
Received May 28, 2020, accepted June 15, 2020, date of publication June 17, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003213

Dynamic Relative Output-Feedback Consensus for
Multi-Agent Systems Subject to Actuator
Saturation
KAIDE HUANG1 AND CHENGZHI YUAN 2, (Member, IEEE)
1School of Mathematics and Big Data, Foshan University, Foshan 528000, China
2Department of Mechanical, Industrial and Systems Engineering, The University of Rhode Island, Kingston, RI 02881, USA

Corresponding author: Chengzhi Yuan (cyuan@uri.edu)

This work was supported in part by the National Natural Science Foundation of China under Grant 61906041.

ABSTRACT This paper deals with the problem of leaderless consensus control for a class of non-
introspective linear multi-agent systems (MASs) subject to input saturation and external disturbances. A
novel dynamic relative output-feedback saturated consensus control protocol is proposed, which utilizes
not only relative system outputs but also relative controller states from neighboring agents for distributed
feedback control. With this new controller structure, the associated control synthesis conditions that
guarantee optimal disturbance attenuation performance are fully characterized as linear matrix inequalities
(LMIs) using a complete form of Lyapunov function matrix, which can be solved efficiently via convex
optimization. The proposed approach unifies the designs for both continuous-time and discrete-time MASs.
Two application examples are used to demonstrate effectiveness and usefulness of the proposed results.

INDEX TERMS Multi-agent systems, consensus control, actuator saturation, dynamic relative output
feedback, linear matrix inequality.

I. INTRODUCTION
Multi-agent system (MAS), as a typical class of large-scale
interconnected systems, has been one of the most thriv-
ing research topics in the controls community. It arises
in many practical engineering applications, such as swarm
robots coordination [1], multiple aircrafts formation flight
[2], autonomous vehicles platooning [3], and cooperative reg-
ulation of smart power grids [4], etc. Due to its theoretical and
practical importance, numerous mathematical frameworks
and tools for modeling and control design of MAS have been
emerging rapidly over the past two decades (see [5]–[9] and
the references cited therein). Among many others, consensus
control is the most fundamental framework, which specifies
an interesting objective of driving the states/outputs of all
agents in the group to reach a common agreement through
certain inter-agent coordination strategies [5]. Early studies
of consensus control of MASs were focused on relatively
simple system settings with single/double integrator agent
dynamics (see, e.g., [10], [11]), which have been gradually
extended to general higher-order linear/nonlinearMASs (e.g.,
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[12], [13]). Aiming to bridge the gap between theoretical
development of MAS control algorithms and their realistic
engineering applications, recent research interests have been
steering to consideration of various physical constraints, such
as uncertain agent dynamics [14], [40], network-induced
communication delays [13], switching topologies [15], and
actuator saturations [16], [41], etc.

In particular, saturation is a widely encountered and
most dangerous nonlinearity in any realistic control
systems [42]–[44]. Knowing that ignoring the effects of input
saturations in control system designs could lead to perfor-
mance degradation or even instability of the system, consid-
erable research efforts have been devoted to the associated
problem of saturated MAS consensus control. For example,
[17] proposed a new type of ‘‘bang-bang’’ control protocol
for a class of MASs to achieve finite-time consensus in
the presence of saturation constraints; [18] addressed the
input saturated consensus control problem by introducing
a new class of coordinated saturation functions; and [19]
dealt with the saturation issue in MAS control designs by
leveraging the low-gain control method from classical sat-
urated control theory. These earlier results, however, only
apply to MASs with special agent dynamics of single/double
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integrators. Such a limitation was nicely bypassed in sub-
sequent research by utilizing various novel methodologies.
Particularly, [20] managed to further extend the low-gain con-
trol method to general linear MASs, and robust semi-global
consensus control performance was achieved therein. These
results were later on improved by [21] using an adaptive
periodic event-triggered control strategy, and by [22] with
a fully-distributed event-triggered control strategy. Beyond
state consensus, the output consensus control problem was
addressed in [12] with guaranteed semi-global stabilization
performance in the presence of input saturation and external
disturbances. Further progress has been made in [23] and [16]
to enable global consensus performance for continuous-time
and discrete-time MASs, respectively. Many other important
works along this research direction consider mixed effects
of saturation and other physical constraints. Representative
works include [24] considering saturated consensus control
subject to stochastic disturbances; [25] considering input
saturation mixed with switching communication topologies
and time delays; and [26] studying the effects of both sat-
uration and energy-bounded disturbance on estimation of
the domain of consensus attraction. Although tremendous
progress has been made, all the above-mentioned results
commonly suffer from one critical drawback, that is, they
were all developed based on (relative) state feedback, which
might not be applicable in many practical situations when
only partial states or measurement outputs are available.

The most straightforward idea to overcome the above
drawback is to construct an observer for each agent to
online estimate their full state information, which has
been well realized by many researchers in the field
(e.g., [18], [27]–[30], [45]). However, the state-observer-
based method has its inherent limitations in saturated MAS
consensus control designs. First, it may yield conservative
designs as the associated Lyapunov function used in both
system analysis and control synthesis typically needs to be
constructed in a special block-diagonal form (see, e.g., [28],
[29]). Second, it requires each individual agent to have direct
access to their own system’s measurement outputs for state
estimation, which could be problematic under the MAS dis-
tributed context. This is because many MASs are by nature
non-introspective [31], meaning that each individual agent
in the group is not able to measure the absolute state/output
information of its own but only able to sense relative infor-
mation from its neighbors, possibly due to limited localiza-
tion/sensing capabilities. One important motivation example
of considering non-introspective MASs is that: two vehicles
in close proximity may be able to measure their relative
distance without either of them having knowledge of their
absolute position [31]. As an alternative of observer-based
methods, dynamic relative output-feedback methods can be
used to surmount the above limitations, as suggested by [32].
Nevertheless, one important and challenging issue yet to be
addressed along this research line is how to formulate the
associated relative output-feedback saturated consensus con-
trol synthesis problem in terms of computationally-tractable

conditions. Specifically, existing dynamic relative output-
feedback consensus control approaches normally lead to non-
convex control synthesis conditions that are often formulated
as bilinear matrix inequalities (BMIs), even when ignoring
the saturation constraint [33]. This owes to the system-level
complexity induced by networked interconnected structures.
Solving such resulting non-convex BMIs is NP-hard and
needs to resort to global optimization techniques that could
be rather computationally expensive.

In this paper, we aim to overcome all the above deficiencies
suffered by current state-of-the-art consensus control tech-
niques for saturated MASs. To this end, we propose to
develop new saturated consensus controller structures under
the dynamic relative output-feedback framework. Specifi-
cally, theMAS under consideration has general linear dynam-
ics subject to input saturations and energy-bounded external
disturbances, and is assumed to be non-introspective and
leaderless. The main contributions of this paper can be sum-
marized as follows:

• Anovel dynamic relative output-feedback saturated con-
sensus control protocol is proposed, which consists of
a linear relative information feedback control loop and
a nonlinear deadzone feedback control loop. This new
controller structure is compelling in the sense that it
not only utilizes the relative measurement outputs from
neighboring agent plants, but also shares relative con-
troller state information for distributed feedback control.

• The associated relative output-feedback saturated con-
sensus control synthesis conditions can be fully char-
acterized as computationally-tractable linear matrix
inequalities (LMIs) with a complete form of Lyapunov
function. As a result, an optimal consensus control
solution that guarantees optimal disturbance attenuation
performance can be synthesized efficiently via convex
LMI-based optimization.

• The proposed approach unifies the designs for both
continuous-time and discrete-time MASs.

The rest of the paper is organized as follows. Section
II will first present some preliminary results on graph the-
ory and regional analysis for single saturated linear sys-
tems. The problem statement will be specified in Section III,
followed by the main results including the new dynamic rela-
tive output-feedback saturated consensus controller structure
and derivation of the associated convex synthesis condi-
tions. Section IV utilizes two application examples to illus-
trate the design procedure and demonstrate effectiveness of
the proposed approaches. Finally, conclusions are drawn in
Section V.

