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ABSTRACT Real application problems in physics, engineering, economics, and other disciplines are often
modeled as differential equations. Classical numerical techniques are computationally expensive when we
require solutions to our mathematical problems with no prior information. Hence, researchers are more inter-
ested in developing numerical methods that can obtain better solutions with fewer efforts and computational
time. Heuristic algorithms are considered suitable candidates for such type of problems. In this research,
we have developed a new neuroevolutionary algorithm that combines the power of feed- forward artificial
neural networks (ANNs) and a modern metaheuristic, the Symbiotic Organism Search (SOS) algorithm.
With our new approach, we have analyzed the simultaneous surface convection and radiation during heat
transfer in different models of fins/ heat exchangers. Longitudinal fins are considered with concave parabolic,
rectangular and trapezoidal shapes. We have analyzed our problem in two scenarios and six sub-cases.
Our solutions are of high quality, with minimum residual errors in all cases. We have established the
quality of our results by calculating values of different performance indicators like Root-mean-square error
(RMSE), Absolute error (AE), Generational distance (GD), Mean absolute deviation (MAD), Nash—Sutcliffe
efficiency (NSE), Error in Nash—Sutcliffe efficiency (ENSE). Statistical and graphical analysis of our results
suggests that our approach is suitable for handling real application problems. We have compared our results
with state-of-the- art results, and the outcome of our analysis points to the superiority of our approach.

INDEX TERMS Approximate solutions, artificial neural networks, heat transfer analyses, longitudinal fins,
metaheuristics, symbiotic organism search optimizer.

I. INTRODUCTION Classical and analytical approaches are not efficient in

Differential equations are essential to model many of the
physical, economic, and engineering problems. Many publi-
cations have appeared in literature by considering solutions to
the differential equations using classical numerical and ana-
lytical techniques. Scientists and engineers are continuously
studying the existing and new methods for solving differential
equations (DEs). Real-life problems often involve singular,
nonlinear, and higher-order ordinary differential equations
(ODEs).
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obtaining solutions to ODEs. Therefore, new approximate
techniques are used to obtain better approximate solutions to
complex problems. Many solution techniques are designed
and implemented to solve design engineering problems, such
as the homotopy analysis method (HAM) [1], the method
of bilaterally bounded (MBB) [2], the variational iteration
method (VIM) [3], [4], and the modified Adomian decom-
position method (ADM) [5], [6].

Zhou [7] introduced the differential transform method
(DTM), in which Taylor series solutions are used to get
approximate solutions of ODEs. DTM is widely used to solve
initial value problems and many nonlinear design engineering
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problems [8]-[11]. In recent studies, DTM is hybridized
with the finite difference method and is used for solving
ODEs. Approximate solutions for different problems are
reported in [12]-[14]. Other approximate techniques, includ-
ing hybrids of homotopy perturbation method, Variational
iterative method, DTM, and Padé approximation technique,
are developed to overcome the weaknesses of its earlier ver-
sions [15].

Many researchers have attempted to solve linear and non-
linear differential and integro-differential equations by using
approximate methods [16]-[20]. However, all these methods
are problem-specific and do not apply to every problem.
Hence, in the case of design engineering problems, these
techniques fail to get solutions of good quality.

In literature, there are many techniques for solving ODEzs,
but none of these techniques fulfills all requirements of engi-
neers. In design engineering, most of the problems contain
highly nonlinear and complex ODEs. Researchers are contin-
uously developing numerical methods that can solve ODEs
with arbitrary boundaries and initial points. For instance,
DTM was applied to solve the Glauert-jet Problem [11], but
results were not accurate. Moreover, VIM and HPM tech-
niques failed to obtain results for kinematics of a particle
in fluids. It was observed that this failure was due to their
parameter-dependent nature [21], [22]. All techniques dis-
cussed so far are collectively called classical methods.

Therefore, metaheuristic techniques are better alternatives,
which are capable of solving differential equations in less
time and can obtain better results. Among these techniques,
Nature-inspired algorithms are considered as best solvers.
These techniques are simulating Natural phenomena and are
frequently applied to solve real application problems, and
near-optimal results are found [23]-[26].

Recently, numerous applications of Nature-inspired algo-
rithms appeared in literature [27]-[33]. These techniques are
used to obtain solutions to optimization problems involving
ODEs and nonlinear complex objective functions. Cuckoo
search (CS) algorithm is used to find design solutions to
porous fin problems [30]. The Whale optimization algo-
rithm (WOA) is applied to find the optimal design of plate-fin
heat exchangers [31]. The plant propagation algorithm (PPA)
is implemented to solve design engineering problems [34],
[35], and the optimization problem of optimal operation of
directional overcurrent relays is studied in [36]. A theoretical
analysis of PPA is discussed with details in [37]. A hybrid soft
computing technique combining the artificial neural networks
and fractional-order DPSO algorithm is applied to analyze the
corneal shape model of eye surgery [28]. A neuroevolution-
ary approach is used to analyze the oscillatory behavior of
heart [27].

Nowadays, mathematical models of real applications are
represented as ODEs and different metaheuristics are been
designed to solve these problems. Numerical optimization
techniques like genetic algorithm [38], [39], different vari-
ants of particle swarm optimization (PSO) [40]-[42], inte-
rior point algorithm [43], evolutionary programming [44]
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and others [45], [46] are used to solve mathematical models
involving ODEs and PDEs. In [41], a variant of PSO is
designed and applied to solve nonlinear ODEs.

Soft computing techniques are applied to generate visible
videos from raw footage, which has many applications, like,
video compression, movie production, slow-motion filming,
video surveillance, and forensic analysis [47]. A sparse, fully
convolutional network (FCN) is proposed for face label-
ing. The problem of substantial redundancy in parameters
and connections is resolved with the help of FCN [48].
An improved version of FCN is designed to solve the face
labeling problem [49]. A synchronization issue related to
delayed memristive neural networks (MNNs), including leak-
age delay and parameter variations via event-triggered con-
trol, is studied in [50]. Another critical aspect of synchroniza-
tion in multiple MNNs with cyber-physical attacks through
distributed event-triggered control is considered in [51].

Recently, single layer Chebyshev ANNs with regression-
based weights are used to present solutions to ODEs [52].
A new approach is recently introduced in [53], and
Lane-Emden (LE) equations are solved. The genetic algo-
rithm (GAs) and the Interior-point algorithm (IPA) are used
as dual optimizers. This approach makes the process slow
and consumes a higher number of function evaluations and
computational resources by both algorithms. These solutions
involve unknown design weights, and activation functions
like log-sigmoid function, radial basis function, hyperbolic
functions, and Morlet wavelet function [53], [54]. This issue
has inspired the authors of this manuscript to design a
well balanced single optimizer based efficient soft comput-
ing procedure for calculating these unknown weights and
obtain high-quality solutions to real application problems
involving ODEs. Fitness functions are designed to evalu-
ate the fitness of each candidate solution. These functions
are minimized by efficient metaheuristic the SOS-algorithm.
We have analyzed two scenarios and six sub-cases of a
real application problem related to fin heat transfer [55].
We have analyzed the heat transfer in fins by looking at
simultaneous surface convection and radiation in differ-
ent models of fins. Longitudinal fins are considered with
concave parabolic, rectangular and trapezoidal shapes; see
FIGURE (2).

