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ABSTRACT Effective signal denoising methods are essential for science and engineering. In general,
denoising algorithms may be either linear or non-linear. Most of the linear ones are unable to remove the
noise from the real-world measurements. More suitable methods are usually based on non-linear approaches.
One of the possible algorithms to signal denoising is based on empirical mode decomposition. The typical
approach to the empirical mode decomposition-based signal denoising is the partial reconstruction. More
recently, a new concept inspired by the wavelet thresholding principle was proposed. The method is named
the interval thresholding. In this article, we further extend the concept by the application of the sparse
reconstruction to the empirical mode decomposition-based signal denoising algorithm. To this end, we state
and then solve the problem of signal denoising as a regularization problem. In the article, we consider three
cases, that is, three types of penalty functions. The first algorithm is combining total variation denoising
with empirical mode decomposition approach. In the second one, we applied the fused LASSO Signal
Approximator to design the empirical mode decomposition–based signal denoising algorithm. The third
approach solves the denoising problem by applying a non-convex sparse regularization. The proposed
algorithms were validated on synthetic and real-world signals. We found that the proposed methods have the
ability to improve the accuracy of the signal denoising in comparison to the reference methods. Significant
improvements from both the synthetic and the real-world signals were obtained for the algorithm based on
non-convex sparse regularization. The presented results show that the proposed approach to signal denoising
based on empirical mode decomposition algorithm and sparse regularization gives a great improvement of
accuracy, and it is the promising direction of future research.

INDEX TERMS Non-linear signal processing, non-convex optimization, gyroscopes.

I. INTRODUCTION
The signal denoising is one of the fundamental and the
most challenging tasks in science and engineering. Because
of the imperfections present in the measurement system,
the obtained signals can be deteriorated during the processes
of acquisition and transmission. Thus, the main challenge
of signal denoising is to preserve and enhance the desirable
features of the collected signals.

In general, filters may be either linear or nonlinear.
Removing noises from the acquired signals by applying linear
filters usually leads to unsatisfactory results. This is due to the
fact that these filters are suitable when the unknown signal is

The associate editor coordinating the review of this manuscript and

approving it for publication was Naveed Ur Rehman .

restricted to a known frequency band. Therefore, when the
real-world signals are considered, nonlinear filters have to be
taken into account. The reason is that these measurements are
more complex and not restricted to a specific frequency band.
A further complication is a non-stationarity of the acquired
signals. Non-stationarity of signals means that signals have
time-varying frequency contents [1]. Hence, most of the
denoising algorithms, used in practice, are nonlinear.

Linear filters are out of the scope of this work. However,
we refer interested readers to [2].

Nonlinear filters are a viable alternative to linear filters.
These methods offer an advantage in applications in which
the underlying process is non-stationary and nonlinear. As we
mentioned, non-stationarity can produce signals with time-
varying frequency contents. Another disadvantage of the
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discussed process is high-amplitude noise which is challeng-
ing problems for linear filters [3].

There are many papers proving that significant improve-
ments in performance can be achieved by applying non-
linear signal processing methods [4]–[6], [76]. One of the
examples is wavelet transform-based approach [4], [5]. The
typical technique widely used in the approach is thresholding
[6], [76]. In these papers, the authors introduce two basic
approaches for wavelet transform-based denoising, that is,
hard and soft thresholding. One of the major problems is that
methods based on this technique might remove wavelet coef-
ficients containing useful information. Moreover, the chal-
lenging task in hard and soft thresholding is the choice of the
suitable threshold value.

Non-local means (NLM) is another signal denoising tech-
nique. Originally, this approachwas applied to attenuate noise
from images [7]. Recently [8], a non-local means approach
for ECG signals denoising was proposed. One of the distinc-
tive features of the method is that it has a small effect on the
high amplitude of the signals. Hence, denoising is focused on
low amplitude regions in the processed signals [9], [10].

In work [11], an approach combining the advantage of
non-local means and wavelet transform is proposed. The
proposed method differs from the existing algorithm. In this
case, the block of samples is estimated in a collaborative
manner. Then, these estimates are averaged to find their
final values. The authors of the paper suggest that a sparsely
transformed domain will improve the overall performance of
the denoising algorithm. In the paper, it was also highlighted
that the methods combining non-local means with wavelet
transform-based approaches are able to preserve crucial
components of the signals much better than the existing
algorithms [11].

Empirical mode decomposition (EMD) was firstly pro-
posed in [12]. The algorithm decomposes the input signal
into a set of modes called Intrinsic Mode Functions (IMFs)
and a residual signal. Advantage of empirical mode decom-
position is that this method that does not rely on the prede-
fined basis function nor other parameters. However, empirical
mode decomposition has some disadvantages as well. One of
their drawbacks is that the method is prone to mode mixing.
Another is that the approach still has no sound mathematical
theory and it is described only by algorithm.

The EMD method has been successfully applied to the
signal denoising in various research fields, i.e., biomedical
signals [13]–[15], [72] acoustic signals [16]–[18] and signals
acquired from inertial sensors [19]–[21], [109]. For exam-
ple, in [15] the authors verified the proposed EMD-based
denoising methods on electrocardiography data, whereas
in [20] and [21] the noise attenuating method was tested on
gyroscopic data.

The effectiveness of EMD methods was also com-
bined with wavelet transform and presented in [22], [23].
Recently, empirical mode decomposition was incorporated
with non-local means as well [10].

Despite the fact that the EMD method was successfully
applied to various real-world problems, it is still an approach
that suffers from some drawbacks such as sensitivity to noise
or sampling [24].

In [24] an alternative to the EMD approach was pro-
posed. The method is entirely non-recursive and the modes
are extracted concurrently. The method is named varia-
tional mode decomposition and, contrary to EMD, has strong
mathematical foundations and a better noise robustness.
Moreover, the computational effectiveness of the algorithm
is higher than the empirical mode decomposition method.
Variational mode decomposition algorithm was used to
denoise, for example, biomedical images [25], [26], biomed-
ical signals [27], and inertial data [28].

In the paper, we proposed an approach to design
EMD-based denoising algorithms exploiting the idea of
sparse reconstruction. In general, the proposed approach is an
extension of the thresholding technique originally proposed
in [29]. The algorithm to signal denoising suggested in that
work is based on traditional `0 and `1 normswhich are used as
functions to promote sparsity. In this paper, we consider other
functions that can be used to promote sparsity more strongly.
It leads to new formulations of optimization tasks which solu-
tions are applied to the empirical mode decomposition–based
signal denoising methods.

A. CONTRIBUTION
The main contributions of this paper are new algorithms for
signal denoising based on empirical mode decomposition and
sparse reconstruction:
a) EEMD-TVD; a denoising algorithm applies the total

variation denoising (TVD) method to modify IMFs
extracted via EEMD;

b) EEMD-FLS; a denoising method based on the
fused LASSO signal approximator (FLS) to modify
EEMD-related modes;

c) EEMD-NSR; a non-convex sparse regularization-based
approach to modify IMFs.

We also compared EEMD-TVD, EEMD-FLS and
EEMD-NSR with the EEMD-based denoising algorithm
(the method based on the procedure proposed in [29]),
the non-local means method [8] and wavelet-TV denoising
(WATV) [34]. Verification of the proposed methods was
performed based on synthetic signals with the fractional
Gaussian noise and different noise level as well as on the
real-world signals acquired from the three-axis gyroscope.

