
Received June 3, 2020, accepted June 10, 2020, date of publication June 17, 2020, date of current version June 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003087

Runtime Monitoring of Software Execution
Trace: Method and Tools
SHIYI KONG 1,2, MINYAN LU1,2, (Member, IEEE), LUYI LI 3, AND LIHUA GAO4
1Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University, Beijing 100191, China
2School of Reliability and System Engineering, Beihang University, Beijing 100191, China
3China Academy of Electronics and Information Technology, China Electronics Technology Group Corporation, Beijing 100041, China
4China North Vehicle Research Institute, Beijing 100072, China

Corresponding author: Minyan Lu (lmy@buaa.edu.cn)

This work was supported by the Advanced Research Domains Funding of China under Grant JZX7Y20190242013901.

ABSTRACT As with the extensive use of complex software in many fields, such as finance, transportation,
aeronautics, and astronautics, software plays an increasingly more important role in society. Software
reliability becomes a critical bottleneck for system reliability and draws increasingly greater attention from
software engineers. Many researchers find that traditional software verification and validation techniques are
not sufficient to ensure complex software reliability, especially after being deployed. In this paper, therefore,
we propose a novel software runtime monitoring method that can help with software runtime verification and
software failure prediction. This method aims to monitor software execution trace that reveal the software
runtime status. First, the framework of this method is proposed to introduce the entire process and two
key problems. Second, an instrumentation method based on srcML, an open source tool used to extract
the software abstract syntax tree, is presented. By this instrumentation technique, monitoring code can be
inserted into source code and runtime data can be exported during the software execution process. Then, a
runtime data-collection technique is proposed to collect runtime data exported by monitoring code. On one
hand, the file streammechanism is used to export data files that can be used to support offline analysis, while
on the other hand a client-server structure is proposed to support online analysis. Finally, a case study on
Nginx is used to show the feasibility of the proposed method.

INDEX TERMS Runtime monitoring, software execution trace, failure mechanism, software reliability.

I. INTRODUCTION
With the development of computer science and software
engineering, complex software systems have assumed an
increasingly important role in human life. How to ensure the
reliability of such software systems has attracted increasingly
more attention from researchers.

Traditional software reliability assurance technologies
consist of software testing, reliability testing, formal veri-
fication, reliability prediction and estimation, and standard
compliance. However, recent research shows that even in the
case of traditional software systems these methods cannot
ensure software reliability after deployment. The adequacy of
software testing cannot be guaranteed [1]. Formal verification
methods are faced with complexity issues [2]. Reliability
prediction and estimation methods usually work in early
periods, which lack sufficient real data, so the result may not

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Pietrantuono .

be accurate enough [3]. The design of highly reliable software
systems is driven by the functionality it must deliver as well
as the faults it must survive [4]. Thus, more researchers
have turned their attention to software run-time reliability
assurance technologies, such as failure prediction, failure
management, and software health management. These tech-
nologies aim at observing system behaviors [5]–[7], detect-
ing abnormal behaviors [8]–[10], and manipulating detected
failures [11], [12].

We follow the definition of runtime verification in [13]:
‘‘Runtime verification is the discipline of computer science
that deals with the study, development, and application of
those verification techniques that allow checking whether a
run of a system under scrutiny satisfies or violates a given
correctness property.’’ Runtime verification should 1) moni-
tor software runtime states, and 2) check if the current states
satisfies or violates a given correctness property.

Run-time software reliability assurance techniques con-
sist of three main parts, 1) monitor software runtime states,

114020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8925-6306
https://orcid.org/0000-0002-6873-3169
https://orcid.org/0000-0003-2449-1724

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

FIGURE 1. Software runtime reliability assurances,runtime verification,
and rumtime monitoring.

2) check if there are violations against a given correctness
property, and 3) take operations used to improve runtime
reliability.

The procedure of software run-time monitoring is defined
as follows: A monitor observes the behaviors of the mon-
itored system and detects if they are consistent with the
specifications [4]. Run-timemonitoring technologies observe
software running status, monitor software behaviors, record
run-time data, and support future analysis both online and
offline. Software run-time monitoring provides run-time reli-
ability improvement operations with necessary run-time data.

The relationships of Software runtime reliability assur-
ances,runtime verification, and rumtime monitoring are
shown in Figure 1.

Software run-time monitoring technologies are proposed
as methods aimed at improving the reliability of safety-
critical software systems at beginning [4], as a part of runtime
verification. The health of general complex software systems
are the next priority. These technologies observe software
behaviors and obtain software run-time behavior information
during the software execution process, determine whether the
software behavior complies with its expected behavior, and
estimate the credibility of current software status. Software
behavior information can be used to perform fault localization
and failure prediction. Currently, software run-time monitor-
ing technologies have been applied to several domains, such
as performance analysis, cost-effect analysis, software opti-
mization, software fault detection, diagnosis, and recovery.

Although software run-time monitoring technologies have
been studied for 30 years, the recent emergence of complex
software systems brings new challenges. These systems have
many new features, e.g., multi-threading and concurrency.
Increasingly more software failures are related to the run-
time environment and user profile [14]. Traditional reliability
assurance technologies cannot deal with these features very
well, as stated above. Software run-time monitoring therefore
assumes a more important role in these situations.

We propose a novel approach for software system run-time
monitoring, Software Runtime Monitoring Tool (SRMT)
with a GUI interface. SRMT can monitor software execution
trace during software execution process selectively. There are
two main parts of this approach: 1) instrumenting software
source code based on srcML, and 2) collecting runtime data
via the SRMT framework proposed in this paper. The method
is aiming at C/C++ programs that work onWindows XP SP3

FIGURE 2. High-level view of runtime monitor [15]. The circles represent
process, the rectangle represents the artifact, and the arrows represents
data flow.

or later Windows operating systems. Selective monitoring
are also supporting in SRMT framework. SRMT also uses
multi-thread design to mitigate the overheads brought by the
instrumentation.

This paper can be divided into seven parts. Section II
introduces the related work of this paper. Section III provides
a framework for how our method and tools work. Instrumen-
tation techniques are introduced in Section IV. Section V
introduces data-collection mechanisms for online and offline
analysis. Section VII presents the case study on Nginx. A
summary of this approach is given in Section VIII.

II. STATE OF THE ART
In this section, a brief review of existing software run-time
monitoring technologies are given from several aspects.

A. BASIC RUN-TIME MONITORING FRAMEWORK
Delgado et al. [15] gives a typical high-level view of a run-
time monitor, which is shown in Figure2.

The entire monitoring system takes an executable software
system and the specifications of software properties as inputs.
The specifications came from software requirements are a
series of descriptions of software external behaviors. The
specifications contains a sequence of states and states trans-
formation relationships. They will show which inner states
can lead to normal external behaviors [16], [17].

The monitor can be divided into two parts in this model,
observer and analyzer. The observer observes actual tran-
sitions between software states, extracts interesting states
related to its monitoring goal, and passes the data to the
analyzer. The analyzer verifies the compatibility between
actual states of interest and software properties. The latter

VOLUME 8, 2020 114021

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

are extracted from software requirements and passed to the
analyzer by the monitor.
When a violation of a property is detected by the analyzer,

the results are passed to an event handler, and a series of
operations must be executed to provide a response, such as
halting the program, entering a recovery routine, or sending
data to a log.

B. REVIEW OF RUNTIME MONITORING TECHNOLOGIES
There are two ways to classify runtime monitoring technolo-
gies from different aspects.

