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ABSTRACT The self-encoder is a typical unsupervised deep learning algorithm. In the field of unsupervised
learning, it is very popular with researchers. Therefore, in view of the shortage of labeled training samples,
the convolution kernel of a typical convolutional neural network is set by experience, and the network
structure is fixed and it is difficult to re-learn later. This paper combines the convolutional neural network and
the automatic encoder, and proposes a multi-based the method of integrated network structure to extract the
features of the image for recognition. First, the SAE pre-trainedCNNmodel convolution kernel is used to pre-
train based on the classic CNN structure. Secondly, input and process image data of different scales to extract
image space and spectral features respectively. Then, construct multiple channels, and use different scale
filters and sampling intervals for different channels. Finally, after one layer of down sampling, the feature
maps obtained from multiple channels are input into the fully connected layer, and after a hidden layer,
the features finally used for classification are obtained. Experimental results show that the proposed method
uses sparse automatic coding for pre-training time efficiency increased by 50%, and can further improve the
recognition accuracy, the highest recognition rate reached 0.985.

INDEX TERMS Convolutional neural network, multi-channel, training, automatic encoder, recognition.

I. INTRODUCTION
Deep learning is a brand new branch of machine learning and
a powerful core driver in the field of artificial intelligence
[1], [2]. In recent years, it has swept almost all fields of
research and industry and developed rapidly. In simple terms,
deep learning can be understood as a neural network structure
withmultiple hidden layers. Comparedwith traditional neural
networks, the biggest feature of deep learning is unsupervised
feature learning, that is, it can automatically extract target fea-
tures [3], [4], avoiding the various drawbacks caused by man-
ual design feature selection. Deep learning algorithms include
unsupervised learning and supervised learning algorithms,
among which self-encoder is a typical unsupervised deep
learning algorithm, in the field of unsupervised learning, it is
very popular among researchers [5], [6]. Convolutional neural
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network is a supervised deep learning algorithm, which has
achieved great success in speech recognition, natural image
processing, and other fields [7], [8].

As neural networks become more complex, the number
of network layers expands, gradient elimination occurs, and
it is difficult to converge. The results obtained are related
to initialization at a large level. The mainstream in image
processing is the convolutional neural network. Convolu-
tional neural networks are specifically proposed for image
processing. Peng and Song [9] pointed out that in speech or
object recognition, extracting multi-layer feature representa-
tions of objects can often achieve very good results. However,
deep neural networks combined with gradient descent are
unsatisfactory in tasks with few labels. In the field of image
processing and computer vision, the most successful research
and application is CNN. Wang et al. [10] studied the use of
weakly labeled images and unlabeled images for multi-label
image annotation. The author proposes to first train CNNwith
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weakly labeled or unlabeled samples, and then fine-tunes the
CNN with high-quality images collected. Experiments show
that the use of weakly labeled or unlabeled images combined
with deep learning works well. Wang et al. [11] pointed out
that handwriting image recognition is very sensitive to struc-
tural noise. Due to the non-locality of structural noise and the
indistinguishability of true and false regions, the author pro-
poses to use a denoising auto-encoder to construct a deep neu-
ral network. Some good results have been achieved on the set.
Herbel et al. [12] pointed out the shortcomings of traditional
image aesthetic evaluationmethods, and proposed to use deep
learning methods to evaluate images. In this paper, a two-
column CNN is proposed for feature extraction and classifier
training, combined with image style, and semantic attributes.
Experiments show that this method is better than the previous
method. Son et al. [13] borrowed from the human visual cor-
tex and intelligent perception to propose a semi-conducting
two-line deep belief network (SBDBN). By comparing with
the incomplete image recognition technology and the existing
deep learning model, it is applied to two standard data sets
and one artificial data set at the same time. The experimen-
tal results show that the model shows excellent recognition
ability. Zhao and Du [14] proposed a deep learning method
based on feature contours applied to hyperspectral image
classification. The results show that the classification effect
of the algorithm is relatively good. Pan et al. [15] studied
image classification technology and proposed a deep learning
framework that can automatically discover the underlying
geometry without prior assumptions. First, the parameters
are initialized using a layer-by-layer unsupervised prepro-
cessing method based on Gaussian restricted Boltzmann
machine, and then the depth of each class and specific class
of the image is trained separately to construct the model.
Zhong et al. [16] proposed an image recognition method
for incomplete data (FEBDN) based on field-effect bilinear
deep network to solve the problem of image recognition
for incomplete data. Zhang et al. [17] proposed classifica-
tion algorithm of a bilinear deep learning image (BDBN).
BDBN aims to provide human-like judgments by draw-
ing on the architecture of the human visual system and
intelligently perceptive programs. Wu [18] investigated the
semantic gap in the content-based image retrieval system.
By examining a state-of-the-art deep learning method for
CBIR tasks in different environments, the experiment found
some encouraging results and summarized some important
insights. Ye et al. [19] proposed a natural image recognition
algorithm based on a large deep CNN, which achieved a high
recognition rate on the ImageNet dataset. Garea et al. [20]
proposed a CNN based on multi-core, and achieved a good
recognition effect on the three-dimensional data set by using
the GPU parallel operation method. Qayyum et al. [21] used
sparse coding to extract the basis function of the training
image as the initial filter of CNN. Wu et al. [22] applied
independent component analysis (ICA) to the pre-training
stage of CNN, and used ICA to train the filter set to improve
the recognition rate. Daniel et al. [23] proved that the filter

size has a great influence on the final recognition result,
and gave a relatively optimal filter size under single-layer
conditions. Saha et al. [24] proved that when the sampling
interval is small, even after 2 convolutions and 2 maximum
down sampling, the activation value of the network output can
still reconstruct the seemingly the same pattern as the original
input.