Our key contributions are given as follows:

« A new soft computing procedure is designed by combin-
ing ANNs and an efficient metaheuristic the Symbiotic
Organism Search (SOS) algorithm, and it is named as
ANN-SOS algorithm, see FIGURES (1) and (3).

o Designs of longitudinal fins (heat exchangers) are ana-
lyzed for heat transfer by looking at their concave
parabolic, rectangular and trapezoidal shapes; see FIG-
URE (2).

o Mathematical model of longitudinal fins is derived,
and the problem is solved and analyzed by using the
ANN-SOS algorithm for rectangular, trapezoidal, and
concave parabolic shapes.
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FIGURE 1. Graphical abstract of our neuroevolutionary approach.
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(b) Trapezoidal Profile.

(a) Rectangular Profile.

(c) Concave Parabolic Profile.

FIGURE 2. Different longitudinal fin shapes considered in this study.

o To validate the mathematical model and the ANN-SOS
algorithm, we have considered two main scenarios with
six sub-problems, see FIGURE (4).

o Performance indicators are used to evaluate the quality
of our solutions and the efficiency of our soft com-
puting approach the ANN-SOS procedure. Values of
Root mean squared errors (RMSE), Absolute errors
(AE), Generational distance (GD), Mean absolute devi-
ation (MAD), Nash-Sutcliffe efficiency (NSE), Error in
Nash-Sutcliffe efficiency ENSE) are calculated for all
six sub-problems to validate the mathematical model
and assure that we have obtained the best solutions
through our procedure.

This paper is organized into six sections. In Section 1,
the introduction to literature and key contributions are
given. Section 2 contains the problem formulation. Sec-
tions 3 present the design of our algorithm ANN-SOS.
Section 4 elaborates on the performance indicators used to
validate our results. Section 5 is about results and discussion.
In this section, we have presented the six sub-problems,
detailed series solutions, unknown design weights obtained
by ANN-SOS, graphical illustrations based on performance
indicators, statistical analysis in terms of mean, best, and stan-
dard deviation for 100 independent simulations. Frequency
histograms with normal distributions are given to support our
claims. Section 6 concludes this research with future research
topics.

Il. PROBLEM FORMULATION

Heat exchangers play a vital role in heat dissipation from a
hot surface. Rectangular fins are useful in many engineering
designs. Rectangular fins are designed to cover the surface
convection and radiation phenomena during heat transfer
from primary hot surfaces. In this paper, we have analyzed
the longitudinal fin models with three shapes rectangular,
concave parabolic, and trapezoidal.
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To present a mathematical model for this analysis, different
symbols are used as follows:

o Length of a straight fin is denoted by L.

o T} shows heat drawn by fin from base surface and 7, is
the heat transfer by convection to the surrounding, T is
heat radiation to an efficient sink attached with fins.

« k is the thermal conductivity of longitudinal fin.

e h and ¢ are convection heat transfer coefficient and
emissivity of fin’s surface, respectively.

h and ¢ are temperature dependent and represented as in
Equations (1), (2) and (3).

k = ki1 4+a(T —T,)], (1)
T-T, n

h:h”[n—TJ ’ @

e = &l + BT — Ty, 3)

where k, represents the conduction of heat at temperature
T,. (Tp — T,) is the difference in temperatures and Ay, is the
convection heat transfer coefficient. ¢ is the emissivity at
fin’s surface with temperature 7. The variation in thermal
conductivity and emissivity on the surface of fin are scaled
by « and S, respectively.

As we are analyzing the longitudinal fins, thus with
one-dimensional heat conduction, we can represent the
energy equilibrium for straight fins as in Equation (4) [38]:

o T — T L hT_T”mT T,)
adx|:[ +a(T —T,)] (X)dxi|_ b[Tb_Ta] (T -7,

—oe[l 4+ BT —THOIT* —~TH =0, &)

where t(x) = 1, + §((x/L)* — 1), which is local semi-fin
thickness. The values of n for rectangular, trapezoidal and
concave parabolic profiles are 0, 1 and 2 respectively. The
quantities #; and § define the semi-base thickness and fin taper
respectively, see FIGURE 2. The boundary conditions for the
problem are given as:

T(L) = Tp, )
T'(0) = 0, (6)

where Tj is the constant base temperature. Assuming the
dimensionless parameters as follows:

T T, Ty x )
9 = > Ga:_5 052_5 = 7 C=_7
Ty Ty Ty L 1p
hyL*T}"
Ne=———"—— A=0aoaTp, B=pTy,
katp(Tp — To)"
oe, LT} 1
N, = ——2, = —. 7
v P 14 I @)

Therefore, using the dimensionless parameters the ODE for
the problem of three profiles takes the form [38]:

d [1+A9—9][1+CX"—1]d9 — N,
e 0 — 64) ( N .
6 — 0" = N,[1 4+ B© — 6916 —6H =0, (8)
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TABLE 1. Notations and abbreviations used in this paper.

Notation, Abbreviation Description

| | |
| NNs | Neural networks |
| ANNs | Artificial neural networks |
| MBB | Method of bilaterally bounded |
| ADM | Adomian decomposition method |
| HPM | Homotopy perturbation method |
| DTM | Differential transform method |
‘ PSO ‘ Particle swarm optimization ‘
DPSO Darwinian particle swarm opti-
mization
| CS | Cuckoo search |
| SOS | Symbiotic organism search |
| RMSE | Root-mean-square error |
| AE | Absolute error |
‘ GD ‘ Generational distance ‘
| MAD | Mean absolute deviation |
| NSE | Nash—Sutcliffe efficiency |
| ENSE | Error in Nash-Sutcliffe efficiency |
| PV | Parasite vector |
| MV | Mutual vector |
| L | Length |
| Ty | Temperature at base |
| Ta | Temperature at surrounding |
| Ts | Temperature at sink |
\ | Thermal conductivity |
| | Heat transfer coefficient |
| e | Fin’s surface emissivity |
| to | semi-base thickness |
| A | Thermal conductivity parameter |
| B | Emissivity parameter |
| Ne | Convection-conduction parameter |
| N | Radiation-conduction parameter |
| Oa | Ratio of temperatures Ty, to T3 |
| 65 | Ratio of temperatures T’s to T}, |
| C | Fin taper ratio |
| es | Emissivity with temperature T |

and the boundary conditions are given as:
o(l)=1, 6'(0)=0. C)

Equation (8) shows that the thermal properties such as
temperature distribution, heat transfer rate, efficiency and
effectiveness of longitudinal fins depend on eight parame-
ters that are thermal conductivity parameter (A), emissivity
parameter (B), convection-conduction parameter (N.), the
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exponent (m) associated with convective heat transfer coef-
ficient, radiation-conduction parameter (N, ), 6, which is the
ratio of temperature at surrounding (7}) to temperature at base
(Tp), 6y is ratio of temperature at sink (7§) to temperature at
base (7}) and fin taper ratio (C).