The paper is organized as follows. Section II presents the
state-of-the-art methods for signal denoising based on sparse
reconstruction. In section III we review basicmethods applied
in the proposed approach. The main results are presented
in section IV, i.e., we formulate the denoising problem,
then we propose the model and the solution to the problem.
In section V comprehensive numerical studies for the syn-
thetic and the real-world signals are performed. We finally
conclude this paper in sections VI and VII.
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II. RELATED WORKS
Sparsity-based signal processing is one of the new branches
relevant to the denoising algorithms [30]. These algorithms
are most suitable when the signal of interest is itself sparse or
when it permits a sparse representation. The idea of sparsity
has been successfully applied in signal processing [30]–[33],
[34], [41], [42].

Total variation (TV) is one of the well-known sparsity-
based approaches to signal denoising [33]. Unfortunately,
in the process of TV-based denoising, stair-case artifacts are
often generated. Moreover, the high-amplitude components
of the signal are underestimated. To improve the traditional
TV algorithm some variants of the original method are pro-
posed. For example, in [33] the authors suggest total varia-
tion denoising approach based on majorization-minimization
and altering direction method of multipliers (ADMM),
whereas in [43], the method of suppression of the low- and
high-frequency components was proposed. It is worth high-
lighting that the authors of [43] introduced a method based
on an advanced penalty function.

Combining the sparse regularization with TV denoising we
can deduce the problem of the fused Least Absolute Shrink-
age and Selection Operator (fused LASSO) [44]. In general,
the fused LASSO is closely related to the standard LASSO.
Thismethod utilizes the sparsity of piecewise constant signals
in the discrete derivative domain [45].

The fused LASSO formulation may be further extended to
a non-convex penalty function such as the regularization [46].
Most of the algorithms for solving the fused LASSO
problem are based on some iterative algorithms such as
Majorization-Minimization or ADMM.

The idea of sparsity can be applied in the wavelet domain
as well. One of the successful examples of the sparsity-based
regularization is presented in [34]. The approach proposed in
that work is based on the ADMM framework. In the method,
the sparse regularization in the wavelet domain is expressed
by a non-convex penalty function since it induces sparsity
more strongly. The proposed method is relatively resistant to
pseudo-Gibbs oscillations and spurious noisy spikes [34]

Another example of the application of the sparsity concept
in the wavelet domain is discussed in [31]. In work, to induce
the wavelet-domain sparsity, the authors employ non-convex
penalty functions.

In [31] the wavelet regularization is combined with the
total variation for solving the problem of denoising. To this
end, the authors reformulate the unconstrained optimiza-
tion task to a constrained optimization problem. The results
reported in the paper show that the proposed solution outper-
forms the reference methods presented in the paper.

Another line of works concentrates on the decomposition
of the signal by determining the sparsest representation of
a signal over a dictionary consisting of all IMFs generated
by the empirical mode decomposition method. For example,
the main idea of [47] is to determine the sparsest representa-
tion of the measured signal within the largest possible dictio-
nary of components. In work, the dictionary can be seen as a

collection of all the possible IMFs. Thus, the aim is to find the
best modes based on the elements of the dictionary. It leads to
the problem of dictionary learning. A subsequent work of the
authors [47] is the paper [48], in which they have proposed
an algorithm to find sparse representations of the signal over
a parametrized dictionary. In work, the components of the
dictionary are produced via the EMD method.

It is worth mentioning that the dictionary learning can
be combined with other methods to compute dictionaries.
For example, K-singular value decomposition is one of the
most representative among others [49]–[51]. Apart from
K-singular value decomposition and EMD algorithms to
determine dictionary, it is possible to use, for example,
wavelet transform, short-time Fourier transform, and Gabor
transform [52].

A different example of the combination empirical mode
decomposition and sparsity is considered in [53]. The algo-
rithm generates a robust and effective representation of the
data at a relatively low sparsifying level. The presented in
the paper method is effective and computationally efficient.
Results of experiments have confirmed the competitive per-
formance of the proposed algorithm with other representative
methods. In the paper, the authors have shown the promising
results in the denoising problem.

In the paper [54], sparse optimization is used for extract-
ing the underlying trends of signals via a combination
of empirical mode decomposition and sparse optimization.
In turn, work [65] suggests an empirical approach for dic-
tionary learning where the dictionary is learned from the
acquired signal. The proposed method is applied to signal
classification.

Empirical mode decomposition is also combined with
other methods to solve the denoising problem. For example,
work [55] considers the problem of lidar signal denoising
based on EMD algorithm supported by soft thresholding
and roughness penalty. The proposed approach efficiently
improved the lidar signal and extend its detection range.
On the contrary, [56] proposes a new signal decomposi-
tion method which is inspired by EMD. Pattern aliasing
and the lack of signal spectrum and reconstruction signals
are the main drawbacks of the EMD algorithm. In that work,
the authors propose a novel adaptive ensemble empirical
mode decomposition in which only the first-order mode is
decomposed after adding white noise to the original signal,
then adding the noise ceaselessly to the residual signal. The
proposed algorithm was applied to solve the problem of
denoising of switchgear partial discharge signal.

EMD algorithm can be also used to analyze multivariate
signals. In the work [57] multivariate EMD was combined
with canonical correlation analysis to removemuscle artifacts
from EEG recording. In the first step, the proposed method
jointly decomposes the few-channel EEG recordings into
multivariate intrinsic mode functions with the use of multi-
variate EMD. Although the canonical correlation analysis is
used to decompose the reorganized multivariate EMD-based
IMFs into the underlying sources. Artifact-free EEG signals
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are obtained by reconstructing the signals using only
artifact-free sources.

Multivariate signals are also under investigation in the
field of geophysics. Seismic data are multi-channel thus
Multivariate EMD or its modifications, for instance, fast mul-
tivariate empirical mode decomposition [58]. Empirical mode
decomposition and its modifications are applied to denoise
seismic signals [59], [60], [62], [64] and enhancing seismic
reflections [61] or ground roll attenuation [63].

III. RESEARCH METHODOLOGY
A. EMPIRICAL MODE DECOMPOSITION
Empirical mode decomposition is a method for the adaptive
splitting of a given signal into a finite set of oscillatory
components. The acquired components are termed intrinsic
mode functions. Although the process of their determination
is named sifting process. In this section, the EMD procedure
and its extensions are briefly reviewed. The details of the
EMD method can be found, for example, in [12].

Consider a noisy signal y(n) given by

y(n) = s(n)+ ξ (n), n = 1, 2, . . . ,N , (1)

where s(n) is the noise-free signal and ξ (n) denotes the addi-
tive noise, and N stands for total number of data samples.

The IMFs, determined by applying the EMD procedure to
the signal y(n), are satisfying two conditions. The first one
assumes that the number of zero-crossings and extrema are
equal or the difference is no greater than 1. The second one
assumes that the local mean value of the upper and lower
envelopes is zero. The obtained IMF represents a certain
frequency band of y(n), that is, from the higher-frequency
bands (the first couple of IMFs) to lower-frequency bands
(the last few IMFs) [66].

When the decomposition is completed, the signal y(n) is
represented by

y(n) =
K∑
k=1

hk (n)+ r(n), n = 1, 2, . . . ,N , (2)

where hk (n) is a k-th IMF, r(n) is the final residual, and
K denotes the total number of IMFs. The component r(n) can
be considered as an IMF and it is denoted by hK+1(n). Hence
we have

y(n) =
K+1∑
k=1

hk (n), n = 1, 2, . . . ,N . (3)

The determined components are nearly orthogonal to each
other [12], [67], and the set of modes is complete. Let us
denote these sets of IMFs as

H = {hk (n)}K+1k=1 . (4)

Thus, we denote the EMD-based decomposition procedure
of the signal y(n) as

H = E (y(n)) , (5)

whereas the procedure of signal estimation based on deter-
mined IMFs (see eq. 3) is represented as

y(n) = E−1 (H) . (6)

The main advantage of the EMD approach relates to the
fully data-driven nature of this method. The data-driven
decomposition of the given signal means that the discovery
of IMFs does not require rigid assumptions of the basic
functions. This feature of the EMD method makes it suitable
to analyze non-linear and non-stationary signals [12].