Auto-encoder is also a deep learning method, and there
are many researches and applications on it, such as sparse
auto-encoder, stacked auto-encoder, and so on [25]–[29].
Golkov et al. [30] pointed out that although deep learning
technology has achieved remarkable results in many fields.
However, there are still three problems in training speed, local
minimum, and hyper-parameter selection. In order to over-
come these three problems, the author proposes to use auto-
encoder to assist in training deep networks. Silva et al. [31]
proposed a spatially updated deep auto-encoder (SDAE)
in order to extract and use the features of high-spectrum
images. By adding regularization terms to the energy func-
tion to consider sample similarity, and by integrating context
information to update features, good results were obtained.
Eqlimi et al. [32] came up with a K-sparse classification
system based on auto-encoder in order to improve these
problems. Experiments have found that this classification
system has been greatly improved in accuracy and complex-
ity. Jia et al. [33] proposed the use of deep auto-encoder for
compact shape feature expression and image retrieval, and
achieved good results. Riaz et al. [34] compared and analyzed
the performance of auto-encoder and principal component
analysis in face recognition applications. Both methods are
used for feature generation and selection, and it is found that
auto-encoder is superior to principal component analysis.

Although the deformation algorithms of CNNs have
achieved great success in image processing, when used for
image recognition, it still has hidden problems such as local
optimization, gradient elimination, and long training time.
Using auto-encoder to initialize the parameters of each layer
of CNN can not only eliminate the local optimal uncertainty
caused by random initialization, obtain a good initial value,
but also suppress the problem of gradient elimination. Fur-
thermore, when the amount of data gradually increases and
the network structure becomes gradually more complicated,
this initialization can reduce the training time and achieve
better image recognition results in a shorter time. Therefore,
this article combines the auto-encoder with the convolutional
neural network to solve the problems of the disappearance
of the convolutional neural network gradient and the long
training time. In order to use the convolutional neural net-
work for image recognition, it takes less time to get better
result.

Specifically, the technical contributions of our paper can
be concluded as follows:

In this paper, the combination of the automatic encoder
and the convolutional neural network can solve the problems
such as the disappearance of the convolutional neural network
gradient and the long training time. When the convolutional
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neural network is used for image recognition, it takes less
time to get better results.

The rest of our paper was organized as follows. Related
work was introduced in Section II. Section III described the
structure of the convolutional neural network algorithm pro-
posed in this paper. Experimental results and analysis were
discussed in detail in Section IV. Finally, SectionV concluded
the whole paper.

II. RELATED THEORETICAL KNOWLEDGE
A. BASIC CHARACTERISTICS OF CONVOLUTIONAL
NEURAL NETWORKS
Convolutional neural networks (CNNs) are a multi-layer
feedforward neural network for computer vision applica-
tions published in 1989 [35]. Currently, CNNs are becoming
increasingly popular in deep learningmethods. Because it can
better learn the model of many computer vision tasks such as
target detection, target recognition, semantic image segmen-
tation. Compared with traditional neural networks, the main
features of convolutional neural networks are local perception
and weight sharing, also known as sparse connections, which
can greatly reduce the number of parameters that the network
model needs to train [36].

1) LOCAL PERCEPTION
Modern biological research believes that the brain’s cognition
of the world through vision is from local to global [37],
which means that neurons of animal vision only have a part
of neurons functioning when they perceive external objects.
In computer vision, in a certain area of the image, the corre-
lation between the pixels and the distance between the pixels
are also related, the correlation between the pixels closer is
stronger, and the correlation between the distances is weaker.
From which we can see that the theory of local correlation is
also applicable to the field of image processing. The neurons
of the convolutional neural network are only connected to
some neurons in the previous layer to sense local information.
The neurons in the lower layer perceive local regions of the
image, and the neurons in the upper layer synthesize the
local features in the lower layer to obtain abstract global
features.

In traditional neural networks, hidden units, also called
neurons, consist of one-dimensional vectors. However, due
to the characteristics of the image, the hidden units in CNNs
are usually composed of two-dimensional planes, which we
call feature maps [38]. According to the dimension of the
layer, each convolutional layer has a certain number of feature
maps. Use a linear filter to perform convolution operation on
the input image or the previously obtained features, and then
calculate through a nonlinear function to obtain the feature
map output by this layer. In other words, each cell in the
feature map receives input from the p× p region of the image
or the previous featuremap. These p× p regions are called the
receptive field of this unit. The interval between the receptive
fields of adjacent units is called the step size.

2) WEIGHT SHARING
All units in the feature map share the same weight, and the
same convolution filter is used to apply to all receptive fields
of the previous feature map. We call these shared weights
filters or convolution kernels.

Since these basic features can appear in any area of the
image, displacement invariance is very important for captur-
ing these basic features. Moreover, through weight sharing,
displacement invariance can be achieved. Weight sharing has
another advantage, that is, it can greatly reduce the number
of weight parameters that need to be trained.

In LeNet [39], the convolutional layer C3 has 16 feature
maps, and each unit in each feature map is connected to
a 5 × 5 neighborhood in each or part of the feature maps
in the previous layer S2. Therefore, the number of weight
parameters is shown in formula (1).

(kernel size+bias)×|S2| × |C3| = (5× 5+ 1)× 6× 16,

(1)

B. BASIC STRUCTURE OF CONVOLUTIONAL
NEURAL NETWORK
Convolutional neural network is a deep feed-forward artificial
neural network and one of the representative algorithms of
deep learning [40]. It can automatically learn multi-layer
features directly from images and has very good represen-
tation capabilities. It is widely used in computer vision fields
such as image classification, target detection, and semantic
segmentation. The structure of a convolutional neural net-
work usually includes modules such as an input layer, a con-
volution layer, an activation layer, a pooling layer, a fully
connected layer, and an output layer. Its basic structure is
shown in Figure 1.

