depth values are
stable, while large where there is a sudden change in depth
values. Feature points corresponding to the image blocks with
large standard deviation of depth values can be deleted by
setting an appropriate threshold.

In the course of experiments, we found that the number of
image blocks with sudden change in depth values is usually
much less than that with stable depth values. All standard
deviations obtained are stored in a sequence, and the feature
points corresponding to the outliers in the sequence are elim-
inated. An outlier value is defined as a value that is more than
three scaled MAD (median absolute deviations) away from
the median. As shown in Fig. 11, the red asterisk represents
the outlier that need to be rejected.

Fig. 12 is a detailed view of part regions where feature
points with sudden changes in depth values in Fig. 9. These
regions with sudden changes in depth values are mainly
distributed at the edges of objects. And the depth values on
the surfaces of objects at a distance obtained by the depth
camera will also be inaccurate. In fact, the accuracy of the
depth value of the object obtained by the depth camera is
inversely proportional to the distance between the target and
the camera. The closer the distance, the more accurate the
depth value. In the process of constructing the point cloud
map, we discard points whose depth value exceeding 30000
(6m).

After the above two steps, the feature points with stable
depth values can be obtained. As shown in Fig. 13, the three
types of feature points obtained are displayed on the RGB
and depth images respectively, the green point represents the
feature point with stable depth value, the red point denotes
the feature point with missing depth value, and the blue point
indicates the feature point with sudden change in depth value.
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FIGURE 12. Feature points with sudden changes in depth values.

(a) Feature points detected at the edge of a chair. (b) There is a sudden
change in the depth values at the edge of the chair. (c) Feature points
detected on a plank at a longer distance. (d) Inaccurate measurement of
depth values on the plank.

Depth-Value-Stable-Point
* Depth-Value-Missing-Point

| + Depth-Value-Sudden-Change-Point
| _——

Depth-Value-Stable-Point
* Depth-Value-Missing-Point
Depth-Value-Sudden-Change-Point

FIGURE 13. Three types of feature points. (a) Feature points on the RGB
image. (b) Feature points on the depth image.

When matching feature points between a pair of images,
we only use those with stable depth values. It can be seen
from Fig. 13 that there are a large number of green points on
the walking person, which is the main reason for the large
error of the camera pose estimation.

F. LOCATION OF STATIC MATCHING POINTS

After obtaining the dynamic objects, we can use the bounding
boxes of the dynamic objects to segment the image quickly,
and divide the image into dynamic regions and environment
regions. The feature points in the image can be divided into
4 groups after feature matching: inliers set P1IE in the envi-
ronment regions, outliers set Pg in the environment regions,
dynamic points set Pg in the dynamic regions, static points
set P% in the dynamic regions.

After matching the feature points in the environment
regions of the previous frame and the current frame, Pg
can be effectively removed by RANSAC algorithm, and the
fundamental matrix F between the two adjacent frames can
be calculated by P’E. By matching the feature points in the
dynamic regions of the previous frame and the current frame,
the matching points Ph = [ub,vE 1], P§ = [u§, v§, 1]
can be got. The distance from the matching points to the
corresponding epipolar line can be calculated by

PSF(Pp)|
= (15)
[+ 13
where I, and /, can be got by
T
[l 1y 1] = F(Pg) (16)

Each group of matching points in the dynamic regions
can get a distance d;, of which i is the serial number of the
group of matching points, and the set to which the i-th group
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TABLE 1. Results of absolute trajectory error (ATE).

Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM Ours
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3/w/half | 0.4543 | 0.2524 | 0.0296 | 0.0157 | 0.0303 | 0.0159 | 0.0241 | 0.0122
fr3/wirpy 0.5391 | 0.2283 | 0.0354 | 0.0190 | 0.4442 | 0.2350 | 0.0453 | 0.0316
fr3/w/static | 0.3194 | 0.1819 | 0.0068 | 0.0032 | 0.0081 | 0.0033 | 0.0077 | 0.0039
fr3/w/xyz | 0.7521 | 0.4712 | 0.0164 | 0.0086 | 0.0247 | 0.0161 | 0.0157 | 0.0083
fr3/s/static | 0.0087 | 0.0043 | 0.0108 | 0.0056 | 0.0065 | 0.0033 | 0.0080 | 0.0037
TABLE 2. Results of translational relative pose error (RPE).
Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM Ours
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3/w/half | 0.3216 | 0.2629 | 0.0284 | 0.0149 | 0.0297 | 0.0152 | 0.0274 | 0.0140
fr3/wirpy 0.3880 | 0.2823 | 0.0448 | 0.0262 | 0.1503 | 0.1168 | 0.0616 | 0.0357
fr3/w/static | 0.1928 | 0.1773 | 0.0089 | 0.0044 | 0.0102 | 0.0038 | 0.0102 | 0.0049
fr3/w/xyz | 0.4834 | 0.3663 | 0.0217 | 0.0119 | 0.0333 | 0.0229 | 0.0204 | 0.0107
fr3/s/static | 0.0095 | 0.0046 | 0.0126 | 0.0067 | 0.0078 | 0.0038 | 0.0087 | 0.0038
TABLE 3. Results of rotational relative pose error (RPE).
Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM Ours
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3/w/half | 6.6515 | 5.3990 | 0.7842 | 0.4012 | 0.8142 | 0.4101 | 0.7440 | 0.3459
fr3/w/rpy 7.5906 | 5.4768 | 0.9894 | 0.5701 | 3.0042 | 2.3065 | 1.3831 | 0.8319
fr3/w/static | 3.5991 | 3.2457 | 0.2612 | 0.1259 | 0.2690 | 0.1215 | 0.2631 | 0.1119
fr3/w/xyz 8.8419 | 6.6762 | 0.6284 | 0.3848 | 0.8266 | 0.2826 | 0.6227 | 0.3807
fr3/s/static | 0.2881 | 0.1244 | 0.3416 | 0.1642 | 0.2735 | 0.1215 | 0.2782 | 0.1210

of matching points belongs can be judged according to the
following formula:

. D
di > 15, i€Pp

(17)
. S
i€ Py

else,

where 75 is a preset threshold value, in this paper
5 = 0.5. The matching points groups belong to Pg are
directly discarded, and those belong to PIS) but are not on
the dynamic object mask can participate in camera pose
estimation.

IV. EXPERIMENTAL RESULTS

Our system adopts ORB-SLAM?2 [5], which is one of
the most outstanding SLAM systems based on the fea-
ture points matching, as the global SLAM solution. Dyna-
SLAM [34] and DS-SLAM [39], the two best solutions for
SLAM in highly dynamic environments are both built on
ORB-SLAM2.

In this section, we will compare the proposed system with
ORB-SLAM?2, Dyna-SLAM and DS-SLAM on the five sets
of sequences selected from TUM RGB-D dataset. These five
sets of sequences include four sets of walking sequences,
mainly for our experiments, and a set of sitting sequences,
which are selected as the reference group.
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In the walking sequences, two persons walk back and forth
in the scene, occasionally sitting on the chairs talking and
gesturing, so they can be regarded as highly dynamic objects.
The walking sequences divided into four groups according
to the different movement modes of the camera, which are
halfsphere, rpy, static and xyz. Halfsphere means that the
camera motion following a halfsphere-like trajectory; rpy
means that the camera rotated along the roll-pitch-yaw axes;
static means that the camera roughly kept in place manually;
Xxyz means that the camera moved along the x-y-z axes. For
the convenience of expression, we use fr3/w/half, fr3/w/rpy,
fr3/w/static and fr3/w/xyz to represent the four sets of walk-
ing sequences. In the sitting sequences, the two persons just
moved only a little bit relative to the environment, most of
the time sitting on chairs chatting and gesturing. In this paper,
we choose fr3/s/static as the reference group.

A. EVALUATION OF THE CAMERA LOCATION

Metrics Absolute Trajectory Error (ATE) and Relative Pose
Error (RPE) are used for quantitative comparison, and the
experimental results are shown in Table 1 — Table 3. The
values of Root Mean Square Error (RMSE) and Standard
Deviation (S.D.) are presented in the tables; RMSE measures
the deviation between the observed value and the true value
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FIGURE 14. Comparison of the estimated trajectories.

and S.D. reflects the extent of deviation for a group as a
whole. The two values indicate the robustness and stability
of SLAM systems, respectively.

Table 1 gives the results of Absolute Trajectory Error
(ATE). ORB-SLAM2 cannot handle with the highly dynamic
scenes effectively, and the other three systems have greatly
improved compared with ORB-SLAM?2. Our proposed sys-
tem achieved the best results on fr3/w/half and fr3/w/xyz, and
the results obtained on fr3/w/rpy and fr3/w/static are close to
the results of Dyna-SLAM.