A. REFERENCE SOLUTIONS

For validation of our results and the ANN-SOS algorithm,
we have used standard reference solutions, we have consid-
ered a simple case with the values of the following parameters
N, = 0,A = 0 and m = 0 used in Equation (8). The exact
analytical solutions for the three profiles are given as [38]:
For rectangular profile:

0(X) = CreVNX 1 CeVNX g, (10)

For trapezoidal profile:

0(X) = C]JO(Z\/—NC (#)) +C2Yp

><(2\/—Nc <—1 +CX -~ D)) + 04, (11)

C2

For concave parabolic profile:

o
000 = ey Zere=r)

cx
N AU

where Jy and Y, denote the 0”-order Bessel functions of the
first and second kind, respectively. In Equation (12), C; and
C are the constants that can be calculated using the boundary
conditions. P and Q are Legendre polynomials of the first and
second kind, respectively.

Ill. THE ANN-SOS APPROACH

In our paper, we have considered a real-life problem. The
mathematical model of longitudinal heat transfer fins is
derived and solved. An ANN-based series solution has
been developed with log-sigmoid as activation function, see
FIGURE 3, and the training of unknown weights in ANNs
is performed by the Symbiotic Organism Search (SOS) algo-
rithm. We name this approach as the ANN-SOS algorithm.

A. CONSTRUCTION OF ANN MODEL
A generalized approximate solution for the problem consid-
ered in this research and its nth derivative is given as [39]:

J

0X) =) af (@X + B, (13)
i=1
a” 0(X) = XJ: Ao + ) (14)
axn = - Qi anf (w; Bi)

here «;, B and w; are weights of ANN that are real and
bounded, f represents the activation function, and j represents
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the number of neurons in ANN. The log-sigmoid function has
been used as activation function for ANN which is given as:

f@ == (15)

For the proposed neural model, the approximate solution and
its second derivative is given by:

A / 1
0(X) = Zai <1+Twlx+ﬂl)) ) (16)

i=1
] —(@iX+B)

A~ e

X)) =) aiwj | ———— |, (D
1 (1 + g—(wiX+ﬁi))

J
é‘//(X) = Z O[,'C!)iz ( (
i=1

1+ e*(w;X+ﬂ;))3
e—(@iX+pi) >
(1+ e—(wix+ﬂ,-))2 '

Do~ 2AwiX+Bi)

(18)

B. OBJECTIVE FUNCTION
The sum of mean squared errors E; and E; is defined as the
objective function which is given as:

minimize E =FE; + E», (19)
where E; is associated to ODE in the problem and E is
associated to initial or boundary conditions. For the problem

of longitudinal fin heat transfer, E; and E, are given as:

N
1 d N
£ = N—Hmzo(ﬁ[[l +ACn = 0]

+C(X" — 1)]@,’,,} — N6 — 6"t
2
—N,[1+ B@ - 6,)1(0* — 9?)) : (20)

1
Ey = ((0:(X) - 1%+ (05X))%). 21)

In Equations (16,17,18), weights «, w and g are adjustable
parameters that are adjusted such that £ and E, approach to
zero, then E also approaches zero. Hence, the given solution
6(X) of the problem will represent the near exact solution
0(X).

C. THE SOS OPTIMIZER

The Symbiotic Organism Search (SOS) algorithm is used for
training the neural networks to obtain the best weights. The
SOS algorithm was first presented in [56]. SOS algorithm
is inspired by different mutual relationships among organ-
isms for their survival in the ecosystem. Based on different
relationships, three phases of the algorithm are simulated;
mutualism, commensalism, and parasitism. The characteris-
tics of these relationships define the main principles of every
phase. Relationships are beneficial for both of the organ-
isms in mutualism phase; beneficial for one organism while
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the other organism remains unaffected in the commensalism
phase; useful for one organism and other organism is actively
harmed in parasitism phase. Each organism randomly inter-
acts with the other organisms throughout the three phases
of SOS. The process is stopped if it meets the termination
criterion; otherwise, it is repeated.

1) MUTUALISM PHASE

In the mutualism phase, two organisms have relationships
with each other that give benefit to both of them. An exam-
ple of mutualism is the relationship between honey bee and
flowers, which is beneficial for both. Let X; is i;; member of
the ecosystem. It selects X; randomly from the ecosystem for
interaction. Each organism needs to improve its survival in the
ecosystem, so it engages itself in a mutual relationship with
other organisms. Based on their mutual symbiosis, the new
candidate solutions are computed according to the equation:

Xinew = X; +1and(0, 1) * (Xpest — MV * BFy), (22)
Xinew = X; + rand(0, 1) % (Xvest — MV % BF2), (23)
Xi + Xj

MV = ,
2

(24)

rand(0, 1) is a vector generated from random real numbers
between 0 and 1. Here, the benefit factors BF; and BF»
are defined randomly as it takes the value of either 1 or 2.
These factors show up if an organism obtains benefit fully or
partially. In Equation (24), mutual vector MV shows the char-
acteristics of the relationship between organisms. In Equa-
tions (22,23), Xpesr shows the best degree of adaptation that
increases the fitness of both of the organisms. Finally, if the
new fitness value is better than the previous fitness, then it
updates the organisms.

2) COMMENSALISM PHASE

The relationship between sharks and remora fish is an exam-
ple of commensalism. The remora attaches itself to the
shark’s body and eats the leftover foods. Thus it obtains ben-
efit. The activities of remora fish do not affect the shark, and
thus the shark receives minimum benefit from the relationship
if there is any. Just like the mutualism phase, the organism
X; is selected randomly from the ecosystem for interaction
with other organisms X;. At this stage, organism X; obtains
the benefit from the relationship with X;. However, the organ-
ism X; neither gets benefit nor affected by the interaction.
Based on relationships between the organisms X; and Xj, the
alternative candidate solution for X; is computed according
to the Equation(25). Following these rules, the organism X; is
modified if its current fitness value is better than its previous
value.

Xinew = X; + rand(—1, 1) % (Xpest — Xj) , (25)

The part of the equation, (Xpeyy — Xj), represents the
benefit given by X; to X; increasing its survival in the
ecosystem.
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FIGURE 3. Illustration of artificial neural network architecture used in ANN-SOS procedure.

3) PARASITISM PHASE

Plasmodium parasite is the example of parasitism that uses
the interaction with the anopheles mosquito and enters human
hosts through it. When the parasite enters and reproduces
itself inside the body of a human, the human affected by
malaria, and as a result, he may die. In SOS, the organism
X; is selected as anopheles mosquito during the production of
the artificial parasite known as ‘‘Parasite Vector” (PV). The
PV is generated by duplicating the organism X; in the solution
space, then the dimensions which are selected randomly are
modified by the use of a random number. The organism X;
is randomly chosen from the ecosystem and is given a job
to host the parasite. The parasite attempts to adjust itself
in place of X; in the ecosystem. It tests both the members
of the ecosystem for the estimation of their fitness values.
If the parasite has the best fitness value in the ecosystem,
it will harm the organism X; and improves its position in the
ecosystem. If the organism X; has better fitness value, it will
protect itself from the parasite, and the parasite will never
have the option to live in the environment.