II. PRELIMINARIES
A. NOTATION AND GRAPH THEORY
Throughout the paper, R is used to represent the set of real
numbers.R+ stands for the set of positive real numbers.Rm×n

is the set of real m× n matrices, and Rn represents the set of
real n×1 vectors. In and 1n denote the n×n identitymatrix and
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an n-dimensional column vector with all elements being 1,
respectively. Sn and Sn+ are used to denote the sets of real sym-
metric n × n matrices and positive definite matrices, respec-
tively. A block diagonal matrix with matrices X1,X2, · · · ,Xp
on its main diagonal is denoted by diag{X1,X2, · · · ,Xp}.
The notation A ⊗ B represents the Kronecker product of
matrices A and B. For a series of column vectors x1, · · · , xn,
col{x1, · · · , xn} stands for a column vector by stacking them
together. The symbol ? in LMIs is used to denote entries that
follow from symmetry. For two integers k1 < k2, we denote
I [k1, k2] = {k1, k1 + 1, · · · , k2}. For a matrix M ∈ Rm×n,
MT denotes its transpose. The hermitian operator He{·} is
defined as He{M} = M +MT for real matrices. For x ∈ Rn,
its norm is defined as ‖x‖ := (xT x)1/2. The space of square
integrable (summable) functions is denoted by L2 (`2), that
is, for any u ∈ L2 (or `2), ‖u‖2 :=

(∫
∞

0 uT (t)u(t)dt
)1/2

<∞

(or ‖u‖2 :=
(∑
∞

t=0 u
T (t)u(t)

)1/2
< ∞). Co{S} denotes the

convex hull of a set S. For P ∈ Sn×n+ , we define an ellipsoid
E(P, s) := {x ∈ Rn

: xTPx ≤ s2}.
In this paper, we consider MASs whose interconnection

structures are described by an undirected graph. Specifically,
a graph is defined as G = (V, Ed ,A), where the elements
of V = {1, 2, · · · ,Na} are called vertices, the elements of
Ed are pairs (i, j) with i, j ∈ V, i 6= j, called edges, and the
matrixA is called the adjacencymatrix. If (i, j) ∈ Ed , it means
that agent i can receive information from agent j where these
two agents are called adjacent. The adjacency matrix is thus
defined as A = [aij]Na×Na , with aij = 1 if and only if (i, j) ∈
Ed , and aij = 0 otherwise. The graph G is called undirected if
for every (i, j) ∈ Ed also (j, i) ∈ Ed . For a given vertex, say i,
its neighboring setNi is defined byNi := { j ∈ V| (i, j) ∈ Ed }.
For a given graph, the Laplacianmatrix of the graph is defined
as L = [lij], where lii =

∑
j6=i aij, lij = −aij, i 6= j. If

the graph is undirected, then L is a positive semi-definite
matrix, so all eigenvalues of L are non-negative real. Zero
is always an eigenvalue of the Laplacian L, so it has rank
at most Na − 1. Furthermore, an undirected graph is called
connected if for every pair of distinct vertices i and j there
exists a path from i to j, i.e., a finite set of edges (ik , ik+1)
with k = 1, 2, · · · , r − 1 such that i1 = i and ir = j. An
undirected graph is connected if and only if its Laplacian has
rank Na − 1. In that case the zero eigenvalue has multiplicity
one, and all other eigenvalues are positive real. The remaining
Na − 1 eigenvalues are ordered in an increasing order as
0 < λ1 ≤ λ2 ≤ · · · ≤ λNa−1.

B. REGIONAL ANALYSIS FOR SINGLE SATURATED LINEAR
SYSTEMS
For a single/solo linear system subject to symmetric sat-
uration nonlinearity, the associated symmetric saturation
function is defined as sat(ui) = sgn(ui) min{ui, |ui|}, where
u =

[
u1 u2 · · · unu

]T represents the control input vec-
tor, and ui denotes the saturation level of sat(ui) (∀i ∈
I [1, nu]). Note that for symmetric saturations, the absolute
values of the negative and positive saturation levels are

identical. Here, we have slightly abused the notation by
using sat(·) to denote both the scalar-valued and vector-
valued saturation functions. Therefore sat(·) : Rnu → Rnu

is a vector-valued standard saturation function, i.e., sat(u) =[
sat(u1) sat(u2) · · · sat(unu )

]T . The deadzone nonlinear-
ity is closely related to the saturation function by
dz(u) = u− sat(u). Using deadzone functions, a linear sys-
tem subject to actuator saturation can be represented in the
following general form [34]Dxu

z

 =
 A B0 B1
C0 D00 D01
C1 D10 D11

xq
w

 ,
q = dz(u), (1)

where x ∈ Rn is the system state, q, u ∈ Rnu represent some
system’s internal signals, w ∈ Rnw denotes some exogenous
signals (e.g., disturbance), and z ∈ Rnz represents the sys-
tem’s controlled output for quantifying some performance,
such as the L2(`2) disturbance attenuation performance. The
symbol D denotes a differentiator for continuous-time sys-
tems and a difference operator for discrete-time systems.

To facilitate regional analysis and saturation control
design, we will introduce a linear subset as

R(H ) = {x ∈ Rn
: |Hx|∞ ≤ u}, (2)

where H ∈ Rnu×n and u = [u1, · · · , unu ]
T . Then, for the

system (1), if x ∈ R(H ), the deadzone function can be written
in the following form according to [35]:

dz(u) = 2(u− Hx) =: 2p,

for some 2 = diag{λ2,1, λ2,2, · · · , λ2,nu} satisfying 0 ≤
λ2,i ≤ 1,∀i ∈ I [1, nu]. Applying this relation to the original
system (1), we obtainDxp

z

 =
 A B0 B1
C0 − H D00 D01
C1 D10 D11

xq
w

 ,
q = 2ũ. (3)

Observe that the resulting system (3) is essentially a lin-
ear parameter-varying (LPV) system with a linear fractional
transformation (LFT) dependency on 2 [36].
For disturbance attenuation problem, we are mainly con-

cerned with a class of energy-bounded disturbances in con-
tinuous time

Ws =

{
w : R+→ Rnw ,

∫
∞

t=0
wT (t)w(t)dt ≤ s2,w ∈ L2

}
,

or in discrete time

Ws =

{
w : R+→ Rnw ,

∞∑
t=0

wT (t)w(t) ≤ s2,w ∈ `2

}
,

in which s is a positive scalar whose value is given. The level
of disturbance attenuation will be measured by the following
regional L2 (`2) gain performance index

γ := sup
x(0)=0,w6=0,w∈Ws

‖z‖2
‖w‖2

. (4)
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Based on the above results, the following two lemmas
provide the regional stability and L2 (`2) gain analysis con-
ditions for system (1) in continuous time and discrete time,
respectively, by slightly modifying the well-known Scaled
Bounded Real Lemma [37].
Lemma 1 (Continuous-Time Case): Consider the contin-

uous-time system (1) subject to actuator saturation and
energy-bounded disturbance w ∈Ws. If there exist a positive
definite matrix P ∈ Sn+, a diagonal positive definite matrix
0 ∈ Snu+ , and a positive scalar γ ∈ R+ such that

He{PA} ? ? ?

C0 − H + 0BT0 P He{−0 + D000} ? ?

BT1 P DT01 −γ I ?

C1 D100 D11 −γ I


< 0, (5) u2k
s2

?

HT δk P

 ≥ 0, ∀k ∈ I [1, nu] (6)

where the notation δk is used to denote the kth column vector
of the identity matrix. Then, the system (1) has its trajectories
contained within E(P, s) and achieves a regionalL2 gain less
than γ , i.e., ‖z‖2 < γ ‖w‖2, when x(0) = 0.

Proof: First of all, condition (6) ensures that E(P, s) ⊆
R(H ) and hence the system description (3) is valid within
E(P, s). Then, based on the Scaled Bounded Real Lemma
[37], to prove the conclusions, it suffices to have the Lya-
punov function V (x) = xTPx satisfying the following con-
dition for system (3) by noticing that 0 ≤ λ2,i ≤ 1,∀i ∈
I [1, nu], and matrices 2 and 0−1 are commutable, i.e.,
0−12 = 20−1,

V̇ (x)+ 2qT0−1(ũ− q)+
1
γ 2 z

T z− wTw < 0.

Consequently, by using Schur complement, the above condi-
tion can be converted to the matrix inequality

He{PA} ?

0−1(C0 − H )+ BT0 P He{−0−1 + 0−1D00}

BT1 P DT010
−1

C1 D10

? ?

? ?

−γ I ?

D11 −γ I

 < 0. (7)

Then, performing a congruence transformation on (7) with
diag{I , 0, I , I }, it verifies condition (5). �
Similarly, the `2-gain analysis conditions for saturated

discrete-time systems are stated in the following lemma.
Lemma 2 (Discrete-Time Case): Consider the discrete-

time system (1) subject to actuator saturation and energy-
bounded disturbance w ∈Ws. If there exist a positive definite
matrix P ∈ Sn+, a diagonal positive definite matrix 0 ∈ Snu+ ,

and a positive scalar γ ∈ R+ such that
−P ? ? ? ?