First, the following classification is based on different
performing periods:
• Offline Runtime Monitoring:
This kind of method collects software runtime informa-
tion together with the software execution process and
analyzes the data offline. Research work described in
[18], [19] use this method.

• Online Runtime Monitoring:
All data collection and analysis work in online methods
run parallel with the execution process, as in themethods
used in [20], [21].

Second, the following classification is based on the way
runtime data are collected:
• Invasive Runtime Monitoring:
Invasive methods insert monitoring code into object
systems to collect runtime data and analyze it. All of
the above work is completed in object systems. Typical
methods are Luckham’s [22] and Chodrow’s [23].

• Non-Invasive Runtime Monitoring:
Non-invasivemethodsmonitor object systems in another
parallel program outside object systems, and neither
insert code nor change any source code of object sys-
tems. Bro System [20] and BusMOP frameworks [24],
[25] use this method to do the monitoring work.

• Combination of Above Two:
In this type, the data analysis work is noninvasive while
the behavior observation work usually is invasive. Ref-
erences [26], [27] are examples of this type.

Above all is just a simple classification based on two view-
points, which is the concern in this paper. For more details on
the taxonomy and catalog of software runtime monitoring,
see Nelly’s survey in [15]. In the following sections, more
details of these methods will be introduced.

1) OFFLINE RUNTIME MONITORING
Most software monitoring methods proposed historically
were offline methods. The term monitor especially refers to
collecting program traces in earlier periods of development.
Offline software runtime monitoring is defined as collecting
runtime data online while analyzing the data offline.

Offlinemethods usuallywork in debuggingwork. Tracking
program execution process can help perform fault localiza-
tionwork and replay bugs [18], [28]. This kind ofmethod usu-
ally uses sensors to capture system calls, interrupts, context

switches, and variable timestamps. These methods try their
best to minimize the interference to the system being moni-
tored and do not add much runtime overhead [19]. By doing
this, one can replay bugs and analyze program execution
processes while doing the analysis work offline.

In offline methods, data-analysis work is done separately
from data-collection work and the program execution pro-
cess [28]. This situation has some advantages and limitations.

First, because little work must be done at the same time
with the program execution process, relatively little over-
head is added to the original software system. Usually, the
monitor outputs little data at several specific breakpoints
or uses external sensors to collect CPU and memory usage
information [29].

Second, separating data-analysis work from data-
collection work can avoid some time-related problems since
there is no need to do analysis online. Less time consumption
allows monitored systems to continue their processes as soon
as possible after the break caused by invasive monitoring
techniques [15].

2) ONLINE RUNTIME MONITORING
Online runtime monitoring methods observe software run-
time status dynamically, collect runtime information, and
judge the consistency between software behaviors and spec-
ifications. Different from offline methods, online methods
analyze data at the same time as the software execution
process and give an immediate response most of the time.
Bro is a typical independent system for real-time detection

of network intruders by passive monitoring of network traffic
packets [30]. Bro uses an event engine to reduce the stream of
network packets into network events and sends these events
to a security analyzer. The security analyzer checks the event
stream with the site’s security policy and provides real-time
notification to users. More details on how Bro captures these
network packets will be introduced in the section covering
non-invasive runtime monitoring methods.

Luckham et al. [22] proposed a framework for online run-
timemonitoring. A series of programs are used to convert for-
mal comments that are converted from formal specifications
into runtime check code in this framework. Monitoring code
is inserted into the underlying program. When the resulting
program is executed, check code can find any inconsistency
in the programwith respect to the formal specification. Check
code can trigger an external response tool for abnormal
events.

The two on-line runtime monitoring methods mentioned
above check software behaviors during the program exe-
cution process, which may block the working process of
the original program. Chodrow proposed two methods, syn-
chronous and asynchronous, to mitigate the effects of this
interruption [23]. In the synchronous method, only crit-
ical points will be checked, while in the asynchronous
method a separate task thread is built to analyze the con-
sistency with respect to the formal specification. In this
way, Chodrow expanded runtime monitoring methods into

114022 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

real-time systems. Since then, increasingly more researchers
have tried to mitigate the impact of instrumentation and make
the overhead more affordable [31], [32].

3) INVASIVE RUNTIME MONITORING METHODS
Invasive runtime monitoring methods simply insert monitor-
ing code into the source code of the monitored software sys-
tem. Thus, there is no need for additional external modules.
There are two kinds of such methods, depending on the type
of monitoring code inserted into the source code.

An annotation is a form of metadata added in the source
code. Almost all levels of software parts can be annotated,
e.g., classes, methods, variables, parameters, and packages.
Annotation usually does not have any direct effect on pro-
gram execution, although some annotations can achieve that
goal.

In Luckham’s work [22] on runtime consistency checking,
which we introduced in section II-B2, annotations are con-
verted from formal specifications and inserted into source
code. This work is mainly for the Ada programming lan-
guage. Luckham extends Ada with annotations, called Anna
(ANNotated Ada). Annotations act like checking rules that
an analyzer can process automatically to check if current
execution is consistent with specifications. The analyzer can
choose whether to enable or disable the specific annotation.
In this way, programmers can customize their own annotation
sets depending on their separate requirements.

As described above, Luckham’s method monitors program
execution and analyzes consistency in the same thread with
the monitored program, which may cause unaffordable time
consumption and additional system overhead. Therefore, this
method merely applies to debugging and testing work. Many
researchers have made efforts to mitigate overheads. A syn-
chronous and asynchronous method proposed in [23] have
been described in Section II-B2. To solve the problem of too
much time consumption, Jahanian introduced an environment
for distributed real-time system runtime monitoring [33].
This method solves several critical issues in the distributed
real-time monitoring domain. To make the monitoring more
useful, this method detects violations as early as possible.
This method also minimizes the number of messages that
must be exchanged to reduce time consumption. Jahanian
also determines a proper granularity of timestamping to strike
a balance between decision accuracy and system overheads.

Recent research based on annotations includes the follow-
ing. Grigoropoulos used macros and hook function mecha-
nisms in C/C++ programming languages [31], [34]. In this
work, a separate process is opened up for the monitoring
module, and it communicates with other working processes
via inter-process communication mechanisms provided by
Contiki OS [35]. Bodden proposed Clara, which can use a
sequence of static analyses to automatically convert a moni-
toring aspect into a residual runtime monitor [36]. Clara uses
JavaMOP [37] to generate annotations and uses a depen-
dency state machine to weave the monitoring aspects into a
program. The dependency state machine also provides Clara

with enough domain specific knowledge to analyze thewoven
program.
Assertion is a statement that a predicate (Boolean-valued

function) is always true at that point in normal code execution,
which can be applied for automated fault detection during
debugging, testing, and production-use periods [38].

Assertion-based runtime monitoring methods usually con-
sist of the following features [39]:

• A well-defined high-level language is used to describe
Boolean-valued expressions to characterize valid pro-
gram behaviors;

• A specific, well-defined syntax is used to map those
logical expressions to pre-defined program states;

• An approach is given for automatic transformation from
logical expressions to executable code, in which the
latter can be used to check the states of the program;

• A response mechanism is applied if there is any vio-
lation of assertions found during the runtime execution
process. This part is optional.

There are several typical runtime monitoring methods
based on assertions. Gan used assertions to help moni-
tor web-service conversations in [40]. Assertions are added
into Sequence Diagrams for modeling behavioral scenarios.
Then, the sequence diagrams are converted to automation
used to monitor messages online. Kosmatov proposed a
solution [41] for memory monitoring of C programs based
on FRAMA-C [42], a platform for analysis of C programs.
The proposed solutions can be applied in two ways, pas-
sive and active monitoring. More details on the history of
assertions used in runtime monitoring work can be found in
Clarke’s review [39].