One of the weaknesses of the EMD method is the
mode mixing. The phenomenon is defined in two ways. In the
first one, the mode mixing means that a single intrinsic
mode function contains signals of different scales. In the sec-
ond one, a signal of similar scale exists in different IMF
component [68], [69].

The EMD method also suffers from aliasing, that is,
the overlapping of IMF spectra caused by a sub-Nyquist
nature of extrema sampling and end effect artifacts. The letter
one effect is related to an insufficient number of extrema
detected at the beginning and at the end of the data segment.
Lack of a sufficient number of extremes does not allow to
determine the envelope successfully.

To overcome the mentioned drawbacks of the EMD
method, the ensemble empirical mode decomposition
(EEMD) is introduced in [68]. In the method, the white noise
is added to the initial data. Thus, the determined IMFs are
obtained by averaging the ensemble of the original signal and
the different realization of white noise. The described modi-
fication of the original EMD algorithmmakes the determined
IMFs less prone to mode mixing.

The EEMD algorithm also has some disadvantages. One
of them is that the signal decomposition cannot be complete.
Additionally, applying the averaging techniques, by adding
white noise, can lead to a different number of determined
IMFs. It leads to the so-called reconstruction problem.

The complementary EEMD (CEEMD) is mainly proposed
with the aim to deal with the reconstruction problem [70].
In general, the basic structure of CEEMD is similar to EEMD.
The difference lies in themethod of generation of white noise.
In the CEEMD algorithm, the white noise is added in pairs
to the original signal. Thus, we obtain two sets of ensemble
IMFs.

Overcoming the problems of EEMD, the CEEMD algo-
rithm introduces new ones. First, the ensemble process is
time-consuming, whereas the number of trials is large [71].
It is related to the increasing number of sifting processes.
The second problem is that the approach to determine IMFs
in CEEMD can result in some false and meaningless IMF
components. Moreover, some of them may not meet the
definition of IMF’s conditions [71].

The mentioned disadvantageous effects of the CEEMD
method are minimized in CEEMDAN [72]. The main feature
of the algorithm is the ability to control the noise level at
every decomposition stage. Contrary to the previous method,
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the reconstruction is complete and noise-free. The computa-
tional costs are less because the number of trials is decreased.

B. FILTER BANK PROPERTY OF EMD
An essential feature of the empirical mode decomposi-
tion method is that the determined set of IMF exhibits a
quasi-dyadic filter bank property. Filter banks represent a set
of bandpass filters used to isolate different frequency bands
in the original signal. It was shown that IMFs determined
by applying EMD algorithm provides frequency responses
similar to the dyadic filter bank [66], [73].

The two well-known problems that can be solved utiliz-
ing the filter bank property of EMD methods are denoising
and detrending of the signal. In general, the technique used
to solve these problems is the partial reconstruction. For
denoising, the new signal is constructed without modes that
are identified as modes having high-frequency noise terms.
In turn, for detrending, the modes with low-frequency noise
terms are removed.

C. THE EMD-BASED DENOISING
The problem of signal denoising relies on estimating the
signal s(n) based on a noisy signal (1) for n = 1, 2, . . . ,N .
In the conventional EMD-based denoising approach

reported in the literature, the first step is to separate relevant
and irrelevant IMFs. The approach termed partial reconstruc-
tion was firstly proposed in [66]. In this approach, the esti-
mated signal can be expressed as

ŝ(n) =
K+1∑
k=kth

hk (n), n = 1, 2, . . . ,N , (7)

where 1 < kth ≤ K + 1 denotes the index discriminating
relevant and irrelevant modes. There are various methods to
find kth. In the paper [15] an approach based on probabilistic
similarity measure between the probability density function
of the signal and that of each determined IMF. A similar
approach to EMD-based signal denoising is introduced in the
paper [20]. The work [74] considers the energy-based method
to discriminate relevant and irrelevant modes. In turn, to find
relevant modes the detrended fluctuation analysis is applied
in the paper [75].

An alternative approach for the EMD-based signal denois-
ing is a technique known from the wavelet domain. In this
case, the reconstruction of the unknown signal bases on the
whole set of the determined IMFs. However, before the recon-
struction is performed, the IMFs are modified by applying
wavelet-inspired thresholding procedure. The denoising pro-
cedure by thresholding method can be expressed as

ŝ(n) =
K+1∑
k=1

h̃k (n), n = 1, 2, . . . ,N , (8)

where

h̃k (n) =
{
hk (n) |hk (n)| > Tk
0 |hk (n)| ≤ Tk ,

(9)

for the hard-thresholding, and

h̃k (n) =
{
sgn (hk (n)) (|hk (n)| − Tk) |hk (n)| > Tk
0 |hk (n)| ≤ Tk ,

(10)

for the soft-thresholding. Tk is the threshold of the k-th IMF.
In some cases, the thresholding procedure can be combined

with the partial reconstruction. A generalized algorithm for
reconstruction of the denoised signal is given by [20], [29]

ŝ(n)=

kth2∑
k=kth1

h̃k (n)+
K+1∑

k=kth2+1

hk (n), n = 1, 2, . . . ,N . (11)

The two additional parameters, kth1 and kth2 give flexibility
on the exclusion of the noisy low-order IMFs and on the
optional thresholding of the high-order ones. The paper [29]
proposes an approach to determine these parameters.

The wavelet-inspired direct thresholding applied to the
EMD-based denoising approach can introduce the disconti-
nuity in the reconstructed signal [20], [29]. The remedy for
the problem is the interval thresholding.

Let us consider an interval of zero-crossings zk (nj) =
[zk (nj) zk (nj+1)] in the k-th IMF. Replacing the single sam-
ple by the interval zk (nj), the formulas (9) and (10) can be
adopted to the following form [20]

h̃k (zk (nj)) =

{
hk (zk (nj))

∣∣h(rk (nj))∣∣ > Tk
0

∣∣h(rk (nj))∣∣ ≤ Tk , (12)

for the hard-thresholding, and

h̃k (zk (nj))

=

{
sgn

(
hk (zk (nj))

) (∣∣hk (zk (nj))∣∣− Tk) ∣∣h(rk (nj))∣∣>Tk
0

∣∣h(rk (nj))∣∣≤Tk ,
(13)

for the soft-thresholding. The term h(rk (nj)) is the single
extremum of the corresponding zero-crossing interval zk (nj)
whereas hk (zk (nj)) represents all samples from zk (nj) to
zk (nj+1).

The problem of threshold (Tk ) selection is considered for
example in [20], [29].

D. SPARSITY IN SIGNAL DENOISING
The success of the sparsity in the field of signal processing
has been proven. This idea has been successfully applied
in various areas, including signal [76]–[78] and image [79]
denoising.

It is well known that the problem of signal denoising is
an ill-posed problem [80]. The ill-posedness nature of the
denoising problem requires a regularization technique to be
used for making a meaningful solution [81]. In other words,
the solution that should have some of the required properties
can be formulated as a constrained optimization problem.