C0 − H He{−0 − D000} ? ? ?

0 DT01 − γ I ? ?

PA PB00 PB1 − P ?

C1 D100 D11 0 − γ I

<0,
(8) u2k

s2
?

HT δk P

 ≥ 0, ∀k ∈ I [1, nu]. (9)

Then, the system (1) has its trajectories contained within
E(P, s) and achieves a regional `2 gain less than γ , i.e.,
‖z‖2 < γ ‖w‖2, when x(0) = 0.

Proof: The proof follows similar ideas of the proof of
Lemma 1. First, condition (9) implies E(P, s) ⊆ R(H ), and
hence the system description (3) is valid within E(P, s). Then,
based on the discrete-time Scaled Bounded Real Lemma [37],
to prove the conclusions of the Lemma, it suffices to have the
Lyapunov function V (x) = xTPx satisfying the following
condition for the discrete-time system (3) by noticing that
0 ≤ λ2,i ≤ 1,∀i ∈ I [1, nu], and matrices 2 and 0−1 are
commutable, i.e., 0−12 = 20−1,

V (x(t + 1))− V (x(t))+ 2qT (t)0−1(ũ(t)− q(t))

+
1
γ 2 z

T (t)z(t)− wT (t)w(t) < 0.

Consequently, by using Schur complement, the above condi-
tion can be converted to the matrix inequality

−P ? ?

0−1(C0 − H ) He{−0−1 − 0−1D00} ?

0 DT010
−1

−γ I
PA PB0 PB1
C1 D10 D11

? ?

? ?

? ?

−P ?

0 −γ I

 < 0. (10)

Then, performing a congruence transformation on (10) with
diag{I , 0, I , I , I }, it verifies condition (8). �

III. MAIN RESULTS
A. PROBLEM STATEMENT
In this paper, we consider a MAS consisting of Na dynamical
agents subject to actuator saturations and unknown external
disturbances, whose dynamics can be described by

Pi :
[
Dxp,i
yi

]
=

[
Ap Bp1 Bp2
Cp Dp 0

] xp,i
wi

sat(ui)

 , (11)

for all i ∈ I [1,Na], where xp,i ∈ Rnx is the state, ui ∈ Rnu is
the control input, wi ∈ Rnw is energy-bounded disturbance,
yi ∈ Rny is the measurement output. sat(ui) denotes the satu-
ration function with the saturation level of uk (k ∈ I [1, nu]).
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The subscript i denotes the index of the ith agent. All the
system matrices Ap,Bp1,Bp2,Cp and Dp are known constant
matrices with appropriate dimensions. We have the following
assumptions regarding the agent dynamics and associated
communication network graph G of the MAS (11).
Assumption 1: (Ap,Bp2) and (Ap,Cp) are stabilizable and

detectable, respectively.
Assumption 2: G is undirected and connected.
Given the above system setup, our objective in this paper

is to design an output-feedback control protocol for the MAS
(11) using relative output information, such that (i) the states
of the MAS (11) reach consensus, i.e., limt→∞(xp,i(t) −
xp,j(t)) = 0 when wi = 0, ∀i, j ∈ I [1,Na]; and (ii) the over-
all closed-loop MAS achieves optimal regional L2(`2)-gain
disturbance attenuation performance in the sense of (4). To
more specifically quantify the second objective of distur-
bance attenuation performance, we define the state error
of the ith agent relative to the average state of all agents
as

zi = xp,i −
1
Na

Na∑
j=1

xp,j, ∀i ∈ I [1,Na]. (12)

Let z := col{z1, z2, · · · , zNa} ∈ RNanx , then it is clear that z =
0 indicates xp,i = xp,j for all i, j ∈ I [1,Na], i.e., consensus of
the MAS (11). Therefore, z(t) can be used as the controlled
(performance) output of the overall MAS to quantify the state
disagreement among all agents. Consequently, the considered
regional L2(`2)-gain disturbance attenuation performance
can be characterized as the L2 (`2) norm between the energy-
bounded disturbance w := col{w1,w2, · · · ,wNa} ∈ RNanw

and the controlled output z, i.e., ‖z‖2 < γ ‖w‖2, ∀w ∈ Ws.
Since smaller γ > 0 indicates better disturbance attenuation
performance, the optimal consensus control design problem
seeks to synthesize such an optimal control protocol that
would render a minimal L2 (`2) gain γ for the overall closed-
loop MAS.

B. DYNAMIC RELATIVE OUTPUT-FEEDBACK CONTROLLER
STRUCTURE AND SYSTEM TRANSFORMATIONS
To fulfill the above objectives, we propose to construct a
dynamic relative output-feedback control protocol for the
MAS (11) in the form of

Ci :


Dxc,i = Ac1xc,i + Ac2

∑Na
j=1 aij(xc,i − xc,j)

+Bc1
∑Na

j=1 aij(yi − yj)+ Bc2dz(ui)

ui = Cc1xc,i + Cc2
∑Na

j=1 aij(xc,i − xc,j)

+Dc1
∑Na

j=1 aij(yi − yj)+ Dc2dz(ui)

(13)

for all i ∈ I [1,Na], where xc,i ∈ Rnc is the controller
state with its order nc to be determined, aij are the adja-
cency elements associated with G. Ac1,Ac2,Bc1,Bc2 and
Cc1,Cc2,Dc1,Dc2 are controller gain matrices to be synthe-
sized. For facilitate subsequent development, we introduce
two matrices HC ∈ Rnu×nx and HD ∈ Rnu×nc , and define
an auxiliary set

R
([
HC HD

])
=
{
(xp,i, xc,i) ∈ Rnx × Rnc :

∣∣∣δTk (HCxp,i + HDxc,i)∣∣∣ ≤ uk ,
k ∈ I [1, nu], ∀i ∈ I [1,Na]} .

To understand the structure of this new dynamic relative
output-feedback protocol, it is seen that each agent will need
to use their respective local information including the con-
troller state xc,i and the control input ui through a dead-
zone loop for feedback control. In addition, each agent will
also need to collect relative information from their neigh-
bors, including relative plant outputs yi − yj and relative
controller states xc,i − xc,j. Note that no absolute measure-
ment output information is needed, which is favorable under
the distributed control context, especially when the MAS is
non-introspective [31]. The interconnection of the open-loop
MAS (11) and the saturated control protocol (13) is depicted
in Fig. 1 for illustration.

By substituting sat(ui) = ui − dz(ui) for all i ∈ I [1,Na],
the original agent plant dynamics (11) can be rewritten in the
following form:

Dxp,i = Apxp,i − Bp2qi + Bp1wi + Bp2ui,
yi = Cpxp,i + Dpwi,
qi = dz(ui).

(14)

Combining the MAS plant (14) and the saturated control
protocol (13), one can derive the closed-loopMAS dynamics.
Specifically, define the following aggregated vectors

xp = col{xp,1, xp,2, · · · , xp,Na},

xc = col{xc,1, xc,2, · · · , xc,Na},

q = col{q1, q2, · · · , qNa},

u = col{u1, u2, · · · , uNa},

we have
Dxp
Dxc
u
z



=


INa ⊗ Ap + L⊗ Bp2Dc1Cp

L⊗ Bc1Cp
L⊗ Dc1Cp
Lc ⊗ Inx

INa ⊗ Bp2Cc1 + L⊗ Bp2Cc2 INa ⊗ (Bp2Dc2 − Bp2)
INa ⊗ Ac1 + L⊗ Ac2 INa ⊗ Bc2
INa ⊗ Cc1 + L⊗ Cc2 INa ⊗ Dc2

0 0

INa ⊗ Bp1 + L⊗ Bp2Dc1Dp
L⊗ Bc1Dp
L⊗ Dc1Dp

0


xp
xc
q
w

 ,
q = dz(u), (15)

where L is the Laplacian of the graph G, and the controlled
output equation of z is deduced from (12) with matrix Lc
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FIGURE 1. Closed-loop structure of the i th agent.

defined as

Lc =



Na − 1
Na

−
1
Na

· · · −
1
Na

−
1
Na

Na − 1
Na

· · · −
1
Naa

...
...

. . .
...

−
1
Na

−
1
Na

· · ·
Na − 1
Na


Na×Na

= INa −
1
Na

1Na1
T
Na .