4) NON-INVASIVE RUNTIME MONITORING METHODS
Non-invasive methods use an external monitor to monitor
program execution process. This monitor usually runs inde-
pendently with the program being monitored, without con-
suming any resources of the monitored software.

Existing non-invasive methods focus more on performance
measures or temperature control [37]. Spanoudakis andMah-
bub [43] proposed an approach for web-services runtime
monitoring. The monitoring process works in parallel with
the normal operation of the object web application without
interrupting it. Intercepting events are used to exchange infor-
mation between the object and the monitoring process. Since
there is no need to instrument the source code, there is limited
additional overhead added to object systems.

There is also a kind of monitoring method that uses hard-
ware as the monitor that has seen less active research recently.
Lu and Forin [44] used eMIPS, a dynamically self-extensible
processor, to monitor program execution without interrupting
its temporal behavior. The PSL2Verilog compiler is used to
transform a set of assertions into hardware that runs in parallel
with the object program. BusMOP, a framework realized by
Pellizzoni et al. [25], was plugged into a peripheral bus. It
monitors the COTS peripheral behaviors by examining read

VOLUME 8, 2020 114023

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

and write transactions on the bus. The monitor is executed
on FPGAs, resulting in zero runtime overhead on the system
CPU.

5) COMBINATION METHODS
Combination methods usually make the analysis work non-
invasive, in turn making the influence on the system being
monitored as light as possible.
MaC framework, as an example, has invasive observation

parts and non-invasive consistency analysis parts [45]. All of
these parts work at the same time with monitored software.
There are three main components in MaC. Filter is used to
extract low-level information (namely values of variables or
time when variables changed) from running code. Event rec-
ognizer is used to transform low-level information obtained
by filter into high-level information that runtime checker
can understand. Finally, runtime checker checks the consis-
tency of program execution with pre-defined specifications.
A toolset named Java-MaC [26], implemented by Lee, can
monitor temporal properties [28] and dynamic properties [46]
in real-time systems [7].

III. FRAMEWORK FOR COMPLEX SOFTWARE EXECUTION
TRACE RUNTIME MONITORING
Software execution trace as used in this paper refers to the
information consisting of software call relationships, the time
when the invocation occurs, the duration of each invocation,
and calling frequency, which are similar to the concepts in
existing execution-trace-extracting research.

Software execution trace can be applied to many domains.
Moe and Carr [47] extracted execution trace to help under-
stand and modify distributed systems. Taniguchi used trace
help with JAVA software to understand the evolution process
[48]. Liu et al. [49] used execution trace to locate software
functions in source code.

As far as we are concerned, execution trace reveal software
runtime behaviors and statuses. They also can help under-
stand, change, and improve software. More specifically, that
information can be applied to failure prediction domains [50].
Therefore, it is important to obtain that information first.

A framework for software runtime monitoring of software
execution trace is proposed in this section, which aims at sup-
porting software failure prediction work in the future. Both
online (such as online consistency analysis) and offline (such
as logging information for future offline analysis) application
purposes can be supported in this framework.

As we introduced in Section II, most existing non-invasive
monitoringmethods focus on performancemeasures, because
performance usually relates to the external resource, which
can be monitored outside of the monitored program. How-
ever, regarding correctness verification or specification con-
sistency analysis, researchers choose invasive monitoring
methods to observe program execution, because certain
properties, usually related to internal information, such as
variables, messages, and execution path, cannot be easily
observed outside of the monitored program [50].

The framework is shown in Figure 3. The three main parts
of the framework are detailed below.

A. EXECUTION PROCESS
Source code is instrumented with monitoring code in this
process. We propose a novel instrumentation technique with
the support of srcML, an infrastructure for the exploration,
analysis, and manipulation of source code [51]. After instru-
mentation, the source code is compiled and outputs an exe-
cutable program. Then, we run this program, and monitoring
code inserted in the object software can automatically moni-
tor program execution and record specific information.

B. MONITORING WORK
This section can be divided into two parts, before and after
the execution part. In the former, monitor specifications are
defined according to monitor goals. These specifications help
do the instrumentation work. In the latter, there are two kinds
of scenarios. In the first, monitoring data are in the form
of messages that are sent to the online analyzer via a well-
designed multi-threaded message-sending mechanism. In the
second, monitoring data are written to log files; to mitigate
time consumption as much as possible, we design this part
carefully by using multi-threaded and file-stream techniques
supporting C++.

C. ANALYZING WORK
This framework supports two kinds of analyzers, both online
and offline. In the offline part, log files obtained in previ-
ous steps are processed to rebuild the program execution
process. We extract execution trace from primitive data and
build a program trace with timestamps using those trace.
Taking failure prediction as an example, failure indicators
can be extracted from the program trace, as Li described
in [50]. Regarding the online part, messages received from
the monitor are pre-processed according to the requirements
of the module that takes the responsibility of correctness
verification. The latter module will check data from pre-
processing work and call a response if there is any violation
of the specifications in the monitoring module. For example,
failure can be converted into failure symptoms and then to
specifications that the checking module can use for predic-
tion. If the data match the rules, a recovery mechanism will
be called to ensure that the system will work normally (after
recovery).

IV. INSTRUMENTATION TECHNIQUES
Instrumentation techniques are used to form a set of
mechanisms that can export runtime trace during the pro-
gram execution process. There are three steps to do this
work. First, determine what is to be monitored. Then,
determine where the monitoring should be done. Finally,
weave the monitor specifications into the source code and
generate executable code. This process is illusrated in
Figure 4.

114024 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

FIGURE 3. Framework of complex software runtime monitoring for software verification.

FIGURE 4. Instrumentation process.

A. DETERMINE MONITORING SPECIFICATIONS
ACCORDING TO MONITORING GOALS
As we introduced in Section 3, software execution trace
consist of software call sequences, the time when those invo-
cations occur, the duration times of those invocations, and
calling frequency. The monitoring goal used in this paper is
software execution trace, but not all of them can be obtained
directly during the execution process.

Bryant and O’Hallaron, in their well-known work ‘‘Com-
puter Systems: A Programmer’s Perspective,’’ described the
software invocation process in detail [52]. C/C++ applica-
tions use a stack-like structure tomanagememory, so the soft-
ware execution process becomes a series of functions nested
inside another series of functions, as Figure 5 shows [53].

1) INVOCATION DURATION
To obtain the invocation duration, we can record the current
time at each function’s entry and exit points. Thus, the dura-
tiont can be calculated by Equation (1), in which TDuration
represents the duration of the current function. tEnter is the

FIGURE 5. Software invocation process.

time at function enter point and tExit the time at function exit.
T iCalleeDuration denotes the duration time of function i called
by the current function:

TDuration = tEnter − tExit −
m∑
i=1

T iCalleeDuration (1)

2) CALLING SEQUENCE AND FREQUENCY
Owing to the special structure of invocation, we can
rebuild the calling sequence from the nested structure using
algorithm 1.

The process program first reads execution records line by
line. If it is noted that the current line was collected at the
entrance of a function, then a new node is added to the tree
model. Entry time will be recorded, and the new node will be
marked as the current node. If the current line is collected at
the exit of a function, the exit time will be recorded and the
parent node will be marked as the current node.