FIGURE 1. The basic structure of a convolutional neural network.

1) CONVOLUTIONAL LAYER
As shown in Figure 2, each convolutional layer of CNN
consists of a 3D filter with a size of d × h × w, where h × w
is the spatial dimension, which is equivalent to the set of
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FIGURE 2. Operation of the convolutional layer.

neurons, and d is the number of nuclear feature channels.
Each filter is convolved with the corresponding part of the
input image, sliding across the entire image. Convolution
refers to summing the neuron in each filter and the value
corresponding to the input layer item by item. Therefore,
if the input layer in CNNs is an image, the image can be
convolved with each filter of each layer to obtain a two-
dimensional output. The size of the output is affected by the
step size and the filling parameters. The output is represented
as a feature map or activation map. In each convolutional
layer of CNNs, N filters are used, and each filter generates
a feature map. Stack these feature maps together to get the
output of the convolutional layer.

A single neuron in a filter can be mapped to the neurons
connected in all previous layers. This is called the effective
receptive field of neurons [41]. It is easy to see that the
convolution results in a local connection between the neurons
in the lower layer and the neurons in the smaller receptive
field compared to the connections between the neurons in
the upper layer and the neurons in the smaller receptive field
closer. Lower layers learn to characterize small areas of input,
while higher layers learn more specific semantics because
they respond to larger subdivisions of the input image. There-
fore, a feature hierarchy is generated from local to global.

The red and yellow regions in Figure 2 represent the two
positions where the filter of size d × h × w is convolved
by sliding the input space. The step size of the filter is
defined as the interval at which the filter moves in each spatial
dimension. The fill parameter p corresponds to the number of
pixels added to the outer edge of the input. Therefore, the step
size can be regarded as the input method of sub-sampling.
A square filter in the form of h = w = f is usually used,
and the output of this layer is calculated using equation (2),
equation (3) and equation (4).

Do = N (2)

Ho =
Hi − f + 2p

s
+ 1 (3)

Wo =
Wi − f + 2p

s
+ 1 (4)

Figure 2 shows a 3 × 3 filter sliding over a binary image
matrix of size 5× 5. The filter slides from left to right to the
end of the matrix, and its step size is one. Slide the filter in
order to perform convolution to obtain the output featuremap.

2) POOLING LAYER
Pooling is achieved by sliding a filter on the input image.
The input image is divided into different sub-regions, and
each sub-region is down-sampled by a nonlinear pooling
function. The most commonly used of these functions are the
maximum and average pooling functions. In addition, pool-
ing removes unnecessary and redundant features, reduces
network-computing costs, and improves network efficiency.

The pooling layer also has a stride parameter to control
the output size. In Figure 3, the input features are down-
sampled from 64 × 224 × 224 to 64 × 112 × 112 by the
pooling kernel with a step size of two and 2 × 2. Implement
pooling operations on each feature map to reduce the size of
the feature map.

FIGURE 3. Pooling operation.

3) ACTIVE LAYER
In neural networks, three activation functions are commonly
used for simulating cellular neuron activation, namely sig-
moid function, tanh function, and relu function. The first two
functions were widely used in the rise of neural networks, but
due to their inherent defects, they were gradually replaced by
the relu function.

The function sigmoid is an s-type function, see formula (5).
The activation domain of the function sigmoid is between
zero and one, and most of the time its output value is close
to zero or one, as shown in Figure 4(a). It can be seen from
Figure 4(a) that the sigmoid function is a non-decreasing
function. When the independent variable is less than -4,
the dependent variable is close to zero.When the independent
variable is greater than four are, the dependent variable is
close to one. The derivative of the function sigmoid is shown
in formula (6), and the curve of the derivative function is
shown in Figure 4(b). It can be seen that the function is
less than or equal to 0.5 and greater than zero, which is a
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FIGURE 4. Function sigmoid curve and derivative curve.

FIGURE 5. Function tanh curve and derivative curve.

symmetric function.

sigmoid(x) =
1

1+ e−x
(5)

sigmoid ′(x) =
1

1+ e−x
× (1−

1
1+ e−x

) (6)

The expression of the function tanh is shown in formula (7),
as shown in Figure 5(a). Comparedwith the sigmoid function,
the activation range of the tanh function is wider, which is
equivalent to the enlarged version of sigmoid. The derivative
of the function tanh is shown in formula (8), and the derivative
curve is shown in Figure 5(b). It can be found from the
formula that its derivative is in the range of 0 to 1. However,
the tanh function also has the problem of disappearing gradi-
ents, resulting in low training efficiency. Because the value of
its derivative is between zero and one, when the value of the
derivative is one, the function activation value is zero, which
also causes the gradient to not be downloaded.

tanh(x) =
ex − e−x

ex + e−x
(7)

tanh′(x) = 1− (
ex − e−x

ex + e−x
)2 (8)

The function relu is a simple and efficient activation func-
tion. Compared with the first two functions, the relu function
has a wider activation domain, has more sparse activations,
and the relu function is unilaterally suppressed. When the
relu function is not zero, its derivative is one. In theory,
the gradient disappearance is much better than sigmoid and
tanh. In actual training, relu also converges faster and is more
computationally efficient than the other two functions. The
disadvantage of the function relu is that some neurons may
be necrotic during training, which may be consistent with the
characteristics of nerve cells.

relu(x) = max(0,max) (9)

4) FULLY CONNECTED LAYER
After extracting high-level features through the convolutional
layer, pooling layer, and relu layer, the fully connected layer is
usually placed at the end of the network. Neurons in this layer
are completely dependent on all activations in the previous
layer. The most important role of the fully connected layer
is that the neurons in this layer determine which features
correspond to which categories. In short, the fully connected
layer can be seen as the layer that provides the classifier.