For analysis purpose, we wish to simplify the above closed-
loop system formulation through some coordinate transfor-
mations. To this end, choose an orthogonal Na × Na matrix
with the form of

U1 =



? · · · ?
1
√
Na

? · · · ?
1
√
Na

...
. . .

...
1
√
Na

? · · · ?
1
√
Na


, (16)

where ‘‘?’’ denotes elements that we do not care about. It
gives UT

1 1Na = [0, · · · , 0,
√
Na]T , and the following results

can be immediately verified:

UT
1 LU1 =

[
L1 0Na−1

0TNa−1 0

]
:= L̃,

UT
1 LcU1 = UT

1 U1 −
1
Na
UT
1 1Na1

T
NaU1

=

[
INa−1 0Na−1
0TNa−1 0

]
, (17)

where the submatrix L1 is positive definite. Based on
this, we perform the following orthogonal transformation to
system (15):

x̃p = (U1 ⊗ Inx )xp, x̃c = (U1 ⊗ Inc )xc,

q̃ = (U1 ⊗ Inu )q, w̃ = (U1 ⊗ Inw )w,

z̃ = (U1 ⊗ Inx )z, ũ = (U1 ⊗ Inu )u,

which yields the following transformed model:
Dx̃p
Dx̃c
ũ
z̃



=


INa ⊗ Ap + L̃⊗ Bp2Dc1Cp

L̃⊗ Bc1Cp
L̃⊗ Dc1Cp[

INa−1 0Na−1
0TNa−1 0

]
⊗ Inx

INa ⊗ Bp2Cc1 + L̃⊗ Bp2Cc2 INa ⊗ (Bp2Dc2 − Bp2)
INa ⊗ Ac1 + L̃⊗ Ac2 INa ⊗ Bc2
INa ⊗ Cc1 + L̃⊗ Cc2 INa ⊗ Dc2

0 0

INa ⊗ Bp1 + L̃⊗ Bp2Dc1Dp
L̃⊗ Bc1Dp
L̃⊗ Dc1Dp

0



x̃p
x̃c
q̃
w̃

 ,
q̃ = dz(ũ). (18)

In light of the block-diagonal structure of the above system
matrices, regarding the L2(`2)-gain performance from the
disturbance w̃ to the controlled output z̃, it is equivalent to
consider the following reduced-order system (19) by defining
x̃p = col{x̃1p , x̃

2
p } with x̃

2
p being the last nx elements of x̃p,

likewise defining x̃1c , q̃
1, ũ1, w̃1, and z̃1.

Dx̃1p
Dx̃1c
ũ1

z̃1

 =

INa ⊗ Ap + L1 ⊗ Bp2Dc1Cp

L1 ⊗ Bc1Cp
L1 ⊗ Dc1Cp
INa−1 ⊗ Inx

INa⊗Bp2Cc1+L1⊗Bp2Cc2 INa⊗(Bp2Dc2−Bp2)
INa ⊗ Ac1 + L1 ⊗ Ac2 INa ⊗ Bc2
INa ⊗ Cc1 + L1 ⊗ Cc2 INa ⊗ Dc2

0 0

INa ⊗ Bp1 + L1 ⊗ Bp2Dc1Dp
L1 ⊗ Bc1Dp
L1 ⊗ Dc1Dp

0



x̃1p
x̃1c
q̃1

w̃1

 ,
q̃1 = dz(ũ1). (19)

Remark 1: Through the above system transformations, we
have the following observations:
• First, according to the definition of L2(`2)-gain perfor-
mance from disturbance w to controlled output z for
system (15), it can be easily verified that

‖z‖2<γ ‖w‖2⇔‖z̃‖2<γ ‖w̃‖2⇔‖z̃1‖2<γ ‖w̃1
‖2.

(20)

• Second, from (18), z = 0 is equivalent to x̃1p = 0. Since
z = 0 implies that the overall MAS achieves consensus,
asymptotic stability of system (19) thus ensures asymp-
totic consensus of system (15).
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In summary, the consensus performance of the closed-loop
system (15) is achieved with L2 (`2) disturbance attenuation
level γ if the system (19) is asymptotically stable and satisfies
the L2(`2)-gain performance with ‖z̃1‖2 < γ ‖w̃1

‖2. There-
fore, the original L2 (`2) consensus control problem boils
down to L2 (`2) stabilization of the transformed system (19).

C. CONVEX SYNTHESIS OF DYNAMIC RELATIVE
OUTPUT-FEEDBACK SATURATED CONSENSUS CONTROL
The following lemma is needed to derive the convex synthesis
conditions for the proposed dynamic relative output-feedback
saturated consensus control protocol.
Lemma 3: Consider the input-saturated MAS (15) with

the network graph G. Under Assumptions 1–2, the system
achieves the consensus performance with a regional L2 (`2)
gain less than γ for any disturbance wi ∈Ws (∀i ∈ I [1,Na]),
if and only if the following Na − 1 subsystemsDx̄cl,iūi

z̄i

 =
 Acl,i Bcl0 Bcl1,i
Ccl0,i Dcl00 Dcl01,i
Ccl1 0 0

x̄cl,iq̄i
w̄i

 ,
q̄i = dz(ūi), i ∈ I [1,Na − 1] (21)

are simultaneously asymptotically stable and achieve the
same regional L2 (`2) gain less than γ , where x̄cl,i ∈
Rnx+nc , q̄i ∈ Rnu , w̄i ∈ Rnw , z̄i ∈ Rnx , and

Acl,i =
[
Ap + λiBp2Dc1Cp Bp2Cc1 + λiBp2Cc2

λiBc1Cp Ac1 + λiAc2

]
,

Bcl0 =
[
Bp2Dc2 − Bp2

Bc2

]
, Bcl1,i =

[
Bp1 + λiBp2Dc1Dp

λiBc1Dp

]
,

Ccl0,i =
[
λiDc1Cp Cc1 + λiCc2

]
, Ccl1 =

[
Inx 0

]
,

Dcl00 = Dc2, Dcl01,i = λiDc1Dp, (22)

λi (for all i ∈ I [1,Na−1]) are the Na−1 positive eigenvalues
of the Laplacian matrix L.

Proof: With Assumption 2, matrix L1 of (17) is positive
definite. Then there exist an orthogonal matrix U2 ∈ RNa−1

such that

UT
2 L1U2 = diag{λ1, λ2, · · · , λNa−1} := 3,

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λNa−1 are positive eigenvalues
ofL1. Based on the observations in Remark 1, proving theL2
(`2) consensus performance of system (15) is equivalent to
proving L2 (`2) stability of system (19). As such, we perform
the following orthogonal transformation to system (19): x̄1p =
(U2 ⊗ Inx )x̃

1
p := col{x̄p,1, x̄p,2, · · · , x̄p,Na−1}, with x̄p,i ∈

Rnx ,∀i ∈ I [1,Na − 1], x̄1c = (U2 ⊗ Inc )x̃
1
c :=

col{x̄c,1, x̄c,2, · · · , x̄c,Na−1}, with x̄c,i ∈ Rnc ,∀i ∈ I [1,Na −
1], q̄1 = (U2 ⊗ Inu )q̃

1
:= col{q̄1, q̄2, · · · , q̄Na−1}, with

q̄i ∈ Rnu ,∀i ∈ I [1,Na − 1], w̄1
= (U2 ⊗ Inw )w̃

1
:=

col{w̄1, w̄2, · · · , w̄Na−1}, with w̄i ∈ Rnw ,∀i ∈ I [1,Na −
1], z̄1 = (U2 ⊗ Inx )z̃

1
:= col{z̄1, z̄2, · · · , z̄Na−1}, with z̄i ∈

Rnx ,∀i ∈ I [1,Na − 1], ū1 = (U2 ⊗ Inu )ũ
1
:=

col{ū1, ū2, · · · , ūNa−1}, with ūi ∈ Rnu ,∀i ∈ I [1,Na − 1].

Then, we obtain
Dx̄1p
Dx̄1c
ū1

z̄1



=


INa ⊗ Ap +3⊗ Bp2Dc1Cp

3⊗ Bc1Cp
3⊗ Dc1Cp
INa−1 ⊗ Inx

INa ⊗ Bp2Cc1 +3⊗ Bp2Cc2 INa ⊗ (Bp2Dc2 − Bp2)
INa ⊗ Ac1 +3⊗ Ac2 INa ⊗ Bc2
INa ⊗ Cc1 +3⊗ Cc2 INa ⊗ Dc2

0 0

INa ⊗ Bp1 +3⊗ Bp2Dc1Dp
3⊗ Bc1Dp
3⊗ Dc1Dp

0



x̄1p
x̄1c
q̄1

w̄1

 ,
q̄1 = dz(ū1).