Consider the estimation of signal s(n) observed in additive
white Gaussian noise (1). The components of (1) are repre-
sented as vectors inRN , that is, y ∈ RN , s ∈ RN , and ξ ∈ RN .
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The general form of the constrained optimization problem has
the form

ŝ = argmin
s
{F(s) =

1
2
||y− s||22 + λφ(s)}, (14)

where φ(s) : RN
→ R is the regularization (or penalty) term

and λ > 0 is the regularization parameter.
The optimization problem (14) can be formulated as con-

vex or non-convex. The advantage of the convex formulation
is that the wealth of convex optimization theory can be
leveraged, and robust algorithms with guaranteed conver-
gence are available [82]. In turn, the non-convex approaches
are advantageous in terms of yielding sparser solutions.
However, non-convex formulations are generally more diffi-
cult to solve. Generally, the convex approaches are based on
sparsity-promoting convex penalty functions (e.g., `2 norm),
whereas non-convex approaches are based on non-convex
regularizers (e.g., `p pseudo norm with p < 1).
The choice of selecting a good penalty function φ(s) is an

active area of the research. The typical form of regularizer
φ(s) is `2 norm of forward difference vector which is defined
as

φ(s) = ||Ds||22, (15)

where

D =


−1 1

−1 1
. . .

. . .

−1 1

 . (16)

is the first-order difference matrix.
In this case, the signal s is modeled as sparse and having a

sparse derivative.
The norm `2 can be replaced, for example, by `0 in the

optimization task (14) [54]. Taking into account new form of
the norm, the optimization task (14) may be reformulated to
the following `0-norm-based optimization task

ŝ = argmin
s
{F(s) =

1
2
||y− s||22 + λ||s||0}. (17)

The approximate solution of the optimization problem (17)
can be found by applying the following operator [83]

ŝ = hard(s, λ) =

{
s |s| > λ

0 |s| ≤ λ.
(18)

The mathematical formula (18) is termed the hard-
thresholding operator. The operator on the real line is illus-
trated in Fig. 1.

It should be highlighted that when we apply hard-
thresholding to vector s, we apply it component-wise, that is,

[hard(s, λ)]n = hard(s(n), λ). (19)

Instead of `0 norm applied for the signal s we can use `1.
It means that penalty function has the form φ(s) = ||s||1,

FIGURE 1. The hard-threshold operator.

whereas reformulated optimization problem may be written
as

ŝ = argmin
s
{F(s) =

1
2
||y− s||22 + λ||s||1}. (20)

The problem (20) is known in the literature as the basis
pursuit denoising. The solution of the problem (20) can be
found with [83]

ŝ = soft(s, λ) =

{
sgn (s) (|s| − λ) |s| > λ

0 |s| ≤ λ,
(21)

where || · ||1 represents `0 norm of s.
The function soft(s, λ) is called the soft-thresholding oper-

ator. The operator is illustrated in Fig. 2.

FIGURE 2. The soft-threshold operator.

To improve the denoising performance of the algorithm,
a variety of non-convex penalty terms have been developed
to replace `0 and `1. For example, in [84] the authors applied
`2 − `0 penalty function instead of `1-norm functional.
In the next section, we propose a framework to design

denoising algorithms based on penalty functions that promote
sparsity more strongly.

IV. SIGNAL DENOISING BASED ON SPARSIFYING IMFs
A. PROBLEM STATEMENT
In the paper, we consider the model of the measured discrete
time series in the form of (1). The components of the model
are represented as vectors (section III-D).

The problem is to design an algorithm that attenuates the
noise ξ based on the given measurements y and keeps the
signal s as intact as possible, that is, minimize difference
ε = ŝ− s (ŝ stands for estimate of s).

B. TOTAL VARIATION DENOISING
An introduced in the previous section operators for hard and
soft thresholding are effective and computationally efficient
approaches for noise reduction. Unfortunately, these oper-
ators suffer from some drawbacks, that is, spurious noise
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spikes and pseudo-Gibbs oscillations [85], [86]. An alterna-
tive is to use the total variation Denoising that attracted great
attention in 1-D signal and 2-D image processing [87], [88].

In this section, we propose the EMD-based denoising
method applying the total variation regularization as an alter-
native to interval hard-, and soft-thresholdings discussed in
section III-C. To estimate IMFs of the noisy signal y we form
following optimization problem [89]

h̃k = argmin
hk

{
F(h̃k ) =

1
2
‖E (y)− hk‖22

+λ0

∥∥∥DE−1(H)∥∥∥
1

}
, (22)

where k = 1, 2, . . . ,K + 1, λ0 is the penalty parameter
λ0 > 0, H stands for sets of IMFs represented as vectors,
that is, H = {hk}K+1k=1 , D represents the first-order difference
matrix (16).

The regularizer in (22), that is,
∥∥DE−1 (H)∥∥1, is the total

variation of the estimate of signal s [34].
The solution of the problem (22) is [33]

h̃k = tvd(hk , λ0), k = 1, 2, . . . ,K + 1, (23)

where tvd() is the total variation denoising algorithm.
It should be mentioned that there is no explicit solution for
TVD, but recently, the direct algorithm to determine the exact
solution (5) by the taut string algorithm is proposed in [90].
It is worth to emphasize that one of the main drawbacks

of the denoising algorithms based on TV regularization is
undesirable staircase artifacts [34].

Having determined h̃k , we can estimate the signal s from
formula (6). Because the algorithm proposed in the section
is based on the EEMD decomposition method and total
variation denoising technique, we named it as EEMD-TVD
(Algorithm 1).

Algorithm 1 The EEMD-TVD Algorithm
Require: noisy signal y, parameter λ0
Ensure: estimated signal ŝ
H = E (y) {EEMD-based signal decomposition}
for k = 1 to K + 1 do
h̃k = tvd(hk , λ0) {Total Variation Denoising}

end for
H̃ = {h̃k}K+1k=1

ŝ = E−1
(
H̃
)
{EEMD-based signal recomposition}

C. FUSED LASSO SIGNAL APPROXIMATOR
The TVD approach can be extended by adding an extra
penalty term. Let us state the new optimization problem as
an extension of the problem (22)

h̃k = argmin
hk

{
F(h̃k ) =

1
2
‖E (y)− hk‖22 + λ1 ‖hk‖1

+λ0

∥∥∥DE−1 (H)∥∥∥
1

}
, (24)

where λ0 and λ1 are the penalty parameters, k = 1, 2, . . . ,
K + 1. The additional regularizer in (24), that is, ‖hk‖1
controls the sparsity (number of zeros) [91].

The solution to (24) [92] (Lemma A.1) is readily obtained
by applying the Fused LASSO method [44]

h̃k = soft (tvd(hk , λ0), λ1) , (25)

where soft() is the soft-thresholding operator. For the
EMD-based method, the formula (13) should be applied for
the soft-thresholding.

The algorithm to signal denoising based on (25) is named
EEMD-FLS (Algorithm 2) since the signal decomposition is
based on the EEMD method.

Algorithm 2 The EEMD-FLS Algorithm
Require: noisy signal y, parameters: λ0, λ1
Ensure: estimated signal ŝ

H = E (y) {EEMD-based signal decomposition}
for k = 1 to K + 1 do
h̃k = soft (tvd(hk , λ0), λ1) {Fused LASSO Signal
Approximator with soft-thresholding (eq. 13)}

end for
H̃ = {h̃k}K+1k=1

ŝ = E−1
(
H̃
)
{EEMD-based signal recomposition}

D. NON-CONVEX SPARSE REGULARIZATION
Instead of the `1 norm, it is possible to formulate the opti-
mization problem with another regularization function. Let
us generalize problems (22) and (24)

h̃k = argmin
h

{
F(h̃k ) =

1
2
‖E (y)− hk‖22

+

K+1∑
k=1

λkφ(hk ; ak )+ λ0
∥∥∥DE−1 (H)∥∥∥

1

}
, (26)

where λk are Lagrangian multipliers and φ is a non-convex
sparsity inducing penalty function. In the previous formu-
lation of the optimization problem, the penalty term φ is
based on `1 norm. However, it is possible to use several other
functions instead of considered `1 norm [93].