IV. PERFORMANCE METRICS
To check the efficiency of the designed technique, four types
of statistical operators GD, MAD, TIC, and ENSE, have been

VOLUME 8, 2020

TABLE 2. Solutions obtained for rectangular profile in Case 1.

| X | [38] | ANN-SOS | Absolute error |
| 0 | 0.8240271 | 0.8240221 | 5.0667E-06 |
| 0.1 | 0.8256486 | 0.8256441 | 4.4967E-06 |
| 02 | 0.8305293 | 0.8305258 | 3.4708E-06 |
| 03 | 0.8387180 | 0.8387153 | 2.7859E-06 |
| 04 | 0.8502968 | 0.8502944 | 2.4016E-06 |
| 05 | 0.8653814 | 0.8653797 | 1.7055E-06 |
| 0.6 | 0.8841229 | 0.8841224 | 5.3481E-07 |
| 07 | 0.9067088 | 0.9067094 | 5.5744E-07 |
| 0.8 | 09333652 | 09333662 | 1.0249E-06 |
| 09 | 09643589 | 0.9643601 | 1.2255E-06 |
| 1| 10000000 | 1.0000021 | 2.0742E-06 |

utilized. The mathematical formulation of the operators is
given as:

1/ - 1/2
GD = ;(Zwi—ei)) : (26)

i=1
n

1
MAD:;Z

i=1

~

6; — 6;

, 27)
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Longitudinal fins problem: Description of different cases considered in this paper

Longitudinal fins problem

A4

Case 1

Parameters: 4=0, C=0.4, B=0.2,
0,=0.5, 8,=0.5, N.=1, N,.=0, m=0

A A N

Problem 1: Problem 2: Problem 3:
Rectangular profile Trapezoidal profile Concave parabolic
(n=0) (n=1 profile (n = 2)

FIGURE 4. An overview of all problems analysed in this research.

TABLE 3. Solutions obtained for trapezoidal profile in Case 1.

| X | [38] | ANN-SOS | Absolute error |
| 0 | 080325 | 080337 | 1.1820E-04 |
| 0.1 | 0.80596 | 0.80580 | 1.6149E-04 |
| 02 | 0.81266 | 081273 | 5.8553E-05 |
| 03 | 0.82346 | 0.82375 | 2.7345E-04 |
| 0.4 | 0.83845 | 0.83855 | 7.4666E-05 |
| 0.5 ] 0.85692 | 0.85693 | 2.2638E-05 |
| 0.6 | 0.87862 | 0.87876 | 1.1528E-04 |
| 0.7 | 090425 | 090397 | 2.8911E-04 |
| 0.8 | 093290 | 093255 | 3.4149E-04 |
| 0.9 | 096447 | 096454 | 6.3557E-05 |
| 1 | 1.00000 | 0.99997 | 4.0942E-05 |

\/ﬁ i (01- - éi)z

TIC = ; (28)
(Vizme+/izn @)
Zl_l (0 - 9) - 1 "
NSE =1—————2- f;=-> 6. (29
Z?:l (91' - 91’) g
ENSE = 1 — NSE. (30)

where 7 is the number of points in the approximate solution.

V. RESULTS AND DISCUSSION
In this paper, the ANN-SOS algorithm is applied to solve the
problem of heat transfer in distinct shapes of longitudinal heat
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A

Case 2

Parameters: A=0.2, C=0.4, B=0.2,
0,=0.5, 0,=0.5, N.=1, N=1, m=2

A A v

Problem 1: Problem 2: Problem 3:
Rectangular profile Trapezoidal profile Concave parabolic
(n=0) n=1) profile (n = 2)

TABLE 4. Solutions obtained for concave parabolic profile in Case 1.

| X | [38] | ANN-SOS | Absolute error |
| 0 | 079178 | 079163 | 1.5098E-04 |
| 0.1 | 079474 | 079405 | 6.8659E-04 |
| 02 | 0.80165 | 080127 | 3.7018E-04 |
| 03 | 0.81349 | 081313 | 3.5218E-04 |
| 04 | 082928 | 082938 | 1.0300E-04 |
| 05 | 0.84901 | 084969 | 6.8192E-04 |
| 0.6 | 0.87368 | 087373 | S.0277E-05 |
| 0.7 | 090132 | 090113 | 1.8100E-04 |
‘ 0.8 ‘ 0.93191 ‘ 0.93154 ‘ 3.6809E-04 ‘
| 0.9 | 096447 | 096461 | 1.3738E-04 |
| 1 | 100000 | 1.00004 | 4.1006E-05 |

exchangers (fins). It is noted from Equation (8) that thermal
properties, like temperature distribution in heat fins depend
on thermal conductivity A = «T7}, convection-conduction

h L2Tm
parameter N, = kt,,(bT,,—)m’ the exponent associated with
a

convective heat transfer coefficient (m), radiation conduction
USSL2T3

parameter N, Tt

We have c0n31dered two cases of longitudinal fin designs
with three profiles, such as rectangular, trapezoidal, and
concave parabolic. The particularity of each case is dif-
ferent values of dimensionless quantities. We have divided
our problem into two main scenarios and six sub-problems.
Case 1 and 2 are different in terms of thermal conductivity
parameter (A = 0, and 0.2), convective conduction parameter
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FIGURE 5. Weights obtained by ANN-SOS approach for Case 1.

(N. = 0, and 0), exponent of convective heat transfer (m =
0, and 2), and radiation-conduction parameter (N, = 0,
and 1), respectively. In sub-problems for each case, we are
considering three different designs (rectangular, trapezoidal,
and concave parabolic) for n = 0, 1, 2 respectively, see
FIGURES (2, and 4). For ANN architecture, each hidden
layer is a sum of 10 neurons, and thus the number of unknown
weights is 30. It varies the input variable in the interval [0, 1]
with a step size of h = 1/10, i.e., the entire domain contains
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(c) Solutions for n=2.

FIGURE 6. Solutions obtained by ANN-SOS approach for Case 1.

11 grid points. We have simulated 100 runs of the ANN-SOS
algorithm to get a better understanding of our novel approach.