5) CLASSIFIER
The choice of classifier is determined by considering the
current problem and the data used. The softmax function in
equation (10) gives the probability that an input belongs to
class c.

Pc =
e(Sc)
c∑
i=1

e(Si)
(10)

In the formula, s is a specific type of network output. For
a single input, the sum of all probabilities between classes
is always equal to one. The loss function is defined as the
negative logarithm of the probability of the softmax function.

C. AUTOMATIC ENCODER
The concept of auto-encoder was proposed earlier, and
was originally applied to high-dimensional complex data
processing, which promoted the development of neural net-
works [42]–[44]. The self-encoder is an unsupervised learn-
ing algorithm in the deep learning algorithm, to be more
precise, a self-supervised learning algorithm whose label
data is derived from the input samples. The principle of the
self-encoder is not complicated. It can be understood as a
system that attempts to restore the original input, so the self-
encoder is often used to automatically learn features and data
compression [45].

1) STACKED SELF-ENCODER
The general structure of the auto-encoder is a three-layer
neural network model, including an input layer, a hidden
layer, and an output layer. Stacked self-encoder is a variant of
self-encoder. It is a neural network model formed by stacking
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multiple common self-encoders. The stacking method is that
the hidden layer output of the previous auto-encoder is used
as the input layer of the latter auto-encoder, that is, layer-by-
layer greedy training is implemented. This method solves the
problem of gradient disappearance that is difficult to over-
come by deep neural networks, and layer-by-layer training.
The method can extract deeper features and help solve more
problems that are complex. It is often used for unsupervised
feature extraction and weight pre-training for other networks.
The principle diagram is shown in Figure 6.

Stacked auto-encoder contains two important concepts.

FIGURE 6. Schematic diagram of the stack self-encoder.

a: SPARSENESS RESTRICTION
The idea of the auto-encoder is to recover the original input
even when the hidden layer is forced to be different from
the input. There are two cases at this time, the number of
hidden layer nodes is small, and the number of hidden layer
nodes is large. When the number of hidden layer nodes is
small, the original data can be compressed to extract effective
features that can express the original data. When the number
of hidden layer nodes is large, features can still be extracted
with the auto-encoder. At this point, the sparsity limit is
added.

The main idea of sparseness restriction is to put some
constraints on the hidden layer to make it sparse, that is, not
all nodes are active. When the output of a neuron node in the
hidden layer is close to one, the neuron is considered to be
activated. When the output of a neuron node is close to zero,
the neuron is considered to be suppressed. The characteristic
that suppresses neurons is called sparsity limitation. The
specific implementation is shown in the following formula:

p̂j =
1
m

m∑
i=1

α
(2)
j x(i) (11)

Among them, the variable α(2)j x represents the activation
degree of the hidden layer neuron j when the input is x. The
variable p̂j represents the average activation degree of j over
the entire training set. The way to add sparseness restriction is
to let the equation p̂j = p hold. The variable p is the sparsity
parameter. In order to make the average activity of neuron j
close to p, this sparse penalty factor needs to be added to the
optimization function. Commonly used sparse penalty factors

are as follows:
s2∑
j=1

p log
p
p̂j
+ (1− p)

1− p
1− p̂j

(12)

b: LAYER-BY-LAYER GREEDY TRAINING
Deep learning has been in a trough for a long time, and
everyone has gradually forgotten it. The reason is mainly that
scholars cannot overcome the phenomenon that the gradient
of the deep neural networkmodel disappears due to the deeper
layers. Until 2006, Geoffrey Hinton proposed that the layer-
by-layer greedy training method could be used to solve the
problem of gradient dispersion and local minimum in deep
neural networks, making deep learning return to the public’s
vision again [46]. The biggest difference between layer-by-
layer greedy training and traditional training methods is that
each training will not pass forward multiple layers and then
propagate multiple layers forward from the last layer. Instead,
it only trains a network with one hidden layer at a time. When
the network training reaches the local optimum, the next
network with the output of the hidden layer of the previous
network as the input is trained, and the local optimum is
reached again. Finally, the labeled data is used to fine-tune
the weights trained layer by layer for classification or other
tasks.

2) CONVOLUTIONAL AUTO-ENCODER
The traditional self-encoder fully connected method ignores
the two-dimensional structure of the image, which not only
forces the network to learn global features, but also easily
causes parameter redundancy and affects training efficiency.
Convolutional auto-encoder introduce convolution and pool-
ing operations on the basis of traditional auto-encoder, realize
local receptive fields and weight sharing, and are often used
to process two-dimensional images.

The architecture of the convolutional auto-encoder is sim-
ilar to that of the auto-encoder, and its mathematical calcula-
tion process is as follows [47]:

For input single-channel input x, the formula for extracting
feature maps through k convolution kernels is as follows:

hk = σ (x ∗W k
+ bk ) (13)

Among them, the variable σ represents the activation func-
tion; operation ∗ represents the convolution operation. The
reconstruction process uses the following formula:

y = σ (
∑
k∈H

W̃ ∗ hk + c) (14)

Among them, the variable σ represents the activation func-
tion, and H represents the number of feature map groups.
The variable W̃ represents the transposition of the weight of
the encoding part. The variable c represents the offset. The
loss function generally uses the mean square error, and the
formula is as follows:

E(θ ) =
1
2n

n∑
i=1

(xi − yi)2 (15)
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Like other neural networks, the back propagation algo-
rithm is used to calculate the gradient of the error function
relative to the parameters. This can be easily obtained using
convolution operation, the formula is as follows:

∂E(θ )
∂W k = x ∗ δhk + h̃k ∗ δy (16)

Among them, the variable δhk and the variable δy represent
the features extracted from the hidden layer and the recon-
struction results, respectively.