It is clearly seen that since 3 is diagonal, the above trans-
formed system manages to decouple the system dynamics
(19) into Na−1 independent subsystems as indicated by (21)
with x̄cl,i := col{x̄p,i, x̄c,i},∀i ∈ I [1,Na−1]. This implies the
equivalency between asymptotic stability of system (19) and
simultaneously asymptotic stability of all Na− 1 subsystems
in (21). Moreover, by the definition of L2(`2)-gain perfor-
mance, together with the orthogonal transformation property
and the relation of (20), we have

‖z‖2 < γ ‖w‖2 ⇔ ‖z̃‖2 < γ ‖w̃‖2 ⇔ ‖z̃1‖2 < γ ‖w̃1
‖2

⇔ ‖z̄1‖2 < γ ‖w̄1
‖2 ⇔ ‖z̄i‖2 < γ ‖w̄i‖2

for all i ∈ I [1,Na − 1]. In summary, system (15) achieves
the consensus performance with an L2 (`2) gain less than γ
if and only if the Na − 1 subsystems (21) all achieve L2 (`2)
stability with an L2 (`2) gain less than γ . This completes the
proof. �
Based on Lemma 3, the following two theorems provide

the main results for the saturated consensus control synthesis
in continuous time and discrete time, respectively.
Theorem 1 (Continuous-Time Case): Consider the conti-

nuous-time input-saturated MAS (11). Under Assumptions
1–2, if there exist positive definite matrices R, S ∈ Snx+ ,
rectangular matrices Âc1, Âc2 ∈ Rnx×nx , B̂c1 ∈ Rnx×ny ,
B̂c2 ∈ Rnx×nu , Ĉc1, Ĉc2 ∈ Rnu×nx , D̂c1 ∈ Rnu×ny , D̂c2 ∈
Rnu×nu ,

[
ĤC ĤD

]
∈ Rnu×2nx , a diagonal positive definite

matrix 0 ∈ Snu+ , and a positive scalar γ ∈ R+ such that
the following conditions hold for all i ∈ I [1,Na − 1].

He
{
ApR+ Bp2Ĉc1 + λiBp2Ĉc2

}
Âc1 + λiÂc2 + ATp + λiC

T
p D̂

T
c1B

T
p2

Ĉc1 − ĤD + λiĈc2 + D̂Tc2B
T
p2 − 0B

T
p2

λiDTp D̂
T
c1B

T
p2 + B

T
p1

R
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? ? ? ?

He
{
SAp + λiB̂c1Cp

}
? ? ?

λiD̂c1Cp − ĤC + B̂Tc2 He{−0 + D̂c2} ? ?

λiDTp B̂
T
c1 + B

T
p1S λiDTp D̂

T
c1 −γ I ?

I 0 0 −γ I


< 0,

(23)
u2k
s2

? ?

ĤT
D δk R ?

ĤT
C δk I S

 ≥ 0, ∀k ∈ I [1, nu], (24)

[
R ?

I S

]
> 0. (25)

Then the dynamic relative output-feedback saturated control
protocol (13) renders the MAS (11) consensus with a regional
L2 gain less than γ for any disturbance wi ∈ Ws (∀i ∈
I [1,Na]). Moreover, the controller (13) is of order nc = nx ,
and its coefficient matrices can be reconstructed by:

HC = ĤC ,Ac1 Ac2 Bc1 Bc2
Cc1 Cc2 Dc1 Dc2
HD 0 0 0


=

N SBp2 0
0 I 0
0 0 I

−1

×

Âc1 − SApR Âc2 B̂c1 B̂c2 + SBp20
Ĉc1 Ĉc2 D̂c1 D̂c2

ĤD − HCR 0 0 0



×


MT 0 0 0
0 MT 0 0
0 CpR I 0
0 0 0 0


−1

, (26)

where M ,N ∈ Rnx×nx are such that MNT
= I − RS.

Proof: From Lemma 3, the regional L2 consensus per-
formance of the input-saturated MAS (11) is equivalent to
the simultaneous regional L2 stability of Na − 1 number
of independent linear systems in the form of (21). As such,
combining with Lemma 1, the conclusion of Theorem 1 can
be reached if there exist a positive definite matrix P ∈ S2nx+ ,
a diagonal positive definite matrix 0 ∈ Snu+ , and a positive
scalar γ such that the following inequalities hold for all the
Na − 1 number of systems in (21),

He{PAcl,i} ?

Ccl0,i − H + 0BTcl0P He{−0 + Dcl000}
BTcl1,iP DTcl01,i
Ccl1 0

? ?

? ?

−γ I ?

0 −γ I

 < 0, ∀i ∈ I [1,Na − 1], (27)

 u2k
s2

?

HT δk P

 ≥ 0, ∀k ∈ I [1, nu]. (28)

To formulate the above two conditions in convex LMI form,
we let H =

[
HC HD

]
and

P =
[
S N
NT X̂−1

]
.

Then define

Z1 =
[
R I
MT 0

]
, Z2 =

[
I S
0 NT

]
,

such thatPZ1 = Z2. As a result, we have X̂−1 = −NTRM−T .
Based on condition (25), it can be verified that

ZT1 PZ1 =
[
R I
I S

]
> 0,

in turn, P > 0. Then, after performing the congruence trans-
formation with matrix diag{Z1, I , I , I } on condition (27), and
matrix diag{I ,Z1} on condition (28), we have the following
results:

ZT1 PAcl,iZ1 =
[
ApR+ Bp2Ĉc1 + λiBp2Ĉc2

Âc1 + λiÂc2

Ap + λiBp2D̂c1Cp
SAp + λiB̂c1Cp

]
,

0BTcl0PZ1 =
[
D̂Tc2B

T
p2 − 0B

T
p2 B̂Tc2

]
,

BTcl1,iPZ1 =
[
BTp1+λiD

T
p D̂

T
c1B

T
p2 BTp1S+λiD

T
p B̂

T
c1

]
,

(Ccl0,i − H )Z1 =
[
Ĉc1 + λiĈc2 − ĤD λiD̂c1Cp − ĤC

]
,

Ccl1Z1 =
[
R I

]
, Dcl000 = D̂c2,

Dcl01,i = λiD̂c1Dp,

HZ1 =
[
ĤD ĤC

]
. (29)

where

Âc1 = SApR+ SBp2Cc1MT
+ NAc1MT ,

Âc2 = SBp2Dc1CpR+ NBc1CpR

+ SBp2Cc2MT
+ NAc2MT ,

B̂c1 = SBp2Dc1 + NBc1,

B̂c2 = SBp2Dc20 − SBp20 + NBc20,

Ĉc1 = Cc1MT , Ĉc2 = Dc1CpR+ Cc2MT

D̂c1 = Dc1, D̂c2 = Dc20, ĤC = HC ,

ĤD = HCR+ HDMT . (30)

The above congruence transformation results verify equiv-
alency between condition (23) and condition (27), as well
as condition (24) and condition (28). The formula (26) for
reconstruction of controller gain matrices can also be verified
by inverting the relations in (30). This ends the proof. �
Remark 2: It is clearly seen that the saturated consensus

control synthesis conditions (23)–(25) in Theorem 1 are for-
mulated in terms of convex LMIs, which can be solved effec-
tively through semi-definite programming [38]. Thus, this
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result can be used to pose the following convex LMI-based
optimization problem for synthesizing an optimal consen-
sus control protocol that would render the MAS a minimal
regional L2 gain γ :

min
R,S,Âc1,Âc2,B̂c1,B̂c2,Ĉc1,Ĉc2,D̂c1,D̂c2,ĤC ,ĤD,0

γ

s.t. (23)–(25). (31)

Thanks to the convexity property of the derived LMI con-
ditions, solving the above LMI-based optimization problem
will involve very little computational complexity, as will be
illustrated through examples in Section IV.
Parallel to the continuous-time case, the saturated consen-

sus control synthesis condition for discrete-time case is given
as follows.
Theorem 2 (Discrete-Time Case): Consider the discrete-

time input-saturated MAS (11). Under Assumptions 1–2, if
there exist positive definite matrices R, S ∈ Snx+ , rectan-
gular matrices Âc1, Âc2 ∈ Rnx×nx , B̂c1 ∈ Rnx×ny , B̂c2 ∈
Rnx×nu , Ĉc1, Ĉc2 ∈ Rnu×nx , D̂c1 ∈ Rnu×ny , D̂c2 ∈ Rnu×nu ,[
ĤC ĤD

]
∈ Rnu×2nx , a diagonal positive definite matrix

0 ∈ Snu+ , and a positive scalar γ ∈ R+ such that condition
(32), as shown at the bottom of the next page, and

u2k
s2

? ?