Calling sequence is stored in the form of a tree model, and
the calling times of each invocation pairNi→j can be obtained

VOLUME 8, 2020 114025

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

Algorithm 1 Building Calling Sequence (in Tree model)
Input: L ≥ 2 {L denotes execution order list}
Output: T {T denotes calling sequence tree}
1: length← length of L
2: current_node← L0
3: for i = 1 to length do
4: if Li is enter line then
5: current_node add a new node named

Li.function_name
6: child_node.enter_time = Li.enter_time
7: current_node← child_node
8: update T
9: else {Li is exit line}
10: current_node.exit_time← Li.exit_time
11: current_node← current_node.parent_node
12: update T
13: end if
14: end for

TABLE 1. Example of runtime data that must be collected during the
execution process.

from that model. Ni→j denotes the occurring times of the
events that function i calls function j.

Calling frequency Pi→j can be calculated using
Equation (2):

Pi→j =
Ni→j

1t
(2)

While 1t denotes the execution time of total programs for
calculating. For example, the calling frequency of Pi,j can
represent the calling times of function i calling function j per
seconds.

After the above analysis, we determine the data that need
recording directly during the execution process as in Table 1.
These data can be collected at the entrance and exit of all or
specific (depending on the monitoring goals) functions in the
program.

B. EXTRACT ABSTRACT SYNTAX TREE OF OBJECT
SOFTWARE AND MARK MONITORING POINTS
1) PARSE SOURCE CODE USING srcML
srcML is an infrastructure for the exploration, analysis, and
manipulation of source code [51]. srcML uses XML to repre-
sent source code without loss of information. srcML extracts
the abstract syntax tree (AST) of source code and adds seman-
tic labels to the XML files converted by srcML tools. The

FIGURE 6. Parsing process for source code and determination of
monitoring points.

conversion between srcML and source code is reversible, so
it is possible tomake some changes to the XML automatically
and transform it and return it to the source code. The parsing
process is shown in Figure 6.
First, srcML tools are used to convert source code into

AST structures in srcML (XML) format. Then, Software
Run-time Monitoring Tools (SRMT), our tools proposed in
this paper, can be used to understand the program structure.
SRMT use a traversal algorithm (Algorithm 2) to analyze
srcML files one by one. Each function and function invoca-
tion are marked, and the SRMT can return XPath strings to
help locate them easily.

Properties of functions such as function name, parameter
list, and returns (the values of return expressions) are also
marked and stored in SRMT, as in algorithm 3. In particular,
each function will be attached with a label that shows if this
function must be monitored or not. The value of this label
depends on users when they make a choice in the SRMTGUI
interface. The SRMT provide a GUI interface for monitoring-
point selection. Users can choose to monitor all functions
(usually for offline analysis) or just monitor several specific
functions (usually for online analysis).

2) CREATE MONITORING TEMPLATES
Monitoring templates are used to generate real code in the
process in which srcML files are converted to source code.
The monitoring module is independent of the monitored sys-
tem. These two communicate with each other by invocation
processes. Therefore, monitoring templates designed in this
section aim at providing the monitored system a general
structure to interact with the monitoring module. Monitoring
templates are different at different monitoring points. The fol-
lowing is an example of three common templates. Following
three functions are implemented in monitor.cpp written
by SRMT. This file monitor.hmust be included in source
code while compiling.

1) monitorAtFunctionBegin (funcName) is
used at the entrances of functions.

2) monitorAtFunctionEnd (funcName) is used
at the exit of functions.

3) monitorBeforeFunctionCall(callerName,
calleeName) is used at the monitoring points at
which an invocation process starts.

srcML can also transform code snippets into srcML nodes.
The above three templates can be converted to srcML nodes

114026 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

Algorithm 2 srcML File Traversal Algorithm
Input: srcML file
Output: each function’s locations (using XPath) and

properties
1: node ← xmlDocument.SelectSingleNode("/",mgr)

{root node of srcML file}
2: FUNCTION ITERATION ()
3: BEGIN
4: if node.HasChildNode and node.FirstChildNode.

Name == ‘‘xml’’ then {srcML contains several
source files}

5: if node.SelectNodes(‘‘/unit/unit’’, mgr).Count !=
0 then {find the start node of single source file}

6: node← node.ChildNodes[1] {root node in this
source file’s AST structure}

7: for all node1 in node.ChildNodes do
8: node← node1
9: call ITERATION ()

10: end for
11: end if
12: else
13: if node != null and !node.Name.StartsWith(‘‘#’’)

then
14: call RECORD () {Definition in Algorithm 3}
15: for all node1 in node.ChildNodes do
16: node← node1
17: call ITERATION ()
18: end for
19: end if
20: end if
21: END

that can be easily added to the srcML file of the original
software.

C. GENERATE SOURCE CODE WITH MONITORING CODE
This section introduces how SRMT weaves monitoring code
into monitored programs. Users can choose which functions
are to be monitored, and the SRMTs will insert monitoring
nodes into srcML files converted from the monitored pro-
gram. The insertion process entails the following steps. After
that, the srcML tool can transform the srcML file’s return to
the executable source code.

There are six steps to insert a monitoring node:

1) Determine the monitoring types of the current monitor-
ing points. Different types need different templates and
parameters.

2) Choose the proper monitoring template from those
given in Section IV-B2.

3) Copy the monitoring node in the srcML file converted
from the templates.

4) Find dynamic tags in the monitoring code. (Usu-
ally refer to parameters such as funcName,
callerName, and calleeName.)

Algorithm 3 Record Function and Invocation Properties
1: Class Function {funcName, retType, ParamList,

xPath, isMonitored}
2: Class FuncCall {callerName, calleeName, xPath,

isMonitored}
3: FUNCTION RECORD ()
4: BEGIN
5: switch (node.name:)
6: case function:
7: funcName← node.ChildNodes[‘‘name’’].Inner-

Text
8: retType← node.ChildNodes[‘‘type’’].InnerText

9: paramList← node.ChildNodes[‘‘parameter_list’’
].InnerText

10: xPath←current xPath
11: funcList. Add(new Function(funcName, retType,

paramList, xPath, false))
12: case call:
13: calleeName ← node.ChildNodes[‘‘name’’

].InnerText
14: callerName = node.FindAncestor[‘‘function’’].

ChildNodes[‘‘name’’].InnerText
15: xPath← current xPath
16: funcCall = new FuncCall(callerName,

calleeName, xPath, false)
17: if not funcCallList.Contains(funcCall) then
18: funcCallList.Add(funcCall)
19: end if
20: END

5) Replace dynamic tags with real function names, caller
names, and callee names.

6) Insert this node into the srcML file at the proper
location.

Monitoring modules in other separate files also must be
included in monitored software. These files must be copied
into the same folder with the source code and included using
the command #include monitor.h. SRMT will do this
work automatically. More details on monitoring modules are
introduced in section V.

V. DATA-COLLECTION MECHANISMS
Another important part of this method comprises data-
collection mechanisms. Two kinds of data-collection
methods are proposed in this paper for two different kinds
of analysis purposes (offline and online analysis). Data-
collection mechanisms are shown in Figure 7.

The monitoring module supplies several monitoring func-
tions to the monitored program. Once the instrumentation
is weaved in during execution of the monitored program,
these monitoring routines get called. In the example shown
in Section IV-B2, there are three monitoring functions: mon-
itorAtFunctionBegin, monitorAtFunctionEnd, and monitor-
BeforeFunctionCall.

VOLUME 8, 2020 114027

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

FIGURE 7. Data-collection mechanisms.