III. MULTI-CHANNEL STRUCTURE AUTOMATIC
CODING NETWORK
A. SPARSE AUTO-ENCODER
Sparse auto-encoder (SAE) is an unsupervised learning
model, which re-encodes input data by making the output
value equal to the input value as much as possible to learn
the characteristics of the data.

Since the auto encoder is an unsupervised learning algo-
rithm in the deep learning algorithm, its label data is derived
from the input samples. Auto encoders are often used for
automatic feature learning and data compression. Therefore,
this paper uses a sparse automatic encoder to train the convo-
lutional network, which can complete the re-encoding of the
input data, so as to learn the characteristics of the data.

Suppose there are n images in the training sample, which
are divided into k categories. Each training image is trans-
formed into a column vector, and the corresponding label con-
stitutes the sample set {(si, ti) , i = 1, 2, . . . , n}, then sparse
the output of the hidden layer of the auto-encoder can be
obtained by combining the column vectors and corresponding
weights and adding an offset term through a nonlinear func-
tion. This process is called forward propagation, as shown in
equation (17).

a(l+1)i = f (z(l+1)i ) = f (
m∑
j=1

W (l)
ij ∗ si + b

(l+1)
j ) (17)

Among them, the variable a(l+1)i is the output value of
i-th unit of the (l+1) layer. The variable z(l+1)i is the input
weighted sum of the unit i of (l+1) layer. The variable W (l)

ij
is the weight between the j-th unit in the lth layer and i-th
unit in the (l+1) layer. The variable b(l+1)j is the offset of i-th
unit of (l+1) layer. The variable m is the dimension of the lth
layer. The variable f function is the activation function, and
generally takes the sigmoid function or the hyperbolic tangent
function.

Let a (1) = S denote the activation value of the input
layer, and express the f function in the form of a vector.
Equation (17) can be simplified to the form of a vector. The
meaning of the symbol remains unchanged:

z(l+1) = W (l)a(l) + b(l+1) (18)

a(l+1) = f (z(l+1)) (19)

In order to make the output value equal to the input value as
much as possible, it is necessary to optimize the parameters

of the weight and offset in equation (17). The method is to
minimize the objective function like this:

J (W , b) =
1
n

n∑
i=1

(
1
2
||a(l)(si)−si||2) (20)

The objective function is a variance cost function, which
is optimized by the gradient descent method. However, when
the input data with large data volume and high dimension is
encountered in the calculation process, the objective function
often converges slowly and the calculation complexity is too
high. One solution is to add sparse constraints to the func-
tion, which constitutes a sparse auto-encoder. The objective
function at this time is:

J ′(W , b) =
1
n

n∑
i=1

(
1
2
||a(l)(si)−si||2)+β

s2∑
j=1

KL(ρ||ρj) (21)

After adding the sparse limit, the average value of the
hidden layer node output is close to zero, so that most of the
hidden layer nodes are in an inactive state, which increases
the sparseness of the model. After obtaining the objective
function, the model parameters are updated according to the
following formula:

W (l)
= W (l)

− α
∂J ′(W , b)
∂W (l) (22)

b(l) = b(l) − α
∂J ′(W , b)
∂b(l)

(23)

where α is the learning rate. The back propagation algo-
rithm is used to calculate the last two derivative terms of
formula (22) and formula (23), and iterative updating is
continued until the entire coding network is trained after the
parameters converge, and the characteristic parametersW and
b are obtained. Each parameter set is a filter, so that a pre-
trained filter set is obtained.

B. SAE PRE-TRAINING CONVOLUTION KERNEL
This paper uses SAE pre-trained CNN model convolution
kernel to pre-train based on classic CNN structure. The clas-
sic CNN network consists of six feature maps, corresponding
to six convolution kernels of size 5 × 5. Therefore, in the
sample image, 5× 5 small blocks are randomly selected, and
these small blocks are used as the input of SAE. The number
of hidden layer neurons is set to six, the weight value W
obtained by SAE training is 6× 25, and W is converted into
6×5× 5, which is used as the initial value of the convolution
kernel after C1 layer pre-training. After initializing the con-
volution kernel of the C1 layer, the remaining weights are still
randomly initialized in the original way. The training network
stops training after the specified number of iterations, and
saves the feature output of the S2 layer of the input sample.
In the same way, the S2 layer feature output saved by SAE
training is used to obtain the initial value of the convolution
kernel after the C3 layer pre-training. The classic structure is
shown in Figure 7.
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FIGURE 7. Model structure with SAE pre-training.

C. MULTI-CHANNEL STRUCTURE
In this paper, by constructing multiple channels on CNN,
different channels use different scale filters and sampling
intervals. Specifically, suppose the input image is X, first take
three different scale image patches of X {1,2,3} to construct
three channels, and select the corresponding filter size patch-
Dim {1,2, 3} and down-sampling interval pool-Dim {1, 2, 3}.
The selection criterion is to make the output feature dimen-
sions of different channels as same as possible. The network
structure is shown in Figure 8.

FIGURE 8. Convolutional neural network structure with multi-pass
structure.

