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ABSTRACT For the accurate and reliable multi-port characterization of vertical interconnection array
structures, this paper presents an indirect-contact probing method to obtain network parameters of N-port
device-under-tests (DUTs) using an M-port (N > M) vector network analyzer (VNA) with a dielectric
contactor. By utilizing the dielectric contactor as auxiliary loads for un-probed ports for vertical interconnec-
tions, multiple M -port sub-array network parameters can be correctly synthesized into the N-port network
parameters through the renormalization processes. To verify the proposed method, four-port DUTs for
packaging and microwave applications were characterized with two-port indirect-contact probing sub-array
simulations including the dielectric contactor. Compared with two-port direct-contact probing simulations
without the dielectric contactor, it was confirmed that the proposed method with the dielectric contactor
provides improved accuracy in terms of the feature selective validation (FSV) method.

INDEX TERMS Dicelectric contactor, de-embedding, multi-port network, port impedance, renormalization,

termination load, vertical interconnection.

I. INTRODUCTION

In the design of high density packages for upcoming appli-
cations such as artificial intelligence (AI) hardware [1]-[3],
an essential task is the measurement of a multitude of inter-
connections. For accurate characterization including elec-
trical couplings among interconnections, multi-port vector
network analyzers (VNAs) are being popularly used, but
covering the entire pin counts by a single multi-port probing
is usually unavailable. Instead, a feasible choice is a VNA that
supports a smaller number of ports than that of the intercon-
nections. In the typical practice, port connectors or probes
should access all different partial sets of interconnections
(or sub-arrays) with the other un-probed ones terminated to
auxiliary loads [4], for which we can utilize passives like
probing pads when measuring planar structures [5].
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In vertical sub-array measurements, however, setting aux-
iliary terminations is more difficult than the planar cases
since the extended passives like pads cannot be identified.
Furthermore, terminating to external loads by soldering or
adding connectors is not possible during successive sub-array
measurements. Another difficulty in the characterization of
the multi-port vertical interconnections is possible damages
by the repeated contacts of many probing tips.

For the issues regarding the multi-port vertical intercon-
nection measurements, a dielectric contactor can be a solu-
tion. In the original indirect-contact probing method [6], [7],
the dielectric contactor has been devised to protect a device
under test (DUT) as well as to improve accuracy. In this
paper, we propose to use the dielectric contactor as auxiliary
loads for un-probed ports as shown in Fig. 1, making the
multi-port measurement procedure simpler. With the charac-
terized dielectric contactor and its auxiliary loads, the multi-
port measurement method including indirect-contact probing,
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FIGURE 1. Termination of an un-probed port on a vertical interconnection
using a dielectric contactor.

de-embedding of sub-arrays, renormalization, and synthesis
of sub-array matrices can be established. From the numerical
characterizations of three DUT examples containing four
vias, the proposed method exhibits improved accuracy based
on the feature selective validation (FSV) method, compared
to the simple direct-contact probing method without renor-
malization.

Il. CHARACTERIZATION OF DIELECTRIC CONTACTOR
AND EXTRACTION OF AUXILIARY LOADS

This section introduces how the dielectric contactor can be
characterized for the indirect-contact measurement of sub-
arrays as well as for the auxiliary loads.

When measuring N-port vertical interconnection array by
using an M-port (N > M) VNA, let K be the number of
different sets of M-port sub-arrays that we should access
for the completion of the N-port measurement. Once K sets
of sub-arrays are determined, the proposed method to be
discussed in Sec. III can be applied for any combination of
N and M. Among all possible combinations, a frequent case
is when M is even and N is a multiple of M /2. In that case,

NQ2N — M)
K=—"p—
different sets of M -port sub-arrays should be defined [8].

Since each indirect-contact probing measurement requires
a partial network parameter matrix of the dielectric contac-
tor for de-embedding, we need to have K different partial
dielectric contactor matrices. For the k" (k = 1,--.,K)
sub-array corresponding to the interconnection indices set
Py = {ix1, - ,ixm}, we can synthesize the following
2M x 2M partial dielectric-contactor matrix [7]

gLl gLI

_ [ °DcC.k DC.k

Spck = glLI gL f- 2
DC .k DC k

ey

where
PO _ 3. (ik1) (ikm)
SDC,k = diag (SDC’M, o SDC,pq) ,

@)
and' (P,p) and (Q,q) = (I,1) or (I,2). In (2), SD’C =
{Sg)c,p q} (i € Py) is the two-port scattering (S-) parameter
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FIGURE 2. The dielectric contactor as the termination load: (a) (7)th pad
of the dielectric contactor on the DUT (b) port impedance for (i)t" via of
the DUT in the equivalent 2-port reciprocal T-network of the dielectric
contactor on the DUT.

matrix of the dielectric contactor part for the i interconnect,
which can be obtained in a similar way to the single inter-
connect case by one-port indirect- and direct-contact prob-
ing measurements on three calibration vias presented in [6],
under the assumption that mutual coupling is negligible [7].