Table 2 presents the results of Translational Relative Pose
Error (RPE). On fr3/w/half and fr3/w/xyz, the results of our
system are the best. On fr3/w/static, the results of our system,
DS-SLAM and Dyna-SLAM are very close. The RMSE value
of Dyna-SLAM and the S.D. value of DS-SLAM achieved the
best results respectively, and the RMSE value of DS-SLAM
is the same as our system.
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Table 3 provides the results of Rotational Relative Pose
Error (RPE). Our system got the best results on fr3/w/half
and fr3/w/xyz. Dyna-SLAM achieved the best results on
fr3/w/rpy, but our system is better than DS-SLAM and ORB-
SLAM2. It should be noticed that the RMSE values of
the three dynamic SLAM systems on fr3/w/rpy were not
obvious improvement. On fr3/w/static, the RMSE value of
Dyna-SLAM and S.D. value of our system got the best results
respectively, and the RMSE value of our system is better
than DS-SLAM. In fact, the results of the three systems are
very close to each other. The RMSE value of our system
and the S.D. value of DS-SLAM achieved the best results
on fr3/w/xyz respectively. According to the results on the
fr3/w/rpy, it can be inferred that the performance on the rota-
tion angle estimation of SLAM systems is greatly challenged
in a highly dynamic environment when the camera motion
mode is rotating along the roll-pitch-yaw axes.
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TABLE 4. Results of successfully tracked trajectory points.

ORB-SLAM?2 Dyna-SLAM DS-SLAM Ours

Sequences | Total - - - -

Tracked Ratio Tracked Ratio Tracked Ratio Tracked Ratio
fr3/w/half 1021 942 99.3% 525 51.4% 1018 99.7% 1018 99.7%
fr3/wirpy 866 825 95.3% 546 63.1% 864 99.8% 864 99.8%
fr3/w/static 717 714 99.6% 375 52.3% 714 99.6% 714 99.6%
fr3/wixyz 827 809 97.8% 757 91.5% 826 99.9% 826 99.9%
fr3/s/static 679 675 99.4% 675 99.4% 676 99.6% 676 99.6%

Front

Left

ORB-SLAM2

Dyna-SLAM

DS-SLAM Ours

FIGURE 15. Comparison of global point cloud maps constructed by the four SLAM systems on fr3/w/xyz.

As can be seen from Table 1 — Table 3, the results of
the three dynamic SLAM systems on fr3/s/static are not
much different from ORB-SLAM?2, so we conclude that the
ORB-SLAM?2 can handle the camera location problem in
lowly dynamic environment well.

Fig. 14. shows the estimated trajectories of ORB-SLAM?2,
Dyna-SLAM, DS-SLAM and our system compared with the
ground-truth. As can be seen from the first row images,
in highly dynamic environments, the trajectories gener-
ated by ORB-SLAM?2 have large errors compared with the
real trajectories. Dyna-SLAM, DS-SLAM and our system
have achieved good results compared with ORB-SLAM?2.
On fr3/w/half, fr3/w/rpy and fr3/w/static, the trajectories
generated by Dyna-SLAM are not complete compared with
the other three SLAM systems, as shown in the second
TOw.

Table 4 gives the results of successfully tracked trajectory
points of the four SLAM systems. As we can see from Table 4,
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our system tracked the same number of trajectory points on
the five sequences as that tracked in DS-SLAM.

B. EVALUATION OF THE GLOBAL POINT CLOUD MAP
First, we show the global point cloud maps constructed by
the four SLAM systems in a highly dynamic environment.
Taking the global point cloud map obtained on fr3/w/xyz as
an example, as shown in Fig. 15.

From the front view of the global point cloud map obtained
by ORB-SLAM?2, we can see that the information of the two
persons are remained in the global point cloud map, and other
objects in the environment such as the table, tvmonitors and
chairs are obscured by these smears. It can be seen from the
top view that the plank of the table is twisted, the reason for
this phenomena is that the pose estimation of the camera has
a large error, causing the points on the plank to be mapped to
the incorrect position when constructing the point cloud map.
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FIGURE 16. Comparison of global point cloud maps constructed by the four SLAM systems on fr3/s/static.

In fact, the map looks so chaotic, and it is impossible to use
this map for robot navigation or human-computer interaction.