1) PENALTY FUNCTION
In general, the penalty function φ should satisfy the following
conditions [34]:

1) φ is continuous on R;
2) φ is twice continuously differentiable, increasing, and

concave on R+;
3) φ(h; 0) = |h|;
4) φ(0; a) = 0;
5) φ(−h; a) = φ(h; a);
6) φ′(0+; a) = 1;
7) φ′′(h; a) ≥ a for all h 6= 0;
In this study, we use the SCAD function (smoothly clipped

absolute deviation) as it induces sparsity more strongly.
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The SCAD function has the following general form [94], [95]

φ(h;T , a)=


T |h| |h|≤T

−

(
|h|2−2aT |h|+T 2

2(a−1)

)
λ≤|h|≤aT

(a+1)T 2

2
|h|>aT ,

(27)

where T denotes threshold, a is parameter a > 2. The
SCAD-thresholding operator is illustrated in Fig. 3.

FIGURE 3. The SCAD-thresholding operator.

2) VARIABLE SPLITTING
To solve the formulated optimization problem (26) we
applied the technique known as the variable splitting. The
technique can be applied when the objective function of the
optimization problem is the sum of two functions, one of
which is written as the composition of two functions

h̃ = argmin
h
g1 (h)+ g2 (f (h)) . (28)

Based on the variable splitting, we created a new variable,
for example u, to serve the argument of function g2, under
the constraint that f (h) = u [96]. This leads to the following
constrained optimization problem

{h̃, ũ} = argmin
h,u

g1 (h)+ g2 (u)

s.t. f (h) = u, (29)

which is equivalent to the unconstrained problem (28). The
premise for the application of the variable splitting is that it
could be easier to solve the constrained problem (29) than its
unconstrained version (28). It is possible by introducing the
auxiliary variable u. The variable allow the decoupling of the
two functions g1 and g2. Each of them applies to one specific
optimization variable, that is, h and u.

3) ALTERNATING DIRECTION METHOD OF MULTIPLIERS
Based on the variable splitting technique, we divide (26) into
two functions

g1 (hk) =
1
2
‖E (y)− hk‖22 +

K+1∑
k=1

λkφ(hk ; ak ), (30)

g2 (uk) = λ0
∥∥∥DE−1 (U)∥∥∥

1
, (31)

in which uk = hk , and U = {uk}K+1k=1 .
Taking into account (30) and (31), the formula (26) can be

rewritten in the form [98]

{h̃k , ũk} = arg min
hk ,uk
{g1 (hk)+ g2 (uk)}

s.t. uk = hk . (32)

A typical way for solving the introduced constrained opti-
mization problem (32) is to deploy the augmented Lagrangian
approach (see section III) [99]. Let us rewrite the augmented
Lagrangian function of the problem (32) in the form [98]

L(hk , uk , µ)=g1(hk )+g2(uk )+
µ

2
‖uk − hk−dk‖22 , (33)

whereµ is a positive parameter that balances the penalization.
In general, the value of µ is varied. Typically, the value of
µ is initially low, but as the solution converges, its value is
progressively increased.

For convex function L,ADMM algorithm is guaranteed to
converge for any positive value of µ [97].

To solve the formulated optimization problem, an iterative
scheme should be applied [89]

h̃(m+1)k = argmin
hk

{
g1
(
h(m)k

)
+
µ

2

(
u(m)k − h

(m)
k − d

(m)
k

)}
,

(34a)

ũ(m+1)k = argmin
uk

{
g2
(
u(m)k

)
+
µ

2

(
u(m)k − h

(m)
k − d

(m)
k

)}
,

(34b)

d̃ (m+1)k = d (m)k −

(
u(m)k − h

(m)
k

)
. (34c)

The algorithm (34a – 34c) is named alternating direc-
tion method of multipliers. Instead of the ADMM method,
the SALSA algorithm (split augmented Lagrangian shrinkage
algorithm) can also be applied [96].

The problem (34a) can be solved exactly [89]. Based
on [34], the formula to estimate hk has the form

h̃k = θ
(
pk ;

λk

µ+ 1
, ak

)
, (35)

where θ is the thresholding operator based on SCAD penalty
function (27) and

pk = (E (y)+ µ (uk − dk) / (µ+ 1)) . (36)

The equation (34b) can be solved exactly as well. The
formulas were derived in [33]

vk = dk + h̃k , (37a)

uk = vk + E(tvd(E−1 (V) , λ0/µ)− E−1 (V)), (37b)

where V = {vk}K+1k=1 .
Having estimated h̃k we can calculate the signal from (6).

The algorithm to signal denoising, proposed in this section
is named EEMD-NSR (Algorithm 3) since the signal decom-
position is based on EEMD approach and non-convex sparse
regularization.

4) REMARK
In the formula (35) we apply the thresholding operator based
on SCAD function (38), as shown at the bottom of the next
page. The direct application of SCAD function to IMFs is
not possible, because it introduces the discontinuity in the
estimated signal. Instead of (38), we propose the interval
SCAD thresholding operator (39), as shown at the bottom of
the next page. The SCAD-based operator is adopted for IMFs.
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Algorithm 3 The EEMD-NSR Algorithm
Require: noisy signal y, parameters: λ0, λ1, . . . , λK+1, µ
Ensure: estimated signal ŝ
for k = 1 to K + 1 do
ak = 1/λk

end for
H = E (y) {EEMD-based signal decomposition}
repeat
p(m+1)k =

(
E (y)+ µ

(
u(m)k − d(m)k

)
/ (µ+ 1)

)
for k = 1 to K + 1 do
h̃(m)k = θ

(
p(m)k (zk (nj)); Tk

µ+1 , ak
)

{SCAD-
thresholding operator (eq. 39)}

end for
v(m+1) = d(m) + h̃(m)k
u(m+1) = v(m)+E(tvd(E−1

(
v(m)

)
, λ0/µ)−E−1

(
v(m)

)
)

d(m+1) = d(m) − (u(m) − h̃(m)k )
m = m+ 1

until convergence
H̃ = {h̃k}K+1k=1

ŝ = E−1
(
H̃
)
{EEMD-based signal recomposition}

5) PARAMETERS SELECTION
The proposed algorithm requires the parameters ak ,
λ0, λ1, . . . , λK+1. To assure convexity of (34a), the value of

the parameter ak should be taken from the range 0 ≤ ak ≤
1
λk

for k = 1, 2, . . . ,K+1. For example in work [34] the authors
suggest using ak = 1

λk
(or slightly less, e.g. ak = 0.95

λk
) to

maximally induced sparsity.
In turn, according to [20], the parameters λ1, λ2, . . . , λK+1

can be determined from

λk =
√
2Ek lnN , (40)

where N is the number of signal data points, and Ek is
obtained from formulas

E1 =
median(|h1(n)|)

0.6745
, (41)

Ek =
E2
1

γ
ρ−k , k = 2, 3, . . . ,K + 1, (42)

where γ and ρ are parameters to be estimated by large number
of independent noise realizations and their IMFs [20] and
n stands for n-th data point. In [100] the authors proposed
the values 0.719 for γ and 2.01 for ρ.
To set λ0, based on the papers [34], [101] we suggest the

following formula

λ0 =
1
4
(1− η)

√
NEk , (43)

in which 0 < η < 1. In accordance with [34] we suggest
setting η = 0.95.