A. CASE 1
In first case we have taken A = 0,C =04,B=0.2,60, =
0.5,6, = 0.5,N. = 1, N, = 0, and m = 0 so Equation (8)
becomes as given below:

For rectangular profile (» = 0):

0" —60+05=0,

31
o(h)y=1, 6'(0)=0. G1)
The objective function of Equation (31) is given as:
1 & 2
min £ = T (6‘,/,’[ — O + 0.5)
m=0

+%((él — 1P+ é52>. (32)
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TABLE 5. Absolute errors in solutions for Case 1.

| | | Rectangular | | | Trapezoidal | | | Concave parabolic | |
| X | Min | Mean | SD | Min | Mean | SD | Min | Mean | SD |
| 0 | 148E-06 | 2.42E-04 | 3.91E-04 | 5.14E-06 | 2.01E-04 | 1.72E-04 | 2.65E-06 | 2.94E-04 | 2.13E-04 |
| 0.1 | 1.68E-07 | 2.25E-04 | 3.62E-04 | 3.06E-08 | 2.01E-04 | 1.87E-04 | 1.95E-05 | 7.59E-04 | 2.63E-04 |
| 02 | 2.65E-06 | 2.05E-04 | 3.26E-04 | 871E-06 | 1.61E-04 | 1.54E-04 | 6.12E-06 | 4.41E-04 | 2.09E-04 |
| 0.3 | 1.68E-07 | 1.83E-04 | 2.87E-04 | 1.03E-05 | 3.11E-04 | 1.71E-04 | 4.55E-06 | 4.02E-04 | 1.80E-04 |
| 0.4 | 9.09E07 | 1.64E-04 | 2.53E-04 | L.O9E-06 | 1.61E-04 | 1.42E-04 | 4.72E-06 | 1.50E-04 | 1.45E-04 |
| 0.5 | 6.98E-07 | 1.50E-04 | 229E-04 | 146E-06 | 1.18E-04 | 1.44E-04 | 1.24E-04 | 6.58E-04 | 1.79E-04 |
‘ 0.6 ‘ 5.35E-07 ‘ 1.41E-04 ‘ 2.17E-04 ‘ 1.67E-08 ‘ 1.92E-04 ‘ 1.43E-04 ‘ 9.25E-07 ‘ 1.13E-04 ‘ 1.32E-04 ‘
‘ 0.7 ‘ 5.57E-07 ‘ 1.38E-04 ‘ 2.10E-04 ‘ 1.25E-05 ‘ 2.91E-04 ‘ 1.66E-04 ‘ 5.57E-06 ‘ 2.53E-04 ‘ 1.55E-04 ‘
| 0.8 | 1.02B-06 | 1.38E-04 | 2.06E-04 | 4.04E-05 | 344E-04 | 1.76E-04 | 6.05E-05 | 4.31E-04 | 1.86E-04 |
| 0.9 | 4.18B-08 | 1.36E-04 | 2.01E-04 | 243E-06 | 1.81E-04 | 1.78E-04 | 1.02E-06 | 1.62E-04 | 15IE-04 |
| 1 | 229B-07 | 1.40E-04 | 1.97E-04 | 436E-08 | 1.56E-04 | 1.98E-04 | 6.32E-07 | 1.47E-04 | 1.68E-04 |
TABLE 6. Values of fitness function, GD and MAD for Case 1.

| Problem | | Fitness | | | GD | | | MAD | |

\ | Best | Mean | Worst | Best | Mean | Worst | Best | Mean | Worst |

‘ n=0 ‘ 2.32E-09 ‘ 3.32E-06 ‘ 3.56E-05 ‘ 8.22E-07 ‘ 5.54E-05 ‘ 5.00E-04 ‘ 2.30E-06 ‘ 1.69E-04 ‘ 1.60E-03 ‘

| n=1 | 3.54E-08 | 2.17E-06 | 2.43E-05 | 5.02E-05 | 7.42E-05 | 2.87E-04 | 1.30E-04 | 2.11E-04 | 9.05E-04 |

| n=2 | 1.33E-08 | 4.44E-06 | 6.08E-05 | 8.71E-05 | 1.29E-04 | 2.57E-04 | 2.33E-04 | 346E-04 | 7.62E-04 |

TABLE 7. TIC and ENSE values for Case 1.

| Problem | | TIC | | | ENSE | |
\ | Best | Mean | Worst | Best | Mean | Worst |
| n=0 | 7.14E-07 | 481E-05 | 435E-04 | 5.26E-09 | 8.87E-05 | 2.62E-03 |
| n=1 | 441E-05 | 6.52E-05 | 2.52E-04 | 1.58E-05 | 5.55E-05 | 7.62E-04 |
| n=2 | 7.70E-05 | 1.ISE-04 | 227E-04 | 4.84E-05 | 1.16E-04 | 5.20E-04 |

TABLE 8. Convergence analysis for Case 1.

\ Fin type \ | Fitness< | \ | GD< | \ | MAD< | \ | TICS | \ | ENSE< | \

| | E-04 | E-05 | E-06 | E04 | E-05 | E06 | E04 | E05 | E06 | E04 | E-05 | E06 | E04 | E05 | E-06 |

|  Rectangular | 100 | 91 | 47 | 100 | 8 | 22 | 97 | S8 | 5 | 100 ]| 8 | 27 | 97 | 8 | 58 |

|  Trapezoidal | 100 | 100 | 98 | 100 | 8 | 0 | 100 | o0 | 0O | 100 | 92 | 0 | 100 | 9 | 0 |

| Concave parabolic | 100 | 100 | 92 | 100 | 4 | 0 | 100 | O | O | 100 | 34 | 0 | 100] 63 | 0 |

For trapezoidal profile (n = 1): For concave parabolic profile (n = 2):

0" +04X —1)0" +040" —6+0.5=0, (33) 0" +0.4(X% — 1)0” +0.8X6' —6 +0.5=0, 35)
o=1, 00 = o(l)=1, 6'(0)=0.

The objective function Equation (33) is given as:

N

minE:%Z

(é,’,; +0.4(X — 1A 4 0.48), — O,
m=0

2 1 2 2 n2
+O.5) + 5(“" - 1"+ 6 ) (34)

113294

The objective function for Equation (35) is given as:

mlnE——Z

(9” +0.4X% — DO +0.8X0, — O,
m=0

2 1 A 2 n2
—i—O.S) + 5((61 - 1"+ 6 > (36)
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FIGURE 7. Absolute errors in solutions obtained for Case 1.

We have taken 10 number of neurons in our model. Solution
obtained by ANN-SOS consists of 10 terms, each term cor-
responds to one neuron. The terms of the solution are in the
form os sigmoid function. Series solutions obtained by the
ANN-SOS algorithm for Case 1 are as follows:

Solution for rectangular profile (n = 0):

0c1(n=0)
3.61749042497874
| & ¢ (—3.67068627674519+X —7.62607165537628)
—0.282320091002557
+ 1 + - (1.06021414289694+X +6.41220030130322)
—1.08751429237298
+1 T e~ (—1.60386107405839+X +6.93566998353666)
9.98717589716628
+1 T ¢~ (—1.0753132710798 1+X —7.30215598226350)
—1.77618317588448
+1 T ¢—(2.30684663036297+X +3.80813738209909)
5.39818281068250
1 + - (1.24366927544579+X —3.79745101946880)
—0.0550131513142178
+1 T o~ (—222731328201466+X+1.51207818967573)

+
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FIGURE 8. Performance indicators obtained for Case 1.