In addition to protecting DUTs, the dielectric contactor can
load un-probed DUT ports as auxiliary terminations during
sub-array measurements. As illustrated in Fig. 2, the contac-
tor mounted on the DUT has the following impedance

¢ =273 3)

when seen from the un-probed pad of the i interconnect.
Since Zé'z) in (3) can be found from Sg)c, no further measure-
ment for the auxiliary load impedance is required.

The extracted dielectric contactor characteristic is used
for de-embedding and renormalization during the multi-port
measurement procedure, to be presented in the following
section.

Ill. MULTI-PORT MEASUREMENT METHOD

As shown in Fig. 3, the measurement procedure is composed
of indirect-contact probing measurement of sub-arrays, de-
embedding of the network parameter matrices of sub-arrays,
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FIGURE 3. Procedure for characterization of the N-port network DUT with
the M-port network analyzer using the proposed method.
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FIGURE 4. Dielectric contactor used in the numerical verifications.

renormalization of the sub-array matrices to their port
impedances, construction of the entire S-parameter matrix,
and renormalization to the reference impedances.

A. INDIRECT-CONTACT PROBING MEASUREMENT AND
DE-EMBEDDING OF SUB-ARRAYS

To implement the proposed multi-port measurement method,
the dielectric contactor is positioned on the DUT. Each pad
of the dielectric contactor should be aligned to the pad of the
corresponding DUT via, as shown in Fig. 1.

VOLUME 8, 2020
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FIGURE 5. Structure of (a) DUT 1 including vias that are open-defected,
(b) DUT 2 including vias that are short-defected, and (c) DUT 3 including
an edge-coupled strip-line.

With the M-port network analyzer, we should apply
indirect-contact probing to K sub-arrays to obtain M x M
S-parameter matrices Sycx (k = 1, -+, K), which include
the combined characteristics of the dielectric contactor and
the k™ sub-array. The M x M S-parameter matrix of the k't
sub-array Sy is extracted through the M-port de-embedding
of Spc x from Syc . by using the following formula [7]:

Sk ({zi})

-1
-1

_ Q| gL LI LIl

= (SDC,k +Spc i (SIC,k - SDC,k) SDc,k) , @

where
Zy
Zi=
&i

and Py is the set of via indices of the k™ sub-array.

ifi € Py
ifi¢ Py’

B. RENORMALIZATION AND SYNTHESIS

Because of mismatches among the impedances of probed
and un-probed ports, there are errors when the K sub-
matrices Sy ({z;}) are simply synthesized into N x N
S-parameter matrix of the entire N-port DUT. To correct the
errors, the probed ports of Sy are M -port renormalized to the
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FIGURE 6. S-parameters of four vias with open defects (DUT 1) from the full four-port direct-contact probing simulation (Spyr tull direct) (solid red
lines), the proposed method (Spyr proposed) (dashed blue lines), and the two-port direct-contact probing simulations without renormalization

(Spur ,partial direct) (dotted black lines).

corresponding port impedances ¢;
formula [4]:

Sk (&) = My — S Uze)) ™! Sk (i) — Tw)
Iy =Sk Gzh T~ Ay — Sk (zh) ., (5)

where Sy ({¢;}) is the renormalized M x M S-parameter
matrices to the corresponding port impedances &, Ips is
the M x M identity matrix, and I'y is an M x M diag-
onal matrix containing the reflection coefficients I'; (i €
Py) of the loads ¢; as seen from the lines of characteristic
impedance Zj.

By synthesizing K M x M sub-matrices S; ({¢j}), N x N
S-parameter matrix Spyr ({¢;}) renormalized to the corre-
sponding port impedances ¢; (i = 1 to N) is obtained.
Finally, another N-port renormalization to the original ref-
erence impedance Zy produces

Spur ({Zo})
= (Iy — Spur ({&H) ™" Spur (&) — Tw)
Iy = Spur {&H Tw) ™" Ay — Spur (&), (6)
where Iy is the N x N identity matrix, and I'y is an
N x N diagonal matrix containing the reflection coefficients

I'; i = 1to N) of the loads Zy as seen from the lines of
characteristic impedance ¢;.

by the following

IV. VERIFICATION OF THE PROPOSED METHOD
In this section, we verify the proposed method by demonstrat-
ing the numerical characterization of three DUTSs containing
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four vias using Ansys HFSS [9]. All the DUTs have four ports
(N = 4) to the pads of four vias contained in the substrate,
and two-port (M = 2) simulations were performed for sub-
array characterizations.