In (43) we used Ek instead the standard deviation of
noise σk based on the remark in [20].

V. NUMERICAL RESULTS
The performance of the proposed methods is evaluated based
on the signal-to-noise ratio:

SNR = 10 log10

( ∑N
n=1 s(n)∑N

n=1
(
s(n)− ŝ(n)

)2
)
, (44)

where ŝ(n) is the denoised signal, s(n) is the original signal
and N is the length of the data. The SNR ratio is applied for
tests in which synthetic signals are used. To test the perfor-
mance of the proposed methods, based on the real-world sig-
nal, we applied the Allan variance (AV). The Allan variance
is a method of representing the root means square of noise
as a function of averaging time. The method can be used
to determine the characteristics of the underlying random
processes in the measurements. In the work AV is denoted
as σ (τ ) where τ represents average (correlation) time.
In this work, we test the performance of the proposed

algorithms for the signal denoising problem. The first of the
proposed algorithm is EEMD-TVD (please see section IV-B),
the second one is EEMD-FLS (section IV-C),and the third
one is EEMD-NSR (section IV-D). The presented methods
are based on the following implementation of the EEMD
method [72]. The proposed methods are compared with the
EEMD interval thresholding algorithm (EEMD-CIIT). The
EEMD-CIIT method based on the EMD-CIIT algorithm
introduced in [29]. Additionally, for comparison purposes,

θ

(
pk (n);

Tk
µ+ 1

, ak

)
=



sgn (pk (n))max
(
|pk (n)| −

Tk
µ+ 1

)
|pk (n)| ≤ 2

Tk
µ+ 1

(ak − 1)pk (n)− ak
Tk
µ+ 1

sgn (pk (n))

ak − 2
2

Tk
µ+ 1

< |pk (n)| ≤ ak
Tk
µ+ 1

pk (n) |pk (n)| > ak
Tk
µ+ 1

m,

(38)

θ

(
pk (zk (nj));

Tk
µ+ 1

, ak

)
=


pk (zk (nj))

max
(
0,
∣∣pk (rk (nj))∣∣− Tk)
|pk (rk (nj))|

∣∣pk (rk (nj))∣∣ ≤ 2
Tk
µ+ 1

pk (zk (nj))
(a− 1)|pk (rk (nj))| − aT

(a− 2)|pk (rk (nj))|
2

Tk
µ+ 1

<
∣∣pk (rk (nj))∣∣ ≤ a Tk

µ+ 1

1
∣∣pk (rk (nj))∣∣ > a

Tk
µ+ 1

.

(39)
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we applied a reference approach not based on the empir-
ical mode decomposition algorithm, that is, the non-local
means filter [7], [102]. NLM algorithm’s parameters, that is,
the bandwidth, the patch half-width, and the neighborhood
half-width are determined empirically [8], [103].

We also used the Wavelet-TV denoising algorithm as a
reference. In this approach, the sparse theory was applied to
induce wavelet-domain sparsity [34].

At the same time, we test the robustness of designed algo-
rithms to conduct a sequence of simulations under different
signals and SNR.

This section includes the test on simulated (noise-corrupted
synthetic signals) and real-world noisy signals (i.e., measure-
ments data from gyroscope).

A. RESULTS ON SIMULATED SIGNALS
1) SIGNALS DETAILS
In this section, we compare the performance of the proposed
methods with other denoising algorithms. Coupled with per-
formance analysis we study the robustness of suggestedmeth-
ods under various signal forms and SNR.

In our research, we consider Blocks, Bumps and Doppler
(Fig. 4) signals of length 4096 samples. The signals are
generated by theWavelab [104] functionMakeSignal.

FIGURE 4. The synthetic signals used in studies.

We add the noise to the generated signals to assess the
denoising performance of the proposed methods. In our
research, we study the signals with different SNR (0, 5,
10 and 15 [dB]) and different short and long dependen-
cies. Thus, the signals are corrupted by fractional Gaussian
noise (fGn) with the Hurst exponent equal to H = 0.2,

H = 0.5 and H = 0.8. The value 0.5 of Hurst indicates the
absence of long-range dependence. On the other hand, when
0.5 < H < 1 the signal has a long-range dependency
property, and when 0 < H < 0.5 the signal indicates
strong negative correlation (the opposite of the long-range
dependency) [105].

To verify the effectiveness and robustness of the pro-
posed methods, we carried out 30 trials for noisy Block,
Bumps, and Doppler signals with various SNR ratios (0, 5,
10 and 15 [dB]) under various levels of the Hurst exponent
(0.2, 0.5, 0.8). As an example, the synthetic signals (Block,
Bumps, andDoppler) contaminated by fractal Gaussian noise
with parameter H = 0.8 and SNR = 15 [dB] is shown
in Fig. 5.

FIGURE 5. The synthetic signals in noise (fractional Gaussian noise
H = 0.8; SNR = 15 [dB]).

2) EXPERIMENTAL RESULTS
The results for Blocks, Bumps and Doppler with SNR ratio
equal to 15 [dB] and H = 0.8 are displayed in Fig. 6.
In Tables 1 to 9 more results for SNR varying from
0 to 15 [dB] and the Hurst exponent equals 0.2, 0.5 and 0.8
are presented.

Let us take theBlocks signal as an example. The Tables 1, 4,
and 7 indicate that, in almost all cases, one of the pro-
posed methods (EEMD-NSR) gives the best results when
the Hurst exponent equal to H = 0.2 and H = 0.5. For
H = 0.2 and SNR = 0 and SNR = 5 [dB] the best per-
formance was achieved by Wavelet-TV. For Hurst H = 0.8
the best performance is obtained from non-local means. The
methods EEMD-TVD and EEMD-FLS give better results
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FIGURE 6. The results of signal denoising (Blocks (a), Bumps (b), Doppler (c) signals, fractional Gaussian noise H = 0.8, SNR = 15 [dB]).

TABLE 1. The denoising results for the Blocks signal, fractional Gaussian
noise H = 0.2.

than EEMD-CIIT in all cases. However, their performance
is weaker than both EEMD-NSR and the reference methods
NLM and Wavelet-TV. Therefore, these results demonstrate
that one of the proposed methods, that is, EEMD-NSR is
more suitable for denoising piecewise constant signals with
jumps (like the Blocks signal) for the white Gaussian noise
(H = 0.5) and the noise with strong negative correlation
(when 0 < H < 0.5). The results of Blocks signal denoising
is presented in Fig. 6.

Another example is the Bumps signal. The best results
for H = 0.2 and SNR equals 10 [dB] is obtained from the
EEMD-NSR method. While WATV is the most effective
for SNR equals 0, 5 and 15 [dB]. For Hurst H = 0.5 and
0.8 the best performance is achieved in almost all cases
from the reference method, that is, NLM. Only for H = 0.5

TABLE 2. The denoising results for the Bumps signal, fractional Gaussian
noise H = 0.2.

and SNR = 0 the best performance was obtained from
EEMD-NSR. The method EEMD-TVD gives better results
than EEMD-CIIT but weaker than EEMD-NSR, EEMD-FLS,
non-local means and Wavelet-TV. The results show that for
signals like the Bumps signal one of the proposed methods,
that is, EEMD-NSR can be used to remove noises with strong
negative correlation (when 0 < H < 0.5). In other cases, for
H = 0.5 and 0.5 < H < 1, the reference methods NLM and
WATV outperforms the other algorithms. In turn, the results
for denoising the Bumps signal is presented in Fig. 6.