ĤT
D δk R ?

ĤT
C δk I S

 ≥ 0, ∀k ∈ I [1, nu], (33)

[
R ?

I S

]
> 0, (34)

hold for all i ∈ I [1,Na − 1]. Then the dynamic relative
output-feedback saturated control protocol (13) renders the
MAS (11) consensus with a regional `2 gain less than γ for
any disturbance wi ∈ Ws (∀i ∈ I [1,Na]). Moreover, the
controller (13) is of order nc = nx , and its coefficient matrices
can be reconstructed by using (26).

Proof: From Lemma 3, the regional `2 consensus per-
formance of the input-saturated MAS (11) is equivalent to
the simultaneous regional `2 stability of Na − 1 number of
independent linear systems in the form of (21). As such,
combining with Lemma 2, the conclusion of Theorem 2 can
be reached if there exist a positive definite matrix P ∈ S2nx+ ,
a diagonal positive definite matrix 0 ∈ Snu+ , and a positive
scalar γ such that the following inequalities hold for all the
Na − 1 number of systems in (21),

−P ? ? ? ?

Ccl0,i − H He{−0 − Dcl000} ? ? ?

0 DTcl01,i − γ I ? ?

PAcl,i PBcl00 PBcl1,i − P ?

Ccl1 0 0 0 − γ I


< 0, (35) u2k
s2

?

HT δk P

 ≥ 0, ∀k ∈ I [1, nu]. (36)

FIGURE 2. LC oscillator circuits for i ∈ I[1, 10] (Example 1).

To formulate the above two conditions in convex LMI form,
we follow a similar idea of the proof of Theorem 1 to letH =[
HC HD

]
and

P =
[
S N
NT X̂−1

]
, Z1=

[
R I
MT 0

]
, Z2=

[
I S
0 NT

]
,

such thatPZ1 = Z2. As a result, we have X̂−1 = −NTRM−T .
With condition (34), it can be verified that ZT1 PZ1 =[
R I
I S

]
> 0, in turn, P > 0. Then, after performing the

congruence transformation with matrix diag{Z1, I , I ,Z1, I }
on condition (35), and matrix diag{I ,Z1} on condition (36),
we obtain the same results as those of (29) and (30). This ver-
ifies equivalency between condition (32) and condition (35),
as well as condition (33) and condition (36). The controller
reconstruction formula (26) can also be verified by inverting
the relations in (30). This ends the proof. �
Similar to the continuous-time case, the discrete-time sat-

urated consensus control synthesis conditions (32)–(34) are
formulated in terms of convex LMIs. Hence, the associated
optimal consensus control protocol that renders the MAS a
minimal `2 gain γ can be synthesized by solving the follow-
ing convex optimization problem:

min
R,S,Âc1,Âc2,B̂c1,B̂c2,Ĉc1,Ĉc2,D̂c1,D̂c2,ĤC ,ĤD,0

γ

s.t. (32)–(34). (37)

IV. APPLICATION EXAMPLES
In this section, two examples will be used to demonstrate the
effectiveness and real application of the proposed dynamic
relative output-feedback saturated consensus control schemes
for continuous-time and discrete-time MASs, respectively.

A. EXAMPLE 1: CONTINUOUS-TIME CASE
The first example considers the synchronization problem
for multiple electrical circuit systems, which consist of ten
perturbed and input-saturated oscillator circuits as shown in
Fig. 2.

Specifically, for each circuit system with index i ∈
I [1, 10], we use Ic,i and IL,i to denote the corresponding
currents through the capacitor C and the inductor L, respec-
tively, and use Id,i to represent unknown external current
perturbations.R is a resistor, and ui is the control input voltage
for the ith circuit system. By applying the Kirchhoff’s law, the
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FIGURE 3. Network graph of ten agents.

dynamical behaviour of these LC circuits can be described by

LCÏL,i + IL,i +
1
Ri
ui + Id,i = 0, ∀i ∈ I [1, 10]. (38)

Our goal here is to apply the proposed continuous-time
dynamic relative output-feedback consensus control scheme
to solve the synchronization problem of the above ten elec-
trical circuits, i.e., driving the current states (including IL,i
and İL,i) of these circuit systems to reach consensus in the
presence of unknown external disturbances and control input
saturation. To this end, we reformulate the above circuits’
dynamics (38) into the state-space form of (11) by defining
xp1,i := IL,i, xp2,i := İL,i, wi := Id,i, and yi := IL,i for all
i ∈ I [1, 10]. This yields the associated state-space matrices
as

[
Ap Bp1 Bp2
Cp Dp 0

]
=

 0 1 0 0

−
1
LC

0 −
1
LC

−
1

LCR
1 0 0 0

 .
For simulation purpose, we choose the circuit constants L =
1.5H , C = 1F , R = 50�, and assume the saturation level
of the voltage inputs ui as u = 0.2 for all i ∈ I [1, 10]. The
underlying communication network graph G is given in Fig.
3 with the associated Laplacian matrix as

L=



3 −1 −1 −1 0 0 0 0 0 0
−1 2 0 0 0 −1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
−1 0 0 3 −1 0 0 0 0 −1
0 0 0 −1 3 −1 −1 0 0 0
0 −1 0 0 −1 2 0 0 0 0
0 0 0 0 −1 0 3 −1 −1 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 −1 0 0 0 0 0 1


(39)

FIGURE 4. Disturbance signals (Example 1).

whose non-zero eigenvalues include λ1 = 0.2495, λ2 =
0.6384, λ3 = 0.8471, λ4 = 1, λ5 = 2, λ6 = 2.454,
λ7 = 3.4902, λ8 = 4.3687, and λ9 = 4.9521.

Based on the above system setup, under the proposed
consensus control scheme for continuous-time systems, we
solve the LMI optimization problem (31) to yield a mini-
mized regional L2 gain γ = 225.2231 for the disturbance
level s = 1. The associated optimal controller matrices can
be further obtained with formula (26). Consequently, using
the synthesized consensus control protocol in the form of
(13), we carry the time-domain simulations under zero initial
conditions for all system and controller states. The energy-
bounded disturbance signals wi are assumed to be

w(t)

=



[
w0(t) − 0.5 sin(t)w0(t) − sin(10t)w0(t)

0.5 cos(0.1t)w0(t) 0.2w0(t)

−0.2 sin(t)w0(t) cos(t)w0(t)

0.7 cos(0.1t)w0(t) −0.7 cos(0.1t)w0(t)
[
0.5w0(t)

]T
,

t ∈ [0, 5] sec
0, otherwise

(40)

where w0(t) := (3 sin(9t) + 5 sin(
√
13t) + 7 cos(15t) +

9 cos(19t))/240 is used to generate random-like noisy sig-
nals, according to [39]. Fig. 4 shows the time-domain pro-
file of such energy-bounded random-like disturbance signals.
Fig. 5 provides the trajectories of the control input signals
ui(t) for all ten circuit systems. Saturation at magnitude 0.2
and −0.2 can be observed from 0 to 15 sec. The synchro-
nization performance is illustrated in Fig. 6. In particular,



−R ? ? ? ? ? ?

−I − S ? ? ? ? ?

Ĉc1 + λiĈc2 − ĤD λiD̂c1Cp − ĤC He{−0 + D̂c2} ? ? ? ?

0 0 λiDTp D̂
T
c1 − γ I ? ? ?

ApR+ Bp2Ĉc1 + λiBp2Ĉc2 Ap + λiBp2D̂c1Cp Bp2D̂c2 − Bp20 Bp1 + λiBp2D̂c1Dp − R ? ?

Âc1 + λiÂc2 SAp + λiB̂c1Cp B̂c2 SBp1 + λiB̂c1Dp − I − S ?

R I 0 0 0 0 − γ I


< 0, (32)
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FIGURE 5. Control inputs (Example 1).