As shown in Fig. 4, the dielectric contactor used in the sim-
ulations is made up of a single copper layer and a dielectric
film. In the copper layer, copper pads are located at the center
of the via pads of the DUT. For the data of the dielectric
film, we referred to the FARADFLEX® MC8M film [10],
which has a thickness of 8 um and a dielectric constant of 4.4.
When compared to the dielectric contactor used in [6], [7],
possibly weaker capacitive coupling due to the lower dielec-
tric constant of the new material has been partially com-
pensated by its smaller thickness. In real measurements,
the smaller thickness can also enhance the forward coupling
and reduce the cross coupling by confirming mechanically
reliable contact with the DUT.

Among the three DUTs, the first and the second structures
(DUT 1 and 2) are composed of four vias, two of which are
open- and short-defected as shown in Fig. 5(a) and Fig. 5(b),
respectively. The two examples were selected to show that
the proposed method can be used for testing multiple vias.
The third DUT (DUT 3) shown in Fig. 5(c) is an edge-
coupled strip-line structure, whose four ports are exposed
to the top layer of the substrate through vias and pads. The
coupled strip-lines were designed so that their coupling is
about —11.5 dB at 10 GHz.

For quantitative verification, we compare the following
two numbers Aj; ;) and Ay ; computed from simulated

VOLUME 8, 2020
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FIGURE 7. S-parameters of four vias with short defects (DUT 2) from the full four-port direct-contact probing simulation (Spyr full direct) (solid red
lines), the proposed method (Spyr proposed) (dashed blue lines), and the two-port direct-contact probing simulations without renormalization
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FIGURE 8. S-parameters of four vias connected by coupled strip-lines (DUT 3) from the full four-port direct-contact probing simulation (Spyr full direct)
(solid red lines), the proposed method (Spyr proposed) (dashed blue lines), and the two-port direct-contact probing simulations without
renormalization (Spyr partial direct) (dotted biack lines).

data: where f(x, y) represents any function that quantifies the dif-
ference between data sets x and y, Spuyr(j),proposed 1S the

Ay =1 (SDUT(i,J')»PTOPOSCd’ SpuUT(i,j).full direct) (i, )M (i,j = 1to4) S-parameter matrix element obtained
Moy =f (SDUT(i, J),partial directs SDUT (i j), full direct) , (D) from the proposed indirect-contact probing method discussed
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in Sec. IT and I, and Spy7; j), partial direct is the (i, ) element
obtained by synthesizing two-port simulations from direct-
contact probings but without applying renormalization pro-
cess. Spur(i,j),tull direct 18 the (i, j)th element from the full four-
port direct-contact probing simulation, which can be regarded
as an accurate reference since there is no error due to the
contactor and the lack of renormalization.

Compared to the reference full four-port data,
SpUT(i.j),proposed can include errors from the required cal-
ibration related to the dielectric contactor. Provided that
the contactor and its auxiliary loads are correctly char-
acterized, Spuyr(j),proposed 1S mathematically identical to
SpuT (i j),full direct- Although direct-contact probing is free
from the calibration issue, Spyr(.j), partial direct has essential
errors due to the omission of the renormalization process.
Without any renormalization, the matrix is crudely synthe-
sized with the sub-matrices Sy ({z/}) having inconsistent
reference impedances as follows:

Z ifieP
S S @®)
~oo ifi¢ Py

For the full four-port S-parameters matrix Spyr.full directs
only a single simulation is required without the dielectric
contactor. The four ports in the simulation are directly set
and excited through the via pads of the DUT. In the cases of
synthesizing four-port S-parameters with two-port sub-array
simulation data, K = 4 x (2 x 4 — 2)/22 = 6 simulations
of two-port sub-matrices are required. In addition, the two-
port simulations with the proposed method require the simu-
lation data of the dielectric contactor for port termination and
renormalization. The two ports in the simulations are set and
excited on the pads of the contactor. The two-port simulations
without the proposed method do not require the dielectric
contactor and any port terminations, so they do not include
the renormalization process. The two ports in the simulations
are directly set and excited on the via pads of the DUT.

In the simulations for DUT 1 and 2, we observed their
characteristics over a wide frequency range covering from
0.8 to 30 GHz because the characteristics of the vias them-
selves in the DUTs are important as vertical interconnections.
For DUT 3, the covered frequency range is from 5 to 15 GHz
because we are mainly interested in the characteristic of
the coupled strip-lines in the DUT at the design frequency
of 10 GHz.