For Doppler signals, the EEMD-NSR method is more
successful than other methods. Only for H = 0.2 and
SNR = 10 and 15 [dB], the EEMD-FLS method gives bet-
ter results. Moreover, the proposed approaches, EEMD-FLS
and EEMD-TVD, are better than the EEMD-CIIT algorithm.
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TABLE 3. The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.2.

TABLE 4. The denoising results for the Blocks signal, fractional Gaussian
noise H = 0.5.

TABLE 5. The denoising results for the Bumps signal, fractional Gaussian
noise H = 0.5.

We observe that the EEMD-NSR method is well suited for
denoising high-frequency oscillating signals like Doppler.
The results of the Doppler signal denoising is presented
in Fig. 6.

For illustrative purposes, in Fig. 7 (on the left) we present
the results ofDoppler signal decomposition, whereas in Fig. 7
(on the right), the results of sparsification of the first seven

TABLE 6. The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.5.

TABLE 7. The denoising results for the Blocks signal, fractional Gaussian
noise H = 0.8.

TABLE 8. The denoising results for the Bumps signal, fractional Gaussian
noise H = 0.8.

IMFs of Doppler signal by the EEMD-NSR approach is
presented.

We can also observe from the results (Tables 1 to 9)
that the performance of EEMD-CIIT, the proposed methods
(EEMD-TVD, EEMD-FLS, and EEMD-NSR), and reference
non-local means and wavelet-TV decreases with the value
of the Hurst exponent close to 1. When the Hurst exponent
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TABLE 9. The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.8.

FIGURE 7. The results of the Doppler signal decomposition by the EEMD
method (the first 7 IMFs) for the fractional Gaussian noise H = 0.8, SNR =

15 [dB] (left), and the results of sparsification of the first 7 IMFs (right).

is close to 1, we can also observe that standard deviation
increases. We should emphasize the fact that EEMD-NSR is
a slightly higher standard deviation than other EMD-based
approaches (EEMD-CIIT, EEMD-TVD, and EEMD-FLS).

The conducted investigations also have shown that the pro-
posed methods can obtain satisfying robustness under various
signal forms and SNR.

B. RESULTS ON REAL-WORLD SIGNALS
1) SIGNALS DETAILS
The micro-electromechanical system can be used to manu-
facture, for example, gyroscopic sensors. The gyroscope is a
device for measuring the angular velocity of a moving object.
It is kind of sensor widely used in, for instance, humanmotion
tracking and detection due to its small size, low cost, long
lifespan, and no moving parts. Gyroscope sensor has some
disadvantages related to its vulnerability to inferences such as
temperature, vibration and pressure [20]. These phenomena
result in different noise effects that degrade the accuracy of

the data and limit its applications. One of the examples of
such noise is drift.

The drift is a weak nonlinear, non-stationary, and sensitive
to environmental conditions example of the noise, and a criti-
cal research question is how to suppress it from gyroscopic
measurements. It is crucial since the enhancement of the
accuracy of these data will significantly improve the precision
of the systems based on the signals acquired from gyroscopes.

The issues of the gyroscopic signal denoising have
been presented in many research papers. For example, in
work [106], the wavelet transform was applied to suppress
noises in gyroscopic data. In turn, Neural Networks and
Kalman filter were used, for example, in [107] and [108],
respectively. Empirical mode decomposition was also applied
to enhance the gyroscopic measurements [20], [21], [29],
[109], [111].

In [21], [111] hybrid methods combining EMD and FLP
(forward linear prediction) are used to enhance the gyroscopic
data. In turn, in the papers [20], [29] empirical mode decom-
position based on interval thresholding was suggested to
gyroscope signal denoising. Although work [109] introduces
a method based on partial reconstruction technique for EMD
algorithm.

To verify feasibility and effectiveness of the proposed sig-
nal denoising algorithms, practical experimental data were
collected from the three-axis gyroscope. The experiments
were performed in static conditions. It means that during
the tests the gyroscope is kept stationary. The measurements
were collected by the Shimmer3 unit with a temperature
of 22◦C and with the sample frequency equal to 50 [Hz]
(Fig. 8 a,b,c, on the left). The angular rate was recorded
for x-, y-, and z-axis.

FIGURE 8. The original signals from gyroscope (left), and the results of
their denoising (right).

The results of the gyroscopic signal denoising are analyzed
quantitatively with the use of the Allan Variance.

In general, the gyroscopic signal includes quantization
error (QE), angle random walk (ARW), bias instability (BI),
rate random walk (RRW), and rate ramp (RR) [110].
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TABLE 10. Allan Variance results of x-axis gyroscope denoising specified by five noise terms.

2) EXPERIMENTAL RESULTS
Fig. 8 a,b,c (on the right) show the results of removing the
drift from the angular velocity (acquired from gyroscope).
Gray signal is the original noisy signal. The results of signal
denoising are obtained by NLM, Wavelet-TV, EEMD-CIIT,
EEMD-TVD, EEMD-FLS, and EEMD-NSR.

A quantitative comparison of the results obtained by
Allan Variance is pictured in Fig. 9 a,b,c and tabulated in
Tables 10 – 12. From Allan Variance plots of the gyroscopic
signal, we can observe three different scales −1/2, 0, and
+1/2. It indicates, among others, the presence of angle ran-
domwalk, bias instability, and rate randomwalk noises [112].
The gyroscopic signal can also include the quantization and
rate ramp noises. In our analysis, we take into account all
of these noise terms and their influence on the precision of
gyroscope. All components of the gyroscope slope signal are
determined based on the code accompanying the paper [110].

Allan Variance plots show that each of the EEMD-based
methods and Wavelet-TV algorithm can remove the angle

FIGURE 9. The Allan Variance plot of original and denoised gyroscopic
signal.

random walk noise. The non-local means algorithm is not
able to attenuate this component. The observation is also
verified in Tables 10 – 12 (see column ARW). It meets the
remark in [8]. The NLM algorithm is designed for the white
Gaussian noise, and its ability to attenuate the non-white
Gaussian noise is limited (please see also section V-A).

The second referencemethod (Wavelet-TV) and the typical
EEMD-CIIT algorithm can effectively improve the quality of
the gyroscope signal. The values of QE, ARW, BI, RRW, and
RR differ by three orders of magnitude (Tables 10 and 11)
and two orders of magnitude (Table 12) compared with the
original signal.

Comparing EEMD-CIIT with the proposed methods,
we can see that, in almost all cases, the latter ones produce
better results. From Tables 10 – 12, it is observed that the
EEMD-TVD and EEMD-FLS predominate in removing QE,
ARW, BI, and RRW, whereas for RR noise, the best results
are obtained from the EEMD-NSR method.

In turn, we can observe the best results of RR attenuation
we obtain for the wavelet-TV algorithm for x, y, and z axes
of the gyroscope.

C. TIME COMPLEXITY
In this section, we analyze the time complexity of the pro-
posed algorithms, that is, EEMD-TVD, EEMD-FLS, and
EEMD-NSR. The obtained results are compared with the
results of the similar analysis performed for EEMD-CIIT and
the reference method, that is, non-local means.

In each of the proposed EEMD-based denoising algo-
rithms, the process of signal decomposition is performed. It is
the most demanding part of the proposed methods. However,
in EEMD-TVD and EEMD-FLS, the decomposition is per-
formed only once, whereas in EEMD-NSR, the process of
IMFs extraction is repeated and the number of repetitions
depends on the number of the executed iterations. Analyzing
the algorithm (3), we can see that EEMD-NSR has higher
time complexity.

It is worth to mention that in both EEMD-TVD and
EEMD-FLS, an additional operation related to total variation
denoising is performed. However, in these cases, we used fast
implementation of TVD algorithm proposed in [90].
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TABLE 11. Allan Variance results of y-axis gyroscope denoising specified by five noise terms.