Figs. 6(a) and 6(b) show that both states of all ten electrical
circuits indeed reach consensus with the ultimate consensus
trajectories being sinusoidal signals. The consensus perfor-
mance is more clearly demonstrated in Figs. 6(c) and 6(d),
which show the convergence of all consensus error signals
(defined in (12)) to zero. Because of the effects of input
saturation, some chattering phenomenons appear during the
transient process as shown in Figs. 6(b) and (d). The con-
troller state profiles are also provided in Fig. 7 to verify
stability of the overall MAS.

B. EXAMPLE 2: DISCRETE-TIME CASE
In the second example, we consider consensus control of a
network of ten mass-spring mechanical systems (as shown in
Fig. 8), each of which has the following dynamics:

mẍi + kxi = ui, ∀i ∈ I [1, 10]

where xi represents displacement of the mass from the equi-
librium point, m is the mass, k denotes the spring constant,
and ui is the control input representing external forces applied
to the mass. The goal is to drive all these ten mass-spring
systems to reach certain consensus behaviors by utilizing
the discrete-time version of the proposed dynamic relative
output-feedback control protocol. To this end, we rewrite the
above system dynamics into the following state-space model
by defining xp,i = [xi, ẋi]T and yi = xi:

ẋp,i =

[
0 1

−
k
m

0

]
xp,i +

[
0
1
m

]
ui,

yi =
[
1 0

]
xp,i, ∀i ∈ I [1, 10].

Then, by discretising the above continuous-time model
with a sampling time Ts = 0.01 sec, and taking into account
the effects of control input saturation and external distur-
bances/noise wi, we obtain the following discrete-time model
for the multiple mass-spring systems:

xp,i(t + 1) =

[
1 0.01

−0.01
k
m

1

]
xp,i(t)+

[
0

0.01

]
wi(t)

FIGURE 6. Synchronization of ten oscillator circuits (Example 1).

+

[
0

0.01
m

]
sat(ui(t)),

yi(t) =
[
1 0

]
xp,i(t)+ wi(t), ∀i ∈ I [1, 10].

For controller synthesis, we choose the mass m = 1 kg,
the spring constant k = 0.1 N/m, the saturation level of
the force control inputs u = 0.5 for all i ∈ I [1, 10], and
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FIGURE 7. Controller states (Example 1).

FIGURE 8. Mass-spring mechanical systems for i ∈ I[1, 10] (Example 2).

FIGURE 9. Control inputs (Example 2).

assume that the underlying communication network graph G
has the same structure as of Fig. 3, which shares the same
Laplacian matrix as given in (39). Based on Theorem 2, we
solve the convex LMI optimization problem (37) to achieve
the optimal regional `2 gain γ = 48.4417 for the disturbance
level s = 150. The associated optimal controller matrices are
also obtained using (26). With an energy-bounded random-

FIGURE 10. Consensus of ten mass-spring mechanical systems
(Example 2).

like disturbance satisfying a similar profile of (40) but starting
from time step 0 to time step 200, we conduct the time-
domain simulations with zero initial conditions to all system
and controller states. The simulation results are plotted in
Fig. 9 through Fig. 11. Fig. 9 shows the trajectories of the
control input signals of all ten agents. Saturation can be
clearly observed for these control signals. The plant state tra-
jectories and the consensus error trajectories of all ten agents
are depicted in Figs. 10(a)–(b) and 10(c)–(d), respectively.
Similar to the Example 1, because of the effects of input satu-
ration, some chattering phenomenons appear during the tran-
sient process as shown in Figs. 10(b) and (d). It is interesting
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FIGURE 11. Controller states (Example 2).

to see that ten mass-spring systems will ultimately reach
consensus on a persistently oscillating behavior. This demon-
strates that the proposed control protocol is indeed capable
of stabilizing the overall MAS and meeting the consensus
specification with disturbance attenuation when subjected to
actuator saturation. Moreover, the controller state trajectories
are plotted in Fig. 11 for overall stability demonstration.

V. CONCLUSIONS
In this paper, a novel dynamic relative output-feedback con-
sensus control protocol has been proposed for a class of
linear MASs subject to input saturation and energy-bounded
external disturbances. With this new control protocol, the
associated consensus control synthesis conditions have been
formulated in terms of computationally-tractable LMIs, such
that an optimal consensus control solution that ensures opti-
mal disturbance attenuation performance can be synthe-
sized via efficient convex optimization. Both continuous-time
and discrete-time MASs have been addressed in a unified
framework. Effectiveness of the proposed results have been
demonstrated through two realistic engineering applications,
including synchronization of multiple electrical circuits and
consensus oscillation of multiple mass-spring mechanical
systems. In the future work, it is promising to further extend
the proposed methodologies to leader-following MASs, and

MASs with more general settings, such as nonlinear and het-
erogeneous agent dynamics, as well as switching and directed
network topologies, etc.

REFERENCES
[1] M. Dorigo et al., ‘‘Swarmanoid: A novel concept for the study of het-

erogeneous robotic swarms,’’ IEEE Robot. Autom. Mag., vol. 20, no. 4,
pp. 60–71, Dec. 2013.

[2] H. Du,W. Zhu, G.Wen, Z. Duan, and J. Lü, ‘‘Distributed formation control
of multiple quadrotor aircraft based on nonsmooth consensus algorithms,’’
IEEE Trans. Cybern., vol. 49, no. 1, pp. 342–353, Jan. 2019.

[3] K. Varada, C. Yuan, and M. Sodhi, ‘‘Multi-vehicle platoon control with
time-varying input delays,’’ in Proc. ASME Dyn. Syst. Control Conf.
New York, NY, USA: American Society of Mechanical Engineers, 2017,
pp. 1–9, Paper V001T45A004.

[4] A. P. S. Meliopoulos, G. Cokkinides, R. Huang, E. Farantatos, S. Choi,
Y. Lee, and X. Yu, ‘‘Smart grid technologies for autonomous operation and
control,’’ IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 1–10, Mar. 2011.

[5] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooper-
ative Control. London, U.K.: Springer-Verlag, 2008.

[6] Z. Qu, Cooperative Control of Dynamical Systems: Applications to
Autonomous Vehicles. Springer, 2009.

[7] V. Gazi and B. Fidan, ‘‘Coordination and control of multi-agent dynamic
systems: Models and approaches,’’ in Proc. Int. Workshop Swarm Robot.
Berlin, Germany: Springer, 2006, pp. 71–102.

[8] G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, ‘‘Containment of higher-
order multi-leader multi-agent systems: A dynamic output approach,’’
IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1135–1140, Apr. 2016.

[9] L. Zhao, Y. Jia, and J. Yu, ‘‘Adaptive finite-time bipartite consensus for
second-order multi-agent systems with antagonistic interactions,’’ Syst.
Control Lett., vol. 102, pp. 22–31, Apr. 2017.

[10] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini,
‘‘Model predictive control schemes for consensus in multi-agent systems
with single- and double-integrator dynamics,’’ IEEE Trans. Autom. Con-
trol, vol. 54, no. 11, pp. 2560–2572, Nov. 2009.

[11] J. Hu and Y. S. Lin, ‘‘Consensus control for multi-agent systems with
double-integrator dynamics and time delays,’’ IET Control Theory Appl.,
vol. 4, no. 1, pp. 109–118, Jan. 2010.

[12] H. Su, Y. Qiu, and L. Wang, ‘‘Semi-global output consensus of discrete-
time multi-agent systems with input saturation and external disturbances,’’
ISA Trans., vol. 67, pp. 131–139, Mar. 2017.

[13] H. Hu and Z. Lin, ‘‘Consensus of a class of discrete-time nonlinear multi-
agent systems in the presence of communication delays,’’ ISA Trans.,
vol. 71, pp. 10–20, Nov. 2017.

[14] C. Yuan, W. Zeng, and S.-L. Dai, ‘‘Distributed model reference adaptive
containment control of heterogeneous uncertain multi-agent systems,’’ ISA
Trans., vol. 86, pp. 73–86, Mar. 2019.

[15] Y. Zhang and S. Li, ‘‘Second-order min-consensus on switching topology,’’
Automatica, vol. 96, pp. 293–297, Oct. 2018.

[16] T. Yang, Z. Meng, D. V. Dimarogonas, and K. H. Johansson, ‘‘Global
consensus for discrete-time multi-agent systems with input saturation con-
straints,’’ Automatica, vol. 50, no. 2, pp. 499–506, Feb. 2014.

[17] Y. Li, W.Wei, and J. Xiang, ‘‘Consensus problems for linear time-invariant
multi-agent systems with saturation constraints,’’ IET Control Theory
Appl., vol. 5, no. 6, pp. 823–829, Apr. 2011.