2.22691407108311

+ 1 + ¢—(0.872094818432651%X +3.03599758882442)
—1.34064466035852

+1 + ¢—(0.572621713185842+X +0.650545769938320)

2.62018734698392
+ 1 4 e—(441303712761091+X+6.96242270155723) *

(37)
Solution for trapezoidal profile (n = 1):

Oci(n=1)
—0.427629310120337
T 1 1 e~ (—4.33907794991442+X +9.96797298362664)
—0.709252021861192
+1 1 ¢~ (0.171601966462608+X —9.99804382178738)
—0.470418542676985
+1 1 ¢—(1.18038033702902+X +4.95180620081143)
1.34466446676355
+1 1 o~ (—1.02337967178866+X —2.27584213901628)
—6.69029592738523
+1 1 ¢ (—5.37695864049995%X —9.39513015380921)
0.868652143586056
+ 1 + e (—1.13317686880999+X +7.77787715576440)
—1.08413748379396
| + ¢ (4.63966368881078+X +4.86278384038115)

+
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FIGURE 9. Results in terms of fitness values obtained for Case 1. FIGURE 10. Results in terms of GD values obtained for Case 1.
—0.136863661097504
+ 1 + ¢—(3.05263995739417+X +1.45126098873239) DISCUSSION ON RESULTS FOR CASE 1:
2.15182460779979 The objective values (mean squared errors (MSE))
+1 + ¢—(1.18037371768373+X —2.67380293002561) obtained for rectangular, trapezoidal and concave parabolic
1.87403327686806 profiles are 2.3154e — 09, 3.5428¢ — 08 and 1.3345¢ — 08,

(38)

+ 1 + ¢—(0.588890522860738+X +2.67285441850872) * respectively, see TABLE (4). The set of best weights for these
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FIGURE 11. Results in terms of MAD values obtained for Case 1.

three profiles are presented in FIGURE (5). The approximate
solutions for different profiles are given in TABLES (2,3,4)
and FIGURE (6). Solution for concave parabolic profile (n

=2):

fci (n=2)
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FIGURE 12. Results in terms of TIC values obtained for Case 1.

—0.782218806733728

= 1 + ¢—(—1.52180582504944xX +1.33831407213679)

—0.375457701967646

+ 1+ e—(—2.39227970367793%X +4.50436164112033)
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FIGURE 13. Results in terms of ENSE values obtained for Case 1.

0.982314559759026
+ 1 4 ¢—(7.74974673860756+X +8.71464171226744)

2.09901669877859
+ 1 + ¢—(—1.55112625160013+X —3.71391281519073)

113298

TABLE 9. Solutions obtained for rectangular profile in Case 2.

| X | [38] | ANN-SOS | Absolute error |
| 0 | 078855 | 078871 | 1.5907E-04 |
| 0.1 | 079036 | 079044 | 8.0569E-05 |
| 02 | 079578 | 079569 | 9.5759E-05 |
| 0.3 | 0.80482 | 0.80456 | 2.5518E-04 |
| 04 | 081747 | 081726 | 2.1210E-04 |
| 0.5 | 0.83464 | 083405 | 5.9078E-04 |
| 0.6 | 0.85542 | 085534 | 8.4955E-05 |
| 0.7 | 088163 | 0.88168 | 54682E-05 |
| 0.8 | 0.91416 | 091383 | 32737E-04 |
| 0.9 | 095301 | 095278 | 22877E-04 |
| 1 | 1.00000 | 099991 | 8.6326E-05

1.35749577052221
+1 + ¢—(—0.843736071584196+X —3.78041878064892)
7.29978869415915
1 + ¢—(0.419716218903707+X —5.15438599518447)
0.516779652103827
+1 + ¢—(—2.30457565425263+X —9.68700491798374)
9.24750012608333
+1 + ¢—(—3.63150107321958+X —8.33042229605450)
0.240245621476915
+1 + ¢—(—2.49994074514838+X —0.943308589743724)

0.617920226517735
1 + ¢—(0.612291243998232+X +4.19821187908109) *

_|_

_|_

(39)

In FIGURE (6), the best, mean and worst of all solutions
are plotted and it is clear from the FIGURE that all the
solutions including the worst solution are very close to the
exact solution which shows the efficiency of the ANN-SOS
algorithm. The absolute errors in the solutions are given
in TABLE (5) and also plotted in FIGURE (7). Absolute
errors in the solutions for rectangular, trapezoidal and con-
cave parabolic profiles range from 107% to 1079, 1079 to
1079 and 107% to 10797, respectively. The best, mean and
worst values of fitness function and performance metrics are
given in TABLES (6,7) and FIGURE (8). The values of per-
formance metrics range from 1079 to 107%°. Convergence
analysis for case 1 is given in TABLE (8). Histogram plots of
fitness values with normal distribution fittings for different
profiles are given in FIGURE (9). FIGURE (9) shows that
more than 80% of fitness values are less than 1079, In FIG-
URES (10,11,12) and (13), we have plotted the histograms
with normal distribution fittings for performance indicators
GD, MAD, TIC and ENSE for rectangular, trapezoidal and
concave parabolic profiles. It is evident from these FIGURES
that more than 90% of the values of performance metrics are
less than 10793, which shows the efficiency and accuracy
in the results of the ANN-SOS algorithm. It is observed
from TABLES (2-4) and FIGURE (6a, 6b, and 6¢) that in
case 1 temperature distribution ranges between 0.8240271
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TABLE 10. Solutions obtained for trapezoidal profile in Case 2.

| X | [38] | ANN-SOS | Absolute error |
| 0 | 0771386 | 0771137 | 24853E-04 |
| 0.1 | 0773193 | 0773618 | 22485E-04 |
| 0.2 | 0780422 | 0780733 | 3.1089E-04 |
| 0.3 | 0792169 | 0792153 | 1.5937E-05 |
| 04 | 0807530 | 0.807728 | 19785E-04 |
| 0.5 | 0.827410 | 0827466 | 5.6416E-05 |
| 0.6 | 0.851807 | 0851525 | 2.8252E-04 |
| 0.7 | 0.880723 | 0.880215 | 5.0805E-04 |
| 0.8 | 0914157 | 0914018 | 13824E-04 |
| 0.9 | 0953916 | 0953626 | 2.8999E-04 |
| 1 | 1.000000 | 0999998 | 2.2907E-06 |

to 1 (for rectangular profile), 0.80325 to 1 (for trapezoidal
profile), (0.79178 to 1) (for concave parabolic profile). More-
over, for a better understanding of frequency plots, we have
presented TABLE 8. In this TABLE, we have given success
rates of different thresholds for fitness values, GD, MAD,
TIC, and ENSE. Our solutions and errors in solutions are
compared with solutions calculated in [38], see TABLES (2-
4). For each profile, the ANN-SOS algorithm is successful in
getting solutions to better quality with minimum errors.

B. CASE 2
In second case, we have taken A = 0.2, C = 0.4, B = 0.2,
0, =0.5,0, =0.5,N, = 1, N, = 1 and m = 2. Using these
values Equation (8) becomes:

For rectangular profile (n = 0):

0" +0.2((0 — 0.5)0” +6”) — (6 — 0.5)* — (0.9 +0.20)
0* —0.0625) =0
6(1)=1, 6'(0)=0.