The simulation results for the DUT 1, DUT 2, and
DUT 3 are plotted and compared in Fig. 6, Fig. 7, and
Fig. 8, respectively. In the comparisons, the reference
data is the four-port S-parameters obtained from the full
four-port direct-contact probing simulations. In all of the
plotted graphs, it was visually verified that the four-port
S-parameters obtained from the two-port sub-array simula-
tions with the dielectric contactor are closer to the reference
data than those from the two-port sub-array simulations with-
out the dielectric contactor. Thus, we can confirm that using
the dielectric contactor with a proper renormalization process
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TABLE 1. FSV interpretation scale [11].

FSV value FSV interpretation
(quantitative) (qualitative)
Less than 0.1 Excellent

Between 0.1 and 0.2 Very good
Between 0.2 and 0.4 Good
Between 0.4 and 0.8 Fair
Between 0.8 and 1.6 Poor
Greater than 1.6 Very poor
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FIGURE 9. FSV (GDM) values for magnitude comparison between
four-port S-parameters from the full four-port direct-contact probing
simulation (Spyr full direct) and those from two-port simulations with the
proposed method (Spyr, proposed) (Plue bars) and the two-port
direct-contact probing simulations without renormalization

(Spur ,partial direct) (yellow bars). (a) DUT 1. (b) DUT 2. (c) DUT 3.

ensures improved accuracy compared to a simple construc-
tion of multi-port parameters without renormalization.

In order to quantitatively examine the effectiveness of
the proposed method, the FSV method was applied to the
simulated data. The FSV method is one of the candidate
techniques for the quantitative validation of computational
electromagnetics (CEM), particularly within electromagnetic
compatibility (EMC) and signal integrity (SI) areas [11], [12].
Among measures provided by the FSV method, we used
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FIGURE 10. FSV (GDM) values for phase comparison between four-port
S-parameters from the full four-port direct-contact probing simulation
(Spur full direct) and those from two-port simulations with the proposed
method (Spyr proposed) (blue bars) and the two-port direct-contact
probing simulations without renormalization (Spyr partial direct) (yellow
bars). (a) DUT 1. (b) DUT 2. (c) DUT 3.

global difference measure (GDM) as the difference function
f in (7) since it is a single comprehensive figure goodness-of-
fit between the two data sets being compared. The GDM may
be numerical or converted to a natural language descriptor
such as excellent, very good, good, fair, poor and very poor,
as shown in Table 1.

The GDM values calculated by using the FSV method
were compared in bar graphs for the magnitude and the
phase of S-parameters, as shown in Fig. 9 and Fig. 10,
respectively. For the magnitude data, we used linear values
without applying logarithm function. The reference data set
is the four-port S-parameters (Spyr full direct) Characterized
from the full four-port direct-contact probing simulations.
The data set of the first group and the second group are the
four-port S-parameter synthesized from two-port simulations
with the proposed method (Spur proposed) and the two-port
direct-contact probing simulations without renormalization

VOLUME 8, 2020

(SpuT , partial direct), respectively. All the GDM values with the
proposed method in terms of both magnitude and phase are
lower than those without the proposed method, except for the
phase of S33 of DUT 1. Although the proposed method has
a higher GDM value for the phase of S33 of DUT 1 than
the direct-contact probing method without renormalization,
the result is acceptable because the GDM value is in the range
of excellent. From the results in Fig. 9 and Fig. 10, we can
also confirm the effectiveness of the proposed method in the
characterization of the DUTs.

V. CONCLUSION

For precise and reliable characterization of multiple vertical
interconnections with a VNA having a limited number of
ports, this paper proposed an indirect-contact probing mea-
surement procedure using a dielectric contactor. In the pro-
posed method, the dielectric contactor protects DUTs from
possible contact damages by probe tips as well as are used as
auxiliary terminations during the measurements of sub-arrays
of interconnections. By de-embedding the characteristic of
the dielectric contactor from network parameter sub-matrices
including the dielectric contactor, network parameter sub-
matrices for the DUT are extracted. After the de-embedding
process, the multiple network parameter sub-matrices can be
accurately synthesized into a full network parameter matrix
with port renormalization using the previously obtained port
impedances. To numerically verify the proposed method,
three four-port DUTSs were characterized with two-port sub-
array simulations in this paper, and compared with sim-
ple direct-contact probing measurement methods. From the
comparisons based on FSV method, the effectiveness of the
proposed method was confirmed.

Although only four-port DUT examples were shown in
this paper, the proposed method is applicable to general
multi-port measurements of a multitude of package
interconnections. For the realization of the presented method,
a multi-port measurement system including probe cards,
mechanical fixtures, stabilized automation of repeated prob-
ings, and automated processing of sub-matrices and cali-
bration data is required. In addition, error analysis during
the calibration and the renormalization processes should be
performed as future work.
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