[18] B. Zhang, Y. Jia, and F. Matsuno, ‘‘Finite-time observers for multi-agent
systems without velocity measurements and with input saturations,’’ Syst.
Control Lett., vol. 68, pp. 86–94, Jun. 2014.

[19] Q. Song, F. Liu, H. Su, and A. V. Vasilakos, ‘‘Semi-global and global
containment control of multi-agent systems with second-order dynamics
and input saturation,’’ Int. J. Robust Nonlinear Control, vol. 26, no. 16,
pp. 3460–3480, Nov. 2016.

[20] H. Su, M. Z. Q. Chen, and G. Chen, ‘‘Robust semi-global coordinated
tracking of linear multi-agent systems with input saturation,’’ Int. J. Robust
Nonlinear Control, vol. 25, no. 14, pp. 2375–2390, Sep. 2015.

[21] X. Yin, D. Yue, and S. Hu, ‘‘Adaptive periodic event-triggered consensus
for multi-agent systems subject to input saturation,’’ Int. J. Control, vol. 89,
no. 4, pp. 653–667, Apr. 2016.

[22] X. Wang, H. Su, X. Wang, and G. Chen, ‘‘Fully distributed event-triggered
semiglobal consensus of multi-agent systems with input saturation,’’ IEEE
Trans. Ind. Electron., vol. 64, no. 6, pp. 5055–5064, Jun. 2017.

VOLUME 8, 2020 111251



K. Huang, C. Yuan: Dynamic Relative Output-Feedback Consensus for MASs Subject to Actuator Saturation

[23] Z. Meng, Z. Zhao, and Z. Lin, ‘‘On global leader-following consensus
of identical linear dynamic systems subject to actuator saturation,’’ Syst.
Control Lett., vol. 62, no. 2, pp. 132–142, Feb. 2013.

[24] Q. Wang and C. Sun, ‘‘Coordinated tracking of linear multiagent systems
with input saturation and stochastic disturbances,’’ ISA Trans., vol. 71,
pp. 3–9, Nov. 2017.

[25] X. You, C. Hua, D. Peng, and X. Guan, ‘‘Leader-following consensus for
multi-agent systems subject to actuator saturation with switching topolo-
gies and time-varying delays,’’ IET Control Theory Appl., vol. 10, no. 2,
pp. 144–150, Jan. 2016.

[26] C. Deng and G.-H. Yang, ‘‘Consensus of linear multiagent systems with
actuator saturation and external disturbances,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 64, no. 3, pp. 284–288, Mar. 2017.

[27] H. Chu, W. Zhang, and J. Yuan, ‘‘Observer-based adaptive consensus
tracking for linear multi-agent systems with input saturation,’’ IET Control
Theory Appl., vol. 9, no. 14, pp. 2124–2131, Sep. 2015.

[28] L. Zhang, M. Z. Chen, and H. Su, ‘‘Observer-based semi-global consensus
of discrete-time multi-agent systems with input saturation,’’ Trans. Inst.
Meas. Control, vol. 38, no. 6, pp. 665–674, Jun. 2016.

[29] H. Su, M. Z. Q. Chen, X. Wang, and J. Lam, ‘‘Semiglobal observer-
based leader-following consensus with input saturation,’’ IEEE Trans. Ind.
Electron., vol. 61, no. 6, pp. 2842–2850, Jun. 2014.

[30] D. Ye, J. Zhang, and Z. Sun, ‘‘Extended state observer–based finite-time
controller design for coupled spacecraft formation with actuator satura-
tion,’’ Adv. Mech. Eng., vol. 9, no. 4, pp. 1–13, 2017.

[31] H. F. Grip, T. Yang, A. Saberi, and A. A. Stoorvogel, ‘‘Output synchroniza-
tion for heterogeneous networks of non-introspective agents,’’ Automatica,
vol. 48, no. 10, pp. 2444–2453, Oct. 2012.

[32] X. You, C. Hua, and X. Guan, ‘‘Event-triggered leader-following consen-
sus for nonlinear multiagent systems subject to actuator saturation using
dynamic output feedback method,’’ IEEE Trans. Autom. Control, vol. 63,
no. 12, pp. 4391–4396, Dec. 2018.

[33] X. Xue, F. Wu, and C. Yuan, ‘‘Robust consensus for linear multi-agent
systemswith structured uncertainties,’’ Int. J. Control, pp. 1–12, Apr. 2019,
doi: 10.1080/00207179.2019.1612096.

[34] C. Yuan and F. Wu, ‘‘Switching control of linear systems subject to asym-
metric actuator saturation,’’ Int. J. Control, vol. 88, no. 1, pp. 204–215,
Jan. 2015.

[35] T. Hu, A. R. Teel, and L. Zaccarian, ‘‘Stability and performance for
saturated systems via quadratic and nonquadratic Lyapunov functions,’’
IEEE Trans. Autom. Control, vol. 51, no. 11, pp. 1770–1786, Nov. 2006.

[36] W. J. Rugh and J. S. Shamma, ‘‘Research on gain scheduling,’’Automatica,
vol. 36, no. 10, pp. 1401–1425, Oct. 2000.

[37] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.

[38] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM,
2004.

[39] C. Yuan and F.Wu, ‘‘Consensus for multi-agent systems with time-varying
input delays,’’ Int. J. Syst. Sci., vol. 48, no. 14, pp. 2956–2966, Oct. 2017.

[40] L. S. Ramya, R. Sakthivel, Y. Ren, Y. Lim, and A. Leelamani, ‘‘Consen-
sus of uncertain multi-agent systems with input delay and disturbances,’’
Cognit. Neurodyn., vol. 13, no. 4, pp. 367–377, Aug. 2019.

[41] R. Sakthivel, A. Parivallal, B. Kaviarasan, H. Lee, andY. Lim, ‘‘Finite-time
consensus ofMarkov jumpingmulti-agent systemswith time-varying actu-
ator faults and input saturation,’’ ISA Trans., vol. 83, pp. 89–99, Dec. 2018.

[42] Z. Lin, ‘‘Robust semi-global stabilization of linear systems with imperfect
actuators,’’ Syst. Control Lett., vol. 29, no. 4, pp. 215–221, Jan. 1997.

[43] Y. Li and Z. Lin, ‘‘On the estimation of the domain of attraction for linear
systems with asymmetric actuator saturation via asymmetric Lyapunov
functions,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2016, pp. 1136–1141.

[44] Y. Li and Z. Lin, ‘‘Multistability and its robustness of a class of biological
systems,’’ IEEE Trans. Nanobiosci., vol. 12, no. 4, pp. 321–331, Dec. 2013.

[45] S. Bhowmick and S. Panja, ‘‘Bipartite tracking of linear multi-agent
systems under actuator saturation with relative output feedback,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, early access, Apr. 21, 2020, doi:
10.1109/TCSII.2020.2989198.

KAIDE HUANG received the B.S. and Ph.D.
degrees from Sun Yat-sen University, Guangzhou,
China, in 2011 and 2016, respectively. In 2016, he
joined the Computer Network Information Center,
Chinese Academy of Sciences, Guangzhou, where
he was the Assistant Chief Engineer, from 2017
to 2018. He is currently an Associate Researcher
with the School ofMathematics and BigData, Fos-
han University, Guangdong. His research interests
include compressed sensing, signal reconstruction,
wireless sensor networks, and control systems.

CHENGZHI YUAN (Member, IEEE) received the
B.S. and M.S. degrees in control theory and appli-
cations from the South China University of Tech-
nology, Guangzhou, China, in 2009 and 2012,
respectively, and the Ph.D. degree in mechanical
engineering from North Carolina State University,
Raleigh, NC, USA, in 2016.

He is currently an Assistant Professor with
the Mechanical, Industrial and Systems Engineer-
ing Department, The University of Rhode Island,

Kingston, RI, USA. He has authored or coauthored over 80 journal articles
and conference papers. His research interests span over general areas of
dynamic systems and control theory, with particular focuses on analytical
adaptive learning and control, hybrid systems, and multi-robot distributed
control. He has served extensively as associate editor, chair, Co-Chair,
and program committee member in numerous international conferences. In
particular, he served in the technical program committee of the American
Control Conference 2018. He served as a Guest Editor for special issue in
the journal of IET Control Theory and Applications, in 2018, and the journal
of Advances in Mechanical Engineering, in 2017.

111252 VOLUME 8, 2020

http://dx.doi.org/10.1080/00207179.2019.1612096
http://dx.doi.org/10.1109/TCSII.2020.2989198