Although the traditional CNN is robust to translation and
scaling, it has certain robustness. However, the literature [48]
proved that small changes in the size of the input image
would still result in different final recognition results of CNN.
In order to enhance the robustness of the model, the net-
work structure proposed in this paper adopts the method of
multi-scale input, changing the direct input of the original
image into the input image of different size image blocks.
Three channels of three different sizes are used to form
three channels. The three channels are performed separately
during the convolution and down sampling operations, and
the three channels are combined at the fully connected layer.
While using multi-scale input, the input images of different
channels are convolved with filters of different sizes. The
features obtained after convolution of large-size filters have
characteristics that are more global. The small size obtains
features that more reflect local characteristics. The specific
steps of convolution are the same as CNN. After the original
input image is convolved with the filter, an activation function

is used to obtain the first layer output feature map:

x(l+1)j = f (
∑
i∈Mj

x(l)j ∗ k
(l+1)
ij + b(l+1)j ) (24)

Among them, the superscript l indicates the number of
layers. Operation ‘‘∗’’ is a convolution operation. The vari-
able x(l+1)j represents the output of the j-th neuron after

convolution. The variable x(l)j represents i-th neuron in the

lth layer, that is, the input data. The variable k (l+1)ij repre-

sents the filter. The variable b(l+1)j represents the offset. The
variable Mj represents the set of selected input feature maps.
Another difference between the network structure proposed
in this paper and the traditional CNN is the addition of Local
Contrast Normalization (LCN) operation, which has been
shown to effectively improve the invariance of features and
increase the sparsity of the model [49]. After applying the
local contrast normalization to the convolutional layer in this
paper, the specific normalization formula is:

x(l)′u,v =
x(l)u,v − m

(l)
N (u,v)

σ
(l)
N (u,v)

(25)

Among them, the variable x(l)u,v represents the output value
of the corresponding position (u, v) of the layer 1 feature map.
The variable m(l)

N (u,v) and variable σ (l)
N (u,v) represent the mean

and variance of the local neighborhood N (u, v), respectively.
The features normalized by the local contrast are input to
the down sampling layer. In order to ensure a high recog-
nition rate while maintaining invariance, this paper adjusts
the sampling interval of the down sampling according to
the dimension of the output feature. The larger the sampling
interval of the down sampling layer, themore fuzzy the output
feature map and the stronger the feature invariance. Finally,
the output dimensions of the three channels are the same.

For the large-scale convolutional neural network, the input
is a full-color image with a size of 192 × 192 × 1. The
designed large-scale convolutional neural network structure
includes three convolutional layers, three pooling layers, and
a fully connected layer. The first layer designs a convolutional
layer with a size of 6×6 and a convolutional step size of two.
In the second layer, a mean pooling layer with a template size
of 2 × 2 and a step size of two is designed. The third layer
designs a convolutional layer with a convolution kernel size
of 6 × 6 and a step size of one. In the fourth layer, a mean
pooling layer with a template size of 2× 2 and a step size of
two is designed. The fifth layer designs a convolutional layer
with a convolution kernel size of 6× 6 and a step size of one.
In the sixth layer, a mean pooling layer with a template size
of 2 × 2 and a step size of two is designed. The sixth layer
features and the final output are fully connected. The fully
connected layer contains 384 neurons.

For the small-scale convolutional neural network, in order
to ensure that the input data of the large-scale network covers
the same area, the input is a multi-spectral image with a size
of 48×48× 8. The designed small-scale convolutional neural
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network structure consists of three convolutional layers and
one fully connected layer. The first and second layers have a
design step size of one, and a convolutional layer with a size
of 1 × 1 for the extraction of spectral information features.
The third layer uses a convolution kernel with a step size of
four and a convolution kernel size of 4 × 4, which is mainly
used for feature enhancement and dimension reduction. The
third layer features and the final output are fully connected.
The fully connected layer contains 864 neuron nodes.

After sampling under one layer, the network structure
model constructed in this paper inputs all the feature graphs
into the full connection layer. After passing through the
hidden layer, the features used for classification are finally
obtained. Enter this feature directly into softmax classifier for
target classification identification.

In this paper, first, the SAE pre-trained CNN model con-
volution kernel is used to pre-train on the basis of the classic
CNN structure, and the loss function at this time is recorded
as loss1. Secondly, input and process image data of different
scales to extract image space and spectral features respec-
tively. Then, construct a convolution recognition network of
multiple paths, and the loss function at this time is denoted
as loss2. Therefore, the final loss function of this paper is the
sum of loss1 and loss2. By optimizing the final loss function,
the optimal parameters are obtained.

D. NETWORK STRUCTURE AND ALGORITHM FLOW
This paper proposes a method based on multi-channel
integrated network structure to extract spatial features and
spectral features of images and classify them. First, the SAE
pre-trained CNN model convolution kernel is used to pre-
train on the basis of the classic CNN structure. Secondly,
input and process image data of different scales to extract
image space and spectral features respectively. Then, con-
struct multiple channels, and use different scale filters and
sampling intervals for different channels. Finally, after one
layer of down-sampling, the feature maps obtained from
multiple channels are input into the fully connected layer, and
after a hidden layer, the features finally used for classification
are obtained.

The algorithm steps are as follows:
(1) Input
Image training set and test set with target, filter size patch-

Dim{1, 2, 3}. Down-sampling interval pool-Dim{1, 2, 3}.
(2) Pre-training filter:
1) Crop the image in the training set into image patches

with the same size as the filter.
2) Input the sparse auto encoder, and obtain the trained

weight W through the training steps of formulas (17) to (23).
3) After obtaining W, transform the connection weight

corresponding to the first hidden layer node into the required
filter size to obtain the pre-trained filter set k (2)ij .
(3) Calculate the convolutional feature map x(2) by

equation (24).