TABLE 12. Allan Variance results of z-axis gyroscope denoising specified by five noise terms.

We have performed a series of experiments to verify the
time complexity of the specified signal denoising methods.
The test signal was theDoppler signal with the length ranging
from 128 to 1024, where H = 0.8 and SNR = 15 [dB].
The maximal number of iterations in the EEMD algorithm
was set to 50 for the tested methods. The experiments were
performedwith the following computer: Intel R© CoreTM i7@
2.20 [GHz] and 16.00 GB RAM memory running
Windows 10. The execution time is shown in Tab. 13.
The NLM algorithm has the lowest time complexity
(i.e. 0, 08 ± 0, 01 seconds for the signal of length 1024) in
comparison to the other tested methods.

Compared with non-local means and wavelet-TV,
the remaining methods are characterized by a higher time
complexity. The reference method EEMD-CIIT has a very
long running time equal to 177, 44 ± 33, 42 seconds (for
the signal of 1024 samples). Similarly, one of the proposed
method, that is, EEMD-NSR has a very high time complexity
of 241, 75 ± 40, 75 seconds for the signal of 1024 samples.
It is converging to our previous remark that in EEMD-NSR,
the process of IMFs extraction is repeated and increases the
overall amount of time taken by the method.

In turn, unlike EEMD-CIIT and EEMD-NSR, EEMD-
TVD and EEMD-FLS methods give a much shorter running
time ranging between 18, 10±4, 50 to 18, 42±4, 47 seconds
for the signal of length 1024. EEMD-TVD and EEMD-FLS
are a good alternative for the EEMD-CIIT algorithm,
particularly, for signals like Blocks and Doppler. A similar
analysis can be performed for the signals of length
128 and 512.

TABLE 13. Relationship between the sample number and the
execution time (The Doppler signal, fractional Gaussian Noise
H = 0.8, SNR = 15 [dB]).

The obtained results indicate that one of the future direc-
tions of our works should be focused on the reduction of the
time complexity of the proposed algorithms.

D. PARAMETERS ANALYSIS
The EEMD-NSR algorithm has two parameters to be set
before running the denoising algorithm. One of the param-
eters is η (eq. 43). In the article [34], the value of the
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parameter η is suggested to be η = 0.95. Based on our numer-
ical analysis for the Doppler signal (see Fig. 10) we confirm
that parameter η should have the value 0.95. In Fig. 10 we can
see that SNR is maximal for this value. A similar analysis can
be performed for other forms of signals.

FIGURE 10. Surface plot of the SNR ratio’s relationship with η and µ
parameters for EEMD-NSR method (The Doppler signal, fractional
Gaussian Noise H = 0.8, SNR = 15 [dB]).

The second parameter to be set is µ (please see eq. 34a
and 34b) which is used to balance the penalization (33), and
its value must be positive. Typically, the value ofµ is initially
low, but as the solution converges, its value is progressively
increased [35].

In the work [36] a simple scheme that can be used to
iteratively determine values of parameter µ is suggested.

E. PROPOSED APPROACH IN ANALYSIS OF MULTIVARIATE
SIGNALS
Empirical mode decomposition and its variations are also
useful to extract the components in multivariate signals [38].
Among the modern approaches to processing the multivariate
signals, the low-rank approximation-based approach is one of
themost popular. Its successful performance has been proven,
for example, in the processing of EEG [37] and seismic
signals [38].

Recently, a simultaneous cosparsity and a low-rank opti-
mization problem [39] have shown usefulness in the pro-
cessing of EEG signals [40]. The idea of cosparsity has
several advantages in the processing of multivariate signals.
For example, this approach allows us to estimate the signal
directly, unlike a typical sparse synthesis in which firstly
the sparse vector is estimated, and then, based on obtained
results, the signal is determined.

In the paper [39], to solve the optimization problem of
simultaneous cosparsity and low-rank, the authors recom-
mend using the ADMM method. In this work, the ADMM
algorithm has been compared with other methods: block
sparse Bayesian learning, simultaneous orthogonal matching
pursuit, and simultaneous greedy analysis pursuit. Conducted
tests showed that ADMM outperforms the other ones in
accuracy. Some of them are faster; however, their accuracy
is much worse.

As proposed in this paper, to apply the approach to pro-
cess multivariate signals, the considered optimization models
(22, 24 and 26) have to be reformulated. In some cases for
multivariate signals analysis, instead of norms `1 and `2,
we should use Schatten-p norm [39], [40].
Based on the literature review, it is clear that the proposed

approach in this work is based on empirical mode decompo-
sition, and sparse reconstruction algorithms can be applied in
multivariate signal processing. It is an interesting direction of
future research.

VI. DISCUSSION
The experimental results of the fGn noise removal from
synthetic signals (Blocks, Bumps and Doppler) indicate that
the proposed approaches provided an improvement over the
EEMD-CIIT method for all signals, a significant advantage
we observed for Blocks and Doppler signals. This part
of the experiments shows that the proposed approaches
remarkably improve the denoising performance in com-
parison with EEMD-CIIT. It is worth stressing that the
EEMD-NSR method always gives better results in compari-
son to EEMD-CIIT and, in almost all cases, to other proposed
algorithms (EEMD-TVD and EEMD-FLS).

In the second experiment, we test the methods with the
signals obtained from the gyroscope. In this case, the pro-
posed method EEMD-NSR is always better at removing
the noise from gyroscope measurements. EEMD-TVD and
EEMD-FLS give better results for z axis and similar results
for x and y axes in comparison to the EEMD-CIIT approach.

VII. CONCLUSION
We proposed new algorithms for signal denoising which
are improving the performance of the existing EEMD-based
approach. The main novelty of our methods is the application
of sparse modeling in the EEMD-based signal algorithms.

The proposed approach exhibits an enhanced performance
compared with the wavelet inspired algorithm EEMD-CIIT
in almost all cases. The proposed algorithms outperform the
EEMD-CIIT method for the synthetic signals with various
SNRs and in the presence of short and long dependencies in
noise. Similarly, in the case of gyroscopic signals, the pro-
posed algorithm gives better results.

We also compare EEMD-TVD, EEMD-FLS, and EEMD-
NSR algorithms to the non-local means and wavelet-TV
methods. We can see that for the Bumps signal, the non-local
means outperform the proposed algorithms in almost all
cases. On the other hand, in the presence of short depen-
dencies in noise, EEMD-NSR, EEMD-FLS, and reference
wavelet-TV algorithm give better results in comparison to
NLM. However, comparing this method with EEMD-NSR
and EEMD-FLS for Doppler signal, we reported that these
algorithms provide better results in all cases.

We have also shown the robustness of proposed methods
by conducting a number of simulations with various signal
forms and SNR.
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The proposed algorithms also have some drawbacks. The
main disadvantage of the methods is the high computational
complexity. The computational complexity is remarkably
higher compared, for example, with non-local means. The
reason is that the EEMD algorithm which we used in the
current implementation to signal decomposition has a high
computational complexity [113]. On the one hand, the com-
putational complexity of the proposed algorithm can be
improved by applying fast implementation of the EEMD
algorithm. On the other hand, it is possible to improve the
running time of the proposed algorithm by replacing the
ADMM algorithm with non-iterative methods. Further works
will be focused, inter alia, on improving the time complexity
of the proposed methods.

The major advantages of the proposed methods are sum-
marized below:

1) remarkable improvement of denoising performance for
synthetic signals (Blocks and Doppler signals);

2) high SNR in the presence of short dependencies noise
in signals;

3) significant improvement of the signal acquired from the
gyroscope sensor.
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