Each of the above three functions must obtain the
time when the program executes at the current mon-
itoring point. Two functions that are integrated in
Win32 API, QueryPerformanceFrequency and
QueryPerformanceCounter, are used to calculate the
current time using (3). Accuracy in these methods can be
microseconds (µs).

t =
CPUPerformanceCounts

CPU frequency
×MILLION (3)

These three functions obtain execution trace as shown in
Table 1. For the sake of reducing memory usage, the SRMTs
use a data structure name union to store this information.
The union structure is shown as following.

struct FuncExecBegin_LLN{
char funcName [20];
Int64 start_t;
}
struct FuncExecEnd_LLN{
char funcName [20];
Int64 end_t;
}
struct FuncCallBefore_LLN{
char callerName [20];
char calleeName [20];
Int64 t;
}
union {
struct FuncExecBegin_LLN;
struct FuncExecEnd_LLN;
struct FuncCallBefore_LLN;
}

A submodule named write2cache exists in the moni-
toring module. write2cache receives data from monitor
functions, sorts data by time, and writes these data to a
piece of memory space allocated to variable named cache,
which is used like a cache in the CPU. cache has several
elements with a length of n, and the module writes data to

cache according to the rule that the piece of data ordered
x (the x th elements of the data records) must be written into
cache[i]. i can be calculated using Eq. 4:

i = x mod n. (4)

To reduce time overhead caused by monitoring operations,
only data-collection parts (monitoring functions) work on the
same thread with the monitored system. Operations such as
storing data to the cache, writing data to the file, or sending
data to the server work on other separate threads.

Each element in cache is controlled by the semaphore
mechanism to avoid data-racing problems as Algorithm 4
shows. There is only one writing thread that can operate one
element at a time, and the element must be empty at this time.
The cache size n is a variable parameter. For example, with
the cache size n = 100, cache element 1 will be assigned to
process the run-time data numbered { 1st , 101th, . . . }. Since
the semaphore mechanism will block the monitored object,
the cache size n must be set to a big enough size to give the
writing thread enough time to empty the specific element.
The cache structure can shorten the block time brought by
the recording process. As the overheads caused by semaphore
mechanism will be discussed in Section VI.

Algorithm 4 Semaphore Mechanism
1: int getTimes← 0
2: currentGetTimes← getTimes++
3: index = currentGetTimes % size_of_cache
4: waitForSingleObject (h_Semaphore_isnull[index])
5: write data into element numbered index
6: Release (h_Semaphore_notnull[index])

The data stored in cache are processed in two ways,
offline and online analysis. More details are introduced in the
following sections.

A. OFFLINE ANALYSIS
Offline analysis does not have too many limits on time con-
sumption. Users can monitor all functions in the monitored
program as desired. Offline methods need data to be written
into files, so they can be analyzed at another period. The
SRMTs use the file stream mechanism supported in C++
Standard to create a data file to store runtime execution trace.

As Figure 7 shows, there is a pointer used to over
the elements in the cache. If the element is not empty,
data are fetched out and this element is set empty so that
write2cache can write new data in this element. After
being fetched out from the element, the data are stored in
memory and written to file periodically.

B. ONLINE ANALYSIS
The combination methods introduced in Section II-B5 put
data-collection mechanisms into the monitored program,
which refer to the monitoring module that we introduce here.
The data-analysis work must be done on separate computers

114028 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

FIGURE 8. Data-collection mechanisms for online analysis.

at the same time as monitored program execution. Thus,
the raw data that are collected from the monitored program
should be uploaded to an independent data-processing sys-
tem, to reduce the effects that monitoring mechanisms cause.
Data-collection mechanisms for online analysis used in this
paper are shown in Figure 8. The SRMTs provide users the
ability to deal with multi-threaded software or distributed
systems.

The monitored system contains the monitoring module
described in Section V. Different from that described in
Section V-A, using the file-stream mechanism, the SRMTs
use an uploading module to send data to a receiving server
instead of writing it to file. Instead of writing the data into
files, SRMTwrites the data into networking sockets. The data
is sent to receiving server via different threads, as Figure 8
shows.

The receiving server consists of several threads that map
the uploading modules in monitored systems one by one. The
server gathers run-time data from different threads, sorts them
according to the timestamp stored in each line of data, and
marks each line with the type of function entrances, function
exits, and function invocations. After initial processing, the
receiving server can upload data to a prediction server for
online prediction.

VI. EVALUATION OF THE SRMT FRAMEWORK
A. FUNCTIONAL COMPARISON WITH EXISTING
FRAMEWORK
As reviewed in Section I, a large quantity of monitoring
tools are made for JAVA programming languages. SRMT is
proposed for those C/C++ Programs running onWindowXP
SP3 or greater operating systems.

We have made a comparison focused on monitoring type
(invasive, non-invasive, or combinationmethods), monitoring

level, monitoring goals, probe code generation methods, and
supporting systems/languages among existing monitoring
frameworks in Table 2.
Most existing tools aremade for software runtime violation

checking or validation, as claimed in [59]. SRMT, proposed
in this work, are focused on monitoring software (developed
using C/C++ onWindows platform) runtime execution trace
information. Whicn like [56], [57] done for Java programs.

The probes are inserted with the help of srcML. Unlike
Aspect-oriented Programming insert probes by byte code
instrumentation [56], [57], [60], srcML make the insert pro-
cess much more easy and visible. SRMT also provides a GUI
interface to perform this.

SRMT also use multi-thread design to mitigate the over-
heads brought by the probes inserted in monitored programs.
Performance evaluation is done in VI-C.

B. EMPIRICAL EVALUATION USING ‘‘HelloWorld!’’
We build a ‘‘HelloWorld!’’ application for performance eval-
uation in this section. Function printHello call cout
from<iostream> and print ‘‘HelloWorld!’’ on the console.
The function is called by main in a loop which loop times
are adjustable. The frame of the experiment program is as in
Figure 9.
The experiments are done on a Windows laptop (Thinkpad

X1c 7th Gen), with an i5-10210U CPU and 8GB memories.
Two issues are considered in the evaluation.

• How much overheads does the monitoring process
bring to the monitored applications?

• Does the multi thread cache mechanism really can
mitigate the overheads?

We evaluate the performance of SRMT by add monitoring
probes, measure the execution duration, compare it with the

VOLUME 8, 2020 114029

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

TABLE 2. Theoretical comparison woth related works.

FIGURE 9. Frame of the ‘‘HelloWorld!’’ application.

duration without monitoring. We set the loop times from 1
to 1,000,000. The cache size is set to 100 in this experiment.
The results are as in Table 3. The duration in Table 3 with a
unit µs.

The overheads rate r can be calculated using Equation 5.
D denotes the duration of a specific execution.

r =
Dwith_probes − Dwithout_monitoring

Dwithout_monitoring
(5)

We have noticed that the duration of an application may
affected by many factors, such as Operating System func-
tioning, cache misses, other programs. We use the simple
‘‘HelloWorld!’’ application with one loop which may miti-
gate the cache misses. The application is running on a clean
machine just with SRMT deployed. Each time we run the
executable file with three instances and take the average of
three durations from different instances. We also find that

FIGURE 10. Duration changes with cache size of ‘‘HelloWorld!’’.

more than three instances will cause a considerable delay to
each applications.

A study has show that cache mechanism we proposed in
SRMT can reduce the overheads to some extent. The exe-
cution duration changes with the cache size are shown in
Figure 10.