(4) The local contrast of x(2) is normalized by equa-
tion (25), and the characteristic map x(3) is output.
(5) Blur x(3) through the down sampling layer to

obtain x(4).
(6) Combine all the output feature maps into a column

vector as the input of the fully connected network, and use
the softmax classifier to obtain the image recognition results.

(7) Calculate the difference between the recognition result
and the label, and adjust and update the parameters k (2)ij
through the CNN-specific back-propagation algorithm until
the loss function converges to a small value and the training
is completed.

(8) Input the test set, and use the filter set obtained by
training and the weight parameters of the fully connected
network to perform target recognition on the test image.

IV. EXPERIMENTS AND RESULTS
A. IMAGE DATA SET AND EXPERIMENTAL
ENVIRONMENT
The initialization scheme proposed in this paper is finally
verified by the recognition effect of the image. This paper
carried out experiments on the Minist handwritten digital
database, MIT face database and Oxford-17-Flowers plant
and flower dataset to verify the effect of the proposed
method.

The Minist handwritten digit library contains 60000 hand-
written digit-training pictures and 10000 test pictures, ten
types of handwritten digits. The MIT face database contains
2429 face images and 4548 non-face images, which are of
two types. The Oxford-17-Flowers data set contains 17 types
of flower pictures, each flower contains 80 sample pictures,
and the data set contains 1360 pictures. Minist handwritten
numbers are simpler than MIT, and Oxford-17-Flowers data
is more complicated. This article verifies the initialization
scheme on simple data and complex data, in order to get better
results. The experiment divides the training set of the three
types of data into 80% and the test set into 20%.

B. THE IMPORTANCE OF SAE PRE-TRAINED MODELS
The effectiveness of pre-training on SAE in this paper is
verified by comparing the training iterations of pre-training
with SAE and pre-training without SAE on three kinds of
data. The experimental results are shown in Figure 9. It can be
seen from Figure 9 that the abscissa is the number of trainings
and the ordinate is the error rate. The red line represents the
training curve after the network is initialized by SAE, and the
green line represents the training curve after the network is
only randomly initialized. From the figure, the network has
three data sets after the SAE initialization; it can speed up the
convergence process and achieve better results.

C. COMPARISON TEST OF MULTI-CHANNEL STRUCTURE
In this paper, the output feature dimension of channel 1 is
2700, the output feature dimension of channel 2 is 4800, and
the output feature dimension of channel 3 is 4800. Therefore,
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FIGURE 9. Effectiveness of pre-training with SAE.

FIGURE 10. Comparison of recognition rates under different input
conditions.

the output feature dimensions of the network structure pro-
posed in this paper are 12300 in total. The training period of
all algorithms is 50. The traditional CNN parameter setting
is the same as the channel 1 parameter setting. It also uses
300 filters, and the initial value of the filter is obtained by
random initialization. The output feature dimension is 2700.
The experimental results are shown in Figure 10.

As can be seen from Figure 10, the network structure of
this paper has a higher recognition rate than the original CNN
on the three data sets. For the Minist dataset, it can be seen
that the recognition rate of channel 2 is the highest among

the three channels, and channel 3 is the lowest, because the
image size of channel 3 is the smallest. The Minist class
changes a lot and the target is not all in the center of the
image, so the recognition rate has declined. The recognition
rate is improved after two-to-one accumulation between the
channels, and the recognition rate is the highest when the
three channels work together. For the Oxford-17-Flowers
image set, it can be seen that channel 2 has the highest recog-
nition rate among the three paths, because the global feature
difference between the different categories of the Oxford-17-
Flowers image set is not obvious, but the local features can
represent different categories. Due to the small input size of
channel 3, the recognition rate drops slightly. In the same
way, the superposition of different paths has improved the
recognition rate. Finally, the recognition rate of the three-
path feature fusion of the network structure in this paper
reaches 0.985, which fully meets the needs for image target
recognition.

It can also be seen from Figure 10 that the recognition rate
of the network structure in this paper in the case of three
channels CNN is higher than that of one channel or two
channels CNN. It can be inferred that the features extracted
by the three channels CNN have strong generalization ability
and robustness. In addition, the three channels can take into
account different scales, so that the model can extract features
with different scales.

D. ALGORITHM ROBUSTNESS EXPERIMENT
In order to verify the robustness of the model in this paper,
different types of images are selected in the data set to
translate, scale, and rotate transforms. Then calculate the
Euclidean distance between the first layer of fully connected
features output by the algorithm and the output features after
image transformation. According to the size of the distance,
the robustness of the output feature to the change of the
target can be measured. The smaller the Euclidean distance
is, the less sensitive the feature is to target changes, and the
better the robustness. For Minist, four types of targets were
selected for experiments, and the comparison algorithm was
CNN. For the MIT image set, randomly select 10 images
for the experiment and take the average of the distance. The
comparison algorithm is ICA and CNN. The test results are
shown in Figure 11 and Figure 12.

It can be seen from Figure 11 that, regardless of the transla-
tion, scale or rotation transformation, the final feature vector
change rate of the model in this paper is less than the CNN
algorithm, which proves that its robustness is better than
CNN.

It can also be seen from Figure 12 that the model in this
paper shows good robustness to the translation, scale, and
rotation of the remote sensing aircraft image set. In com-
parison, the features extracted by ICA are less robust. This
resulted in a major change in characteristics. The reason why
the model in this paper is more robust is firstly because the
model in this paper adopts unsupervised pre-training mode,
and the trained filter contains more image invariant features.
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FIGURE 11. Robustness of the Minist dataset.

FIGURE 12. Robustness of the MIT dataset.