The camera pose estimation accuracy is greatly improved
after removing the interference of the dynamic objects,
so compared with ORB-SLAM?2, the quality of the global
point cloud maps constructed by Dyna-SLAM, DS-SLAM
and our system is greatly improved. In the global point cloud
maps constructed by these three dynamic SLAM systems,
we can clearly see the chairs, screens and other targets in the
environment.

However, as can be seen from the images in the second
and third columns, due to the lack of operations to remove
noise blocks, the information leaked into the environment
by these two people exists in the global point cloud maps
obtained by Dyna-SLAM and DS-SLAM. The amount of
noise blocks is directly related to the masks obtained through
the dynamic objects segmentation algorithm used by the two
dynamic SLAM systems. The more information contained in
the dynamic object mask, the less information the dynamic
object leaks into the environment. The noise blocks in the
global point cloud map of Dyna-SLAM are mainly some
slender edges, while that of DS-SLAM are coarser.

As can be seen from the fourth columns of images, after
the operations of removing the noise blocks, the information
leaked by these two people into the environment has been
effectively removed in our global point cloud map, that is,
our SLAM system can construct a clean and accurate global
point cloud map in a highly dynamic environment.
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Then we show the global point cloud maps constructed
by the four SLAM systems in a lowly dynamic environment.
Taking the global point cloud map obtained on fr3/s/static as
an example, as shown in Fig. 16.

As can be seen from the first column of images, although
the global point cloud map of ORB-SLAM? retains the infor-
mation of these two people, we can clearly see the objects in
the environment, and there is no distortion in the plank of
the table. As the conclusion in section IV-A, the camera pose
obtained in the lowly dynamic environment is relatively accu-
rate, so most of the points are mapped to the correct position
in the reference coordinate system of global point cloud map.
That is, the quality of the global point cloud map obtained by
the SLAM system in a lowly dynamic environment depends
on whether the noise blocks are effectively removed.

In the sitting sequence, these two people are sitting on the
chair all the time. From the left view of the global point cloud
maps of Dyna-SLAM and DS-SLAM, we can clearly see the
body contours of the two people. It can be seen from the
fourth column of images that the noise blocks in the global
point cloud map of our system are completely removed, that
is, our system can effectively deal with the problem of map
construction in a lowly dynamic environment.

When a robot uses the constructed map to navigate or
interact with the environment, if there are more noise blocks
in the map, it will inevitably have an adverse impact on
the robot’s decision. By comparing global point cloud maps
constructed by the four SLAM systems in highly and lowly
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dynamic environments, we can see that the global point cloud
maps of our SLAM system have advantages over the other
three SLAM systems.

V. CONCLUSION

In this paper, we proposed a semantic SLAM system with
more accurate point cloud map in dynamic environments. The
bounding boxes and masks of the potential dynamic objects
could be obtained with BlitzNet, and the image can be quickly
divided into environment regions and dynamic regions by
the bounding boxes. We introduce a novel statistical method
of depth analysis to remove the noise blocks formed by the
dynamic objects as well as the islands generated by geo-
metric segmentation. We construct epipolar constraint by the
depth-stable matching points in the environment regions, and
the static matching points in the dynamic regions can be
located by the constraint. The experimental results on five
sequences of the TUM RGB-D dataset demonstrate that our
method can eliminate the influence of the dynamic objects
effectively. Comparisons with ORB-SLAM2, Dyna-SLAM
and DS-SLAM show that our method has certain advantages
in the accuracy of camera pose estimation and the integrity of
the trajectory. To our knowledge, the global point cloud map
constructed by our method looks the best among the maps
built by the existing dynamic SLAM systems. Our system can
effectively remove noise blocks from global point cloud maps
in both highly and lowly dynamic environments, which is the
main advantage of our system.

However, there are some shortcomings of the proposed
method: Firstly, the potential dynamic objects are specified
in advance based on life experience. If an unknown dynamic
object occupies most of the camera’s field of view, the system
will regard the object as a part of the static environment
regions, causing the camera’s pose and trajectory estima-
tion error. Secondly, the semantic information provided by
BlitzNet is not fully utilized. Finally, we did not study the
specific motion state of the dynamic object in the environ-
ment.

In view of the problems existing in the system, our future
work includes: unknown dynamic object processing, con-
struction of semantic map. At the same time, the robot is
likely to collide with some dynamic objects when exploring
the unknown environment. Therefore, we need to further
study the motion of the dynamic objects in the environment
to provide a safe navigation routes for the robot.
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