(40)

The objective function for Equation (40) is given as:
N

= (é,’,; +0.2(Bn — 0.5)0], +62) — (6 — 0.5)°
m=0

2
A A 1/ A
—(0.9 4 0.20,)(62 — 0.0625)) +3 ((el —1)?

+é{)2). 41)

For trapezoidal profile (n = 1):

(0.54 +0.36X + 0.126 4 0.08X6)6” + 6'(0.36
+0.126" 4 0.08(X6’ 4 6)) — (6 — 0.5)° — (0.9
+0.20)(6* — 0.0625) = 0,

o()=1, 6'(0)=0.

(42)
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TABLE 11. Solutions obtained for concave parabolic profile in Case 2.

| X | [38] | ANN-SOS | Absolute error |

| | 0.761446 | 0.761706 | 2.6058E-04 |

| 0.1 | 0.764157 | 0.764130 | 2.6696E-05 |

| 02 | 0771386 | 0.771391 | 5.0197E-06 |

| 0.3 | 0.783133 | 0.783430 | 2.9776E-04 |

| 0.4 | 0.800301 | 0.800165 | 1.3617E-04 |

| 0.5 | 0.821084 | 0.821526 | 4.4192E-04 |

| 0.6 | 0.847289 | 0.847494 | 2.0524E-04 |

| 0.7 | 0.878012 | 0.878120 | 1.0827E-04 |

| 0.8 | 0.913253 | 0.913549 | 2.9619E-04 |

| 0.9 | 0.954819 | 0.954057 | 7.6181E-04 |

| 1 | 1.000000 | 1.000094 | 9.4414E-05 |
TABLE 12. Values of TIC and ENSE for Case 2.
\ | | TIC | | | ENSE | |
| Problem | Best | Mean | Worst | Best | Mean | Worst |
| =0 | 5.59E-05 | 2.83E-04 | 2.71E-03 | 228E-05 | 2.24E-03 | 8.92E-02 |
| n=1 | 6.59E-05 | 1.50E-04 | 7.63E-04 | 3.81E-05 | 347E-04 | 5.62E-03 |
| =2 | 825E-05 | 1.53E-04 | 6.82E-04 | 3.68E-05 | 2.74E-04 | 4.28E-03 |

The objective function for Equation (42) is given by:

E= % ﬁj <(o.54 +0.36X + 0.126,, + 0.08X6,,)6,,
=0
+6,,(0.36 + 0.124), + 0.08(X8,, + 6,1)) — (O
—0.5) (0.9+0. 20,,,)( —0. 0625))2
+% ((él -1+ é(gz). 43)
For concave parabolic profile (n = 2):

(0.54 +0.36X* + 0.126 4 0.08X26)6” + 6/(0.72X
+0.126" 4 0.08(X26' +2X6)) — (6 — 0.5)°

44
—(0.9 +0.20) (6* — 0.0625) = 0, 9
o) =1, 6(0)=

The objective function for Equation (44) is given as:

1 N
E=— <(0.54 +0.36X? + 0.126,, + 0.08X20,,)6,
m=0
+6,,(0.72X 4 0.128), + 0.08(X*8,, + 2X6,,))
2
—(6m —0.5)° = (0.9+0.26,)) (4% — 0. 0625))
1/ R
+5 ((91 — 1%+ 9(;2>. (45)
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TABLE 14. Values of fitness function, GD and MAD for Case 2.

TABLE 13. Absolute errors in solutions for Case 2.

| co-dLzT | vo-asyy | vo-a11T | Y06t L | $0-969'1 | S0-A60°6 | v0-A6TT | S0-AS0'T | Lo-ATH T | z=u |
| €0-95ST | v0-F9LY | ¥0-H01'T | vO-FEH'S | ¥0-A99'T | SO-H6TL | ¥0-ATITT | S0-H69'1 | 60-A8S'S | [=u |
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3.5775e — 07, 8.5797e — 09 and 1.4071e — 07, respectively.
The best set of ANN weights are depicted in FIGURE (14).
The numerical solutions obtained for all of the three profiles
are given TABLES (9,10,11). The solutions for all the profiles

Equations(46,47) and (48).

DISCUSSION ON RESULTS FOR CASE 2

The objective values (absolute errors in solutions) obtained
for rectangular, trapezoidal and concave parabolic profiles are
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TABLE 15. Convergence analysis for case 2.
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FIGURE 14. Weights obtained by ANN-SOS approach for Case 2.

are compared with the exact solution in FIGURE (15), and we
can see that the best and mean of all 100 solutions obtained
by ANN-SOS algorithm for the problems are very close to
the exact solution. In the case of trapezoidal and concave
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FIGURE 15. Solutions obtained by ANN-SOS approach for Case 2.
for Case 2.

7.99995174840100
1 4 ¢—(—3.21426240214401:X —6.72161898888413)

1.87955662156705
+1 + ¢—(3.34214216015950+X —7.03789761598474)

4.20112535133326
+ 1 + ¢—(—2.66339337359687+X —4.66745040374569)

parabolic, the worst solutions are also very close to the exact +
solution, which shows the accuracy of the solutions obtained
by the ANN-SOS algorithm. The absolute errors between the
exact and approximate solutions are given in TABLE (13).
For the problem of the rectangular profile, the absolute mini-
mum errors in the solutions lie between 107% to 10797, and
the mean values of the errors are between 1073 to 10704, i —0.0128104320933259

Solution for rectangular profile (n = 0): 1 + ¢—(6.06477983034726+X —6.90897301935497)

R 0.667318004905647
Oc2(1=0) + 1 4 ¢—(=7:99959571106342:X —4.92613085857431)
—3.69693215035094 7.96045657466436
T 1§ ¢~ (—6A7918949718765+X —5.76360774195530) +1 + ¢—(1.48132135558938+X —4.80074737155237)
—1.70284654099295 3.56631816342962
+1 + ¢—(0.510164139745732+X —6.25466761712446) +1 + ¢—(—2.43360164563693+X —7.99879499067904)

FIGURE 16. Absolute errors in solutions obtained by ANN-SOS approach
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FIGURE 17. Performance indicators obtained by ANN-SOS approach for
Case 2.

0.682533958309906
1 4 ¢—(4.16828048633773+X+7.77987581001960) *

(46)
Solution for trapezoidal profile (n = 1):

Oc2(n=1)
3.37861901041481
T 1+ ¢ (151017013736570+X —4 25606574556343)
—0.104576991031446
+1 I o (—8.06597495742229+X —5.25158549466864)
—4.93571726075515
+1 I o (— 1.82936655777885+X —6.20954497145383)
0.654609312931376
1 + ¢ (3.07052280824493+X +5 45138383342858)

+
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FIGURE 18. Results in terms of fitness values obtained by ANN-SOS
approach for Case 2.