Secondly, because the model in this paper adopts multi-scale
input, small image input is equivalent to another local feature
to a certain extent, and these features have better invariance
than full-scale input. Finally, the model in this paper adopts
local contrast standardization, which significantly enhances
the robustness of the target image with large brightness
changes and noise.

In addition, the model in this paper adopts the multi-
channel multi-scale block method, which will inevitably
increase the network parameters, which will make the train-
ing time more time-consuming. However, in the test phase,
the calculation of the input samples only includes some sim-
ple convolution and downsampling, and the complexity of the
algorithm does not increase due to the increase of the channel.
Therefore, the real-time performance in the test phase is not
much different from the traditional CNN.

E. OPERATING EFFICIENCY
As shown in Figure 13, when the number of trainings reaches
about 400, the loss function value of the model in this paper
is already less than 0.05.

FIGURE 13. Graph of loss function results for different models.

The loss function value of the CNN part of the model in
this paper is in a state of continuous decline during training.
Before the training number reaches 340, the value of the loss
function of the CNN model swings between 0.2 and 0.4,
and there is no downward trend before the training number
reaches 10000. The value of the loss function of the ICA
model also declined during training. These results show that
the model in this paper is much more efficient than the CNN
model and ICA model.

As shown in Figure 14, the classification accuracy and time
efficiency of different layers are initialized using SAE for
pre-training. Time is used to indicate the initialization time
plus the training network time. On the Minist data, after SAE
initialized the second layer, it took 103 seconds and achieved
an error rate of 1.88%. However, it takes 107 seconds to
initialize the network using a random initialization method,
and the error rate is 2.65%, which is higher than 1.88%. After
SAE initializes five layers, better results can be achieved in
the same time.

On Oxford-17-Flowers data, after SAE initialized layer 2
on the network, it took 155 seconds and the error rate was
31%. The random initialization takes 176 seconds and the
error rate is 43%. That is, in the same time, using the initial-
ization scheme of this article can achieve better results. On the
Oxford-17-Flowers data, after the network 2 was initialized
to five layers by SAE, it took 576 seconds to obtain a good
result with an error rate of 11%. The network uses random
initialization, which takes 9057 seconds and the error rate
is 15%. Regardless of time or error rate, the use of random
initialization is higher than the initialization scheme in this
paper.

In general, the initialization scheme in this paper has better
timeliness than random initialization. That is, the model in
this paper can significantly improve the classification accu-
racy and time efficiency of the image classification process.

F. RECOGNITION OF MINIST DATASETS
OF DIFFERENT MODELS
60000 samples from the Minist dataset are used for train-
ing and 10000 samples are used for testing. The stochastic
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FIGURE 14. Using SAE for pre-training to initialize classification accuracy
and time efficiency results for different layers.

FIGURE 15. Recognition results of different models.

gradient descent method is used to train the network in
batches, with 50 samples for each batch. In Figure 15,
the results of the model and other models tested in the data
set are given.

As can be seen from Figure 15, as the number of network
iterations increases, the recognition error rate of different
network models also decreases one after another, but the
recognition error rate of different network models decreases
to different degrees. Because there is no pre-training on the
convolution kernels of CNN and ICA models, iterative train-
ing of the model is needed to extract features to improve the
recognition accuracy of the test set, so it is greatly affected
by the number of trainings. The BDBN model and FEBDN
model memorize the new samples and new features, and
improve the generalization performance. It may be that in the
case of large samples, the amount of test data is large and
diversified, and the new features that are further learned after-
wards have little effect on the improvement of the recognition
accuracy of the test set. The rate has only slightly increased.
The recognition error rate of the test set of the SDAE network

is significantly lower than that of the typical CNNmodel. The
network model in this paper can achieve an ideal recognition
effect in a relatively short period for large data set samples.

The experiments in this section compare and analyze the
target detection performance of the model and five different
network models in the test data set. The evaluation criteria
used include the recall rate and false alarm rate. The calcula-
tion formula is as follows:

Recall =
Number of correct t arg ets det ected

Actual number of goals
(26)

False alarm rate =
Number of det ected false targets
Total number of det ected t arg ets

(27)

For the above indicators, different thresholds are set for
the output of each model, where the threshold range is 0.05
∼ 0.95, the interval is 0.05. Calculate and count the recall
rate and false alarm rate corresponding to each threshold, and
draw the curves as shown in Figure 16 and Figure 17.

FIGURE 16. Recall rate curve.

As can be seen from Figure 16, different network models
have differences in recall rates. The model proposed in this
paper combines the feature information extracted by multiple
CNNs with different structures, and its recall rate is improved
by about 4% compared with the other five models. There-
fore, the model proposed in this paper has obvious advan-
tages in accuracy of target recognition compared to other
network models. As can be seen from Figure 17, the model
proposed in this paper combines the effective feature infor-
mation of the samples extracted by CNNs of different struc-
tures, and merges redundant information to a certain extent,
which increases the false alarm of the model. Nevertheless,
the overall false alarm rate is still lower than that of other
models.

In summary, the model proposed in this paper has a signif-
icant improvement in overall recognition performance com-
pared to other network models. It can improve the recall
rate, and reduce the false alarm rate to a certain extent,
and can better distinguish the target and the background
to verify the effectiveness of the proposed model in target
recognition.
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FIGURE 17. False alarm rate curve.

V. CONCLUSION
In this paper, a convolutional neural network and an automatic
encoder are combined, and a method for extracting image
features based on multi-pass integrated network structure
for recognition is proposed. First, pre-train the convolution
kernel with a sparse auto-encoder and increase the network
branch to improve the original CNNmodel in the way of post-
learning. Secondly, input and process image data of different
scales to extract features separately. Then, construct a multi-
channel structure, using different scale