C. EMPIRICAL EVALUATION USING TERIS
We also evaluate the SRMT framework with an open source
game application named "Teris". We also answer the above
two problems in former evaluation study. The evaluation
work is conducted from two aspects, efficiency improvements
brought by multi-thread mechanisms and overheads caused
by the invasive probes.

114030 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

TABLE 3. Evaluation of the overheads to ‘‘HelloWorld!’’ applications.

FIGURE 11. GUI of Teris.

TABLE 4. Execution Duration vs. Cache Size of Teris.

1) EXPERIMENT SETTINGS
An open source game application named ‘‘Teris’’ is cho-
sen as the experiment object. ‘‘Teris’’ is programmed using

FIGURE 12. Duration changes with cache size of Teris.

C++ and has 11 functions. The GUI of ‘‘Teris’’ is shown in
Figure 11.

To mitigate the effect of human operation time, we use the
time from the first block born to the last one landed as the
benchmark. The random shapes are also set to specific square
block as Figure 11 shows. So there don’t need any human
operations during each experiment. The base time interval of
panel refresh frequency is set to zero so the block can drop as
fast as possible.

Three functions are related with the test most. Export
Block will create a new block when the former one landed.
IsTouchBottom will check if the current block touch the
bottom line (landed). refreshPanelwill refresh the panel
at a specific frequency so the user can see the block dropping
process. Equation 3 is also used to obtain duration in this
section.

2) EFFICIENCY IMPROVEMENTS BROUGHT BY
MULTI-THREAD MECHANISMS
As introduced in Section V, multi-thread mechanisms have
been used to improve the efficiency of runtime monitor-
ing of SRMT. Probe insertion process have been separated
from data recording process using different threads, shown in
Figure 7.

A key variable parameter in this mechanism is the size of
the cache. We set cache size as different values from 1 to

VOLUME 8, 2020 114031

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

TABLE 5. Execution Duration vs. Cache Size.

TABLE 6. 10 functions chosen for monitoring.

1,000,000 (decided by the limit of themax number of an array
in C++).

The execution duration changes with the cache size are
shown in Figure 12 and Table 4.
The results show that the cache mechanism do can improve

the monitoring performance. The cache size can mitigate the
recording delay but when the size is big enough, cache is not
a limit to the performance.

3) OVERHEADS CAUSED BY INVASIVE PROBES
We use ‘‘Teris’’ to evaluate the performance of SRMT.
The three key functions are monitored, respectively
and wholly. In this process, the cache size are set
to 100.

The results are shown in Table 5. The overheads are
depending on the calling frequency of the monitored func-
tions. exportBlock is called when creating a new block,
while the other two are called at each step dropping and each
time refreshing.

VII. CASE STUDY
Nginx is a HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server, originally writ-
ten by Sysoev [63]. Nginx is famous for its high performance,
stability, and low resource overhead, so it is widely applied
in many areas. Nginx has high reliability requirements, and
meets the characteristics of complex software. Nginx is also
open-source software and is totally free. Thus, we chose

114032 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

FIGURE 13. Main panel of SRMT.

FIGURE 14. SRMT monitoring-point selection GUI.

FIGURE 15. Example node of monitoring function.

Nginx (version 1.12.2) as an experimental object system and
used the SRMTs to monitor its execution process.

A. OBTAIN MONITORING POINTS AND INSERT
MONITORING CODE
First, we created a compressed document of Nginx
source code. Using the command ‘‘srcML src.zip -o
src.xml’’, the source code can be parsed and transformed
to srcML format. Using SRMTs to analyze the source
code in srcML format, 2490 functions and 11059 function
invocations were extracted. Duplicate results were removed

FIGURE 16. Monitoring points in srcML file.

FIGURE 17. srcML file after insertion.

in this process. The main panel of the SRMTs is shown in
Figure 13.

Ten functions and 26 function invocations were cho-
sen to be monitored in this case study, and are listed in
Tables 6 and 7. The functions and invocations should be
selected according to the failure mechanisms obtained from
previous failure analysis work as described in [50].

the failure mechanisms defined in [50] are as in Equation 6.
It means that when the duration of function A larger than
300 ms the software will failure, or when the duration of
function B larger than 200 and call times between A and B
larger than 10 the software will failure.

fm =

{
DurationfuncA > 300,
DurationfuncB > 200 ∩ CalltimesA→B > 10.

(6)

These monitoring points can be chosen in the SRMTs’
monitoring-point selection GUI, as Figure 14 shows.

After the monitoring-point selection process, the monitor-
ing code is inserted. The SRMTs insert monitoring code and
transform the srcML file back to source code. An example

VOLUME 8, 2020 114033

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

TABLE 7. 26 pairs of function invocations chosen for monitoring.

FIGURE 18. Source code after insertion.

node of a monitoring function waiting to be inserted is shown
in Figure 15. Monitoring-point examples in srcML are shown
in Figure 16.

An example of the srcML file after insertion is shown in
Figure17.

B. GENERATE SOURCE CODE
The SRMTs will automatically generate source code after
inserting monitoring code using the command defined in the
srcML tools. The file structure will also be reconstructed
as it used to be. Two files of the monitoring mod-
ule, m_monitor.cpp and m_monitor.h, will be auto-
matically copied to the same folder with source code.

FIGURE 19. Receiving server.

FIGURE 20. Data file.

The source code after insertion is shown in Figure 18.

C. COLLECT RUNTIME DATA
The receiving server collects runtime data as Figure 19 shows.
An example of the data files created by the file stream is
shown in Figure 20.

114034 VOLUME 8, 2020

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

VIII. CONCLUSIONS
This study focuses on software runtime monitoring, which
is an important issue in research domains such as failure
prediction and runtime verification. A general framework for
runtime monitoring has been proposed to introduce the total
process described in this work. Two key problems, instru-
mentation and data collection, are solved herein. We also
provide a feature that allows users to choose those functions
to be monitored. In this way, overhead can be reduced further.
A software prototype named SRMT is built and used in a case
study to show the feasibility of this work.

Since invasive data-collection and export mechanisms will
inevitably cause time delay and then affect system perfor-
mance, more non-invasive methods must be developed in the
future. In addition, the effect on system performance also
must be analyzed.

REFERENCES
[1] R. W. Butler and G. B. Finelli, ‘‘The infeasibility of quantifying the

reliability of life-critical real-time software,’’ IEEE Trans. Softw. Eng.,
vol. 19, no. 1, pp. 3–12, Jan. 1993.

[2] S. D. Johnson, ‘‘Formal methods in embedded design,’’ Computer, vol. 36,
no. 11, pp. 104–106, Nov. 2003.

[3] S. Kong, M. Lu, and L. Li, ‘‘Fault propagation analysis in software inten-
sive systems: A survey,’’ in Proc. 2nd Int. Conf. Rel. Syst. Eng. (ICRSE),
Jul. 2017, pp. 1–9.

[4] A. E. Goodloe and L. Pike, ‘‘Monitoring distributed real-time systems:
A survey and future directions,’’ Nat. Aeronaut. Space Admin., Langley
Res. Center, Hampton, VA, USA, Tech. Rep. NASA/CR-2010-216724,
2010.

[5] D. Heffernan and C. MacNamee, ‘‘Runtime observation of functional
safety properties in an automotive control network,’’ J. Syst. Archit.,
vol. 68, pp. 38–50, Aug. 2016.

[6] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner,
and H. Zeisel, ‘‘ReMinds: A flexible runtime monitoring framework for
systems of systems,’’ J. Syst. Softw., vol. 112, pp. 123–136, Feb. 2016.