—1.79020558320029
"'1 + ¢—(2.40440387386212+X —4.37785057125410)

6.10284604160929
+ 1 + ¢—(—2.90024034371422:X —4.74092325506649)

9.97166023285747
+ 1 + ¢—(1.94874276510895+X —5.25387936782479)
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FIGURE 19. Results in terms of GD values obtained by ANN-SOS approach FIGURE 20. Results in terms of MAD values obtained by ANN-SOS
for Case 2. approach for Case 2.
—0.0987938321289193 Solution for concave parabolic profile (n = 2):

+1 + ¢—(—7.51381126423256+X —4.71577014681001)
9.62737324205448

+1 + ¢—(2:59491091377733+X —9.99582145127654) éczm:z)
0.614568721878469 4 _ 0.242952601477876
+1 + ¢—(=9.99715514112820+X —7.12145823149072) * 47 T 1 4 ¢—(0.170769550729980+X —1.96149910357359)
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FIGURE 21. Results in terms of TIC values obtained by ANN-SOS
approach for Case 2.
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FIGURE 22. Results in terms of ENSE values obtained by ANN-SOS
approach for Case 2.

—7.74374571493655
1 + ¢—(0.424675253812910+X —9.82832804440634)

—0.759618870894774
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0.00622520230216788

1 + ¢—(—4.54126336673020+X +2.18350336676046)
0.621058810095202

+ 1 + ¢—(3.54323075636798+X —6.30068235691339)

3.45031966347335
+ 1 + ¢—(0.580714491848014:X —1.55883409039987) *

+

(48)

For the trapezoidal profile, the absolute minimum errors lie
between 10~ to 109, and the mean errors are about 10~%4.
The absolute minimum errors in the solutions for concave
parabolic profile range from 107% to 10797, and the mean
errors are in the range of 1079 to0 10794, The best, mean, and
worst absolute errors in the solutions are also given in FIG-
URE (16). To check the accuracy of the solutions obtained by
the ANN-SOS algorithm, the performance metrics are also
evaluated. The numerical results for performance metrics are
given in TABLES (14) and (12). From TABLE (14), we can
see that the generational distance between the exact solution
and approximate solutions at each point in the interval [0, 1]
range from 1073 to 1079 which shows that the exact and
approximate solutions are very close to each other. The values
of performance metric MAD range from 1073 to 10704,
In TABLE (12), the values of performance metrics TIC and
ENSE are given. The values of TIC and ENSE range from
1079 to 1079 and 10792 to 1079 respectively. Bar graphs
for best, mean, and worst values of fitness function and
performance metrics are also given in FIGURE (17). The his-
togram plots for fitness values are given in FIGURE (18). The
FIGURE shows that for rectangular profiles more than 70%
of the fitness values are less than 1079 and for trapezoidal
and concave parabolic profiles more than 90% are less than
10795. The histogram plots for GD values are given in FIG-
URE (19). Itis clear from the plots that for rectangular profile,
more than 90% values are less than 10~%, and for trape-
zoidal and concave parabolic profiles, most of the values are
between 10~ to 10~%°. In FIGURE (20), histograms for val-
ues of MAD are presented and it clear that most of the values
are between 1079 to 1079 TIC values are plotted in FIG-
URE (21) and we can see that most of the values are between
107% to 107%. FIGURE (22) shows the values of ENSE and
most of the values are between 1072 to 10~%°. Convergence
analysis for case 2 is given in TABLE (15). It is observed
from TABLES (9-11) and FIGURE (15a, 15b, and 15c¢) that in
case 2 temperature distribution ranges between 0.78855 to 1
(for rectangular profile), 0.771386 to 1 (for trapezoidal pro-
file), and 0.761446 to 1 (for concave parabolic profile). More-
over, for a better understanding of frequency plots, we have
presented TABLE 15. In this TABLE, we have given success
rates of different thresholds for fitness values, GD, MAD,
TIC, and ENSE. Our solutions and errors in solutions are
compared with solutions calculated in [38], see TABLES (9-
11). For each profile, the ANN-SOS algorithm is successful
in getting solutions to better quality with minimum errors.

VI. CONCLUSION
In this research, we have considered a mathematical model
of longitudinal heat exchangers (fins). It involves a complex

113306

ODE with boundary values. Our key findings are concluded
as follows:

o We have analyzed a mathematical model which repre-

sents the temperature profiles of longitudinal fins with
concave parabolic, rectangular, and trapezoidal shapes,
see Section 2 and FIGURE 2.

A new neuroevolutionary is proposed in which
we have combined the strengths of Artificial Neu-
ral Networks (ANNs) and the Symbiotic Organism
Search (SOS) algorithm. It is named as ANN-SOS
algorithm, see Section 3, FIGURES 1 and 3.

We have divided our problem into two main scenarios,
and six sub-problem. Case 1 and 2 are different in
terms of thermal conductivity parameter (A), convective
conduction parameter (N.), exponent of convective heat
transfer (m), and radiation-conduction parameter (N, ).
Moreover, in sub-problems for each case, we are con-
sidering three different designs (rectangular, trapezoidal,
and concave parabolic) for n = 0, 1, 2 respectively, see
FIGURES 2, and 4.

Performance indicators like generational distance (GD),
Root mean squared errors (RMSE), absolute errors
(AE), Mean absolute deviation (MAD), Nash—Sutcliffe
efficiency (NSE), error in Nash-Sutcliffe efficiency
(ENSE) are calculated for all six problems to validate
the efficacy of our approach. Our results are in strong
agreement with state-of-the-art solutions.

Series solutions for all six problems are presented in
Equations (37-39), and (46-48). These solutions may be
used by researchers to reproduce our results for further
studies.

Experimental results obtained by the ANN-SOS algo-
rithm are tabulated in TABLES (2-8) for case 1, and
in TABLES (9-15) for case 2. These TABLES include
numerical values of best weights, absolute errors in
our solutions, mean and standard deviations in absolute
errors, GD, MAD, TIC, and ENSE values. It is evident
from these TABLES that the ANN-SOS algorithm is
robust and accurate.

Graphical illustration of our experimental outcome is
presented in this paper. Results for case 1 are elaborated
in FIGURES (5-13), and case 2 is depicted in FIGURES
(14-22).

- From FIGURES 6 and 15 we observed that
ANN-SOS algorithm has produced results of high
quality and are overlapping with state-of-the-art
solutions.

- Absolute errors for n = 0,1, 2 in both cases are
lower and points to the efficiency and accuracy of
ANN-SOS algorithm, see FIGURE 7, 16.

- Frequency charts with normal distribution fits are
given for absolute errors, GD, MAD, TIC, and ENSE
values. See FIGURES (8-13) and (17-22). These graphs
illustrate that ANN-SOS algorithm is stable and can
handle problems of real applications.
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- We have plotted values obtained through 100 exper-
iments to validate our claims further. See sub-FIGURES
(a) in (9-13), and (18-22).

« Different activation functions may be used to construct
ANN series solutions.

All these analyses suggest that the ANN-SOS algorithm has
calculated solutions of better quality, and it can solve real
application problems having no prior information about its
objective functions. ANN-SOS algorithm may be used to
solve higher-order ODEs involving fractional derivatives.
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