[7] R. Medhat, B. Bonakdarpour, D. Kumar, and S. Fischmeister, ‘‘Runtime
monitoring of cyber-physical systems under timing and memory con-
straints,’’ ACM Trans. Embedded Comput. Syst., vol. 14, no. 4, pp. 1–29,
Dec. 2015.

[8] K. Vaidyanathan and K. S. Trivedi, ‘‘A measurement-based model for
estimation of resource exhaustion in operational software systems,’’ in
Proc. 10th Int. Symp. Softw. Rel. Eng., 1999, pp. 84–93.

[9] G. A. Hoffmann, K. S. Trivedi, and M. Malek, ‘‘A best practice guide to
resource forecasting for computing systems,’’ IEEE Trans. Rel., vol. 56,
no. 4, pp. 615–628, Dec. 2007.

[10] A. Pellegrini, P. D. Sanzo, and D. R. Avresky, ‘‘A machine learning-
based framework for building application failure prediction models,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshop, May 2015,
pp. 1072–1081.

[11] N. Mahadevan, A. Dubey, and G. Karsai, ‘‘Application of software health
management techniques,’’ in Proc. 6th Int. Symp. Softw. Eng. Adapt. Self-
Managing Syst. (SEAMS), 2011, pp. 1–10.

[12] J. Schumann, T. Mbaya, O. Mengshoel, K. Pipatsrisawat, A. Srivastava,
A. Choi, and A. Darwiche, ‘‘Software health management with Bayesian
networks,’’ Innov. Syst. Softw. Eng., vol. 9, no. 4, pp. 271–292, Dec. 2013.

[13] M. Leucker and C. Schallhart, ‘‘A brief account of runtime verification,’’
J. Log. Algebr. Program., vol. 78, no. 5, pp. 293–303, May 2009.

[14] R. Rabiser, S. Guinea, M. Vierhauser, L. Baresi, and P. Grünbacher,
‘‘A comparison framework for runtime monitoring approaches,’’ J. Syst.
Softw., vol. 125, pp. 309–321, Mar. 2017.

[15] N. Delgado, A. Q. Gates, and S. Roach, ‘‘A taxonomy and catalog of
runtime software-fault monitoring tools,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 12, pp. 859–872, Dec. 2004.

[16] B. Alpern and F. B. Schneider, ‘‘Verifying temporal properties without
temporal logic,’’ ACM Trans. Program. Lang. Syst. (TOPLAS), vol. 11,
no. 1, pp. 147–167, Jan. 1989.

[17] Z. Han, ‘‘Research on runtime monitoring for composite Web services,’’
M.S. thesis, Graduate School, Dept. Comput. Sci. Technol., Nat. Univ.
Defense Technol., Changsha, China, 2011.

[18] J. J. P. Tsai, K.-Y. Fang, H.-Y. Chen, andY.-D. Bi, ‘‘A noninterferencemon-
itoring and replay mechanism for real-time software testing and debug-
ging,’’ IEEE Trans. Softw. Eng., vol. 16, no. 8, pp. 897–916, Aug. 1990.

[19] P. S. Dodd and C. V. Ravishankar, ‘‘Monitoring and debugging distributed
realtime programs,’’ Software, Pract. Exper., vol. 22, no. 10, pp. 863–877,
Oct. 1992.

[20] P. V. Bro, ‘‘A system for detecting network intruders in real-time,’’ in
Proc. 7th USENIX Secur. Symp., 1998. [Online]. Available: https://www.
usenix.org/legacy/publications/library/proceedings/sec98/paxson.html

[21] K. Bhargavan and C. A. Gunter, ‘‘Requirements for a practical network
event recognition language,’’ Electron. Notes Theor. Comput. Sci., vol. 70,
no. 4, pp. 1–20, Dec. 2002.

[22] D. Luckham, S. Sankar, and S. Takahashi, Two Dimensional Pinpointing:
An Application of Formal Specification to Debugging Packages. Stanford,
CA, USA: Stanford Univ., 1989.

[23] S. E. Chodrow, F. Jahanian, andM. Donner, ‘‘Run-time monitoring of real-
time systems,’’ in Proc. 12th Real-Time Syst. Symp., 1991, pp. 74–75.

[24] K. Havelund and G. Roşu, ‘‘Synthesizing monitors for safety properties,’’
in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst. Berlin,
Germany: Springer, 2002, pp. 342–356.

[25] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, ‘‘Hardware runtime
monitoring for dependable COTS-based real-time embedded systems,’’ in
Proc. Real-Time Syst. Symp., Nov. 2008, pp. 481–491.

[26] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, ‘‘Runtime
assurance based on formal specifications,’’ in Proc. Int. Conf. Parallel
Distrib. Process. Techn. Appl. (PDPTA), Jul. 1999.

[27] S. Sankar and M. Mandal, ‘‘Concurrent runtime monitoring of formally
specified programs,’’ Computer, vol. 26, no. 3, pp. 32–41, Mar. 1993.

[28] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky, ‘‘Formally specified monitoring of temporal properties,’’
in Proc. 11th Euromicro Conf. Real-Time Syst. Euromicro (RTS), 1999,
pp. 114–122.

[29] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A.W. Smith,Distributed Real-Time
Systems: Monitoring, Visualization, Debugging, and Analysis. New York,
NY, USA: Wiley, 1996.

[30] V. Paxson, ‘‘Bro: A system for detecting network intruders in real-time,’’
Comput. Netw., vol. 31, nos. 23–24, pp. 2435–2463, Dec. 1999.

[31] N. Grigoropoulos, S. Lalis, andM. Koutsoubelias, ‘‘An event-based frame-
work for the specification and runtime checking of timing constraints in
wireless sensor and actuator networks,’’ in Proc. IEEE Int. Conf. Data Sci.
Data Intensive Syst., Dec. 2015, pp. 123–130.

[32] O. Baldellon, J.-C. Fabre, and M. Roy, ‘‘Minotor: Monitoring timing and
behavioral properties for dependable distributed systems,’’ in Proc. IEEE
19th Pacific Rim Int. Symp. Dependable Comput., Dec. 2013, pp. 206–215.

[33] F. Jahanian, R. Rajkumar, and S. C. V. Raju, ‘‘Runtime monitoring of
timing constraints in distributed real-time systems,’’ Real-time Syst., vol. 7,
no. 3, pp. 247–273, Nov. 1994.

[34] N. Grigoropoulos, ‘‘Specification and runtime checking of timing con-
straints in distributed event-based applications,’’ Ph.D. dissertation,
Dept. Elect. Comput. Eng., Univ. Thessaly, Volos, Greece, 2017.

[35] A. Dunkels, O. Schmidt, N. Finne, J. Eriksson, F. Österlind, and
N. T. M. Durvy. (2011). The Contiki OS: The Operating System for The
Internet of Things. [Online]. Available: http://www.contikios.org

[36] E. Bodden, P. Lam, and L. Hendren, ‘‘Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time,’’ in Runtime Verifi-
cation. Berlin, Germany: Springer, 2010, pp. 3–197.

[37] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, ‘‘An overview
of the MOP runtime verification framework,’’ Int. J. Softw. Tools Technol.
Transf., vol. 14, no. 3, pp. 249–289, Jun. 2012.

[38] C. A. R. Hoare, ‘‘Assertions: A personal perspective,’’ IEEE Ann. Hist.
Comput., vol. 25, no. 2, pp. 14–25, Apr. 2003.

[39] L. A. Clarke and D. S. Rosenblum, ‘‘A historical perspective on runtime
assertion checking in software development,’’ ACM SIGSOFT Softw. Eng.
Notes, vol. 31, no. 3, pp. 25–37, May 2006.

[40] Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell, and J. Waterhouse,
‘‘Runtime monitoring of Web service conversations,’’ in Proc. Conf. Cen-
ter Adv. Stud. Collaborative Res. (CASCON), 2007, pp. 2–17.

[41] N. Kosmatov, G. Petiot, and J. Signoles, ‘‘An optimized memory moni-
toring for runtime assertion checking of C programs,’’ in Proc. Int. Conf.
Runtime Verification. Berlin, Germany: Springer, 2013, pp. 167–182.

VOLUME 8, 2020 114035

S. Kong et al.: Runtime Monitoring of Software Execution Trace: Method and Tools

[42] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, ‘‘Frama-C,’’ in Proc. Int. Conf. Softw. Eng. Formal Meth-
ods. Springer, 2012, pp. 233–247.

[43] K. Mahbub and G. Spanoudakis, ‘‘Run-time monitoring of requirements
for systems composed of Web-services: Initial implementation and evalua-
tion experience,’’ in Proc. IEEE Int. Conf. Web Services (ICWS), Jul. 2005,
pp. 257–265.

[44] H. Lu and A. Forin, ‘‘The design and implementation of P2V, an archi-
tecture for zero-overhead online verification of software programs,’’
Microsoft Res., Microsoft Corp., Redmond, WA, USA, Tech. Rep. MSR-
TR-2007-99, Aug. 2007.

[45] I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan, ‘‘A monitoring and checking framework for run-time
correctness assurance,’’ in Proc. Korea-U.S. Tech. Conf. Strategic Technol.,
Vienna, VA, USA, Oct. 1998. [Online]. Available: https://repository.
upenn.edu/cis_papers/296/?utm_source=repository.upenn.edu%2Fcis_
papers%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages

[46] O. Sokolsky, U. Sammapun, I. Lee, and J. Kim, ‘‘Run-time checking of
dynamic properties,’’ Electron. Notes Theor. Comput. Sci., vol. 144, no. 4,
pp. 91–108, 2006.

[47] J. Moe and D. A. Carr, ‘‘Using execution trace data to improve distributed
systems,’’ Softw., Pract. Exper., vol. 32, no. 9, pp. 889–906, 2002.

[48] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘Extracting
sequence diagram from execution trace of java program,’’ in Proc. 8th Int.
Workshop Princ. Softw. Evol. (IWPSE), 2005, pp. 148–151.

[49] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, ‘‘Feature location via
information retrieval based filtering of a single scenario execution trace,’’
in Proc. 22nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), 2007,
pp. 234–243.

[50] L. Li, M. Lu, and T. Gu, ‘‘Extracting interaction-related failure indicators
for online detection and prediction of content failures,’’ in Proc. IEEE
Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Memphis, TN, USA,
Oct. 2018, pp. 278–285.

[51] M. L. Collard, M. J. Decker, and J. I. Maletic, ‘‘SrcML: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool
demonstration,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2013,
pp. 516–519.

[52] R. E. Bryant, O. D. Richard, and O. D. Richard, Computer Systems:
A Programmer’s Perspective, vol. 2. Upper Saddle River, NJ, USA:
Prentice-Hall, 2003.

[53] S. Kong, M. Lu, and L. Li, ‘‘Tracing error propagation in C/C++ appli-
cations,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion
(QRS-C), Jul. 2018, pp. 308–315.

[54] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim, ‘‘Jass—Java
with assertions,’’ Electron. Notes Theor. Comput. Sci., vol. 55, no. 2,
pp. 103–117, 2001.

[55] M. Karaorman and P. Abercrombie, ‘‘JContractor: Introducing design-
by-contract to java using reflective bytecode instrumentation,’’ Formal
Methods Syst. Design, vol. 27, no. 3, pp. 275–312, Nov. 2005.

[56] K. Havelund and G. Roşu, ‘‘Efficient monitoring of safety
properties,’’ Int. J. Softw. Tools Technol. Transf., vol. 6, no. 2,
pp. 158–173, Aug. 2004. [Online]. Available: https://link-springer-
com-s.vpn.buaa.edu.cn:8118/article/10.1007/s10009-003-0117-6

[57] K. Havelund and G. Roşu, ‘‘An overview of the runtime verification
tool java PathExplorer,’’ Formal Methods Syst. Design, vol. 24, no. 2,
pp. 189–215, Mar. 2004.

[58] K. Havelund, ‘‘Runtime verification of C programs,’’ in Testing of Software
and Communicating Systems, K. Suzuki, T. Higashino, A. Ulrich, and
T. Hasegawa, Eds. Berlin, Germany: Springer, 2008, pp. 7–22.

[59] D. Jin, P. O. Meredith, C. Lee, and G. Rosu, ‘‘JavaMOP: Efficient paramet-
ric runtime monitoring framework,’’ in Proc. 34th Int. Conf. Softw. Eng.
(ICSE). IEEE Press, Jun. 2012, pp. 1427–1430.

[60] Z. Chen, Z. Wang, Y. Zhu, H. Xi, and Z. Yang, ‘‘Parametric runtime veri-
fication of C programs,’’ in Tools and Algorithms for the Construction and
Analysis of Systems, M. Chechik and J.-F. Raskin, Eds. Berlin, Germany:
Springer, 2016, pp. 299–315.

[61] A. Bauer, M. Leucker, and C. Schallhart, ‘‘Model-based runtime analy-
sis of distributed reactive systems,’’ in Proc. Austral. Softw. Eng. Conf.
(ASWEC), 2006, p. 10.

[62] J. Zhou, Z. Chen, J.Wang, Z. Zheng, andW. Dong, ‘‘A runtime verification
based trace-oriented monitoring framework for cloud systems,’’ in Proc.
IEEE Int. Symp. Softw. Rel. Eng. Workshops, Naples, Italy, Nov. 2014,
pp. 152–155.

[63] D. DeJonghe, Compelte NGINX Cookbook. Newton, MA, USA:
O’Reilly Media, 2017.

SHIYI KONG received the B.S. degree from the
School of Reliability and Systems Engineering,
Beihang University, China, in 2015, where he is
currently pursuing the Ph.D. degree. His main
research interests include software reliability engi-
neering, software failure prediction, and software
health management.

MINYAN LU (Member, IEEE) has been a
Professor and a Ph.D. Supervisor with Beihang
University, China, since 2006. She is currently the
Chief of the Software Reliability Unit, Key Lab-
oratory on Reliability and Environmental Engi-
neering Technology, School of Reliability and
Systems Engineering, Beihang University. Her
main research interests include software reliability
engineering, software reliability testing, software
safety, and software dependability.

LUYI LI received the B.S. degree in computer
science and technology from the Beijing Univer-
sity of Technology, China, in 2010, and the Ph.D.
degree in system engineering from Beihang Uni-
versity, China, in 2019. He is currently an Engineer
with the China Academy of Electronics and Infor-
mation Technology, China Electronics Technology
Group Corporation, Beijing. His main research
interests include software reliability engineering
and software health management.

LIHUA GAO received the B.S. degree from the
College of Information Technology, Hebei Nor-
mal University, China, in 2014, and the master’s
degree from the School of Reliability and Systems
Engineering, Beihang University, China, in 2018.
She is currently an Engineer with the China North
Vehicle Research Institute, Beijing, China. Her
research interests include software runtime mon-
itoring techniques and management information
systems.

114036 VOLUME 8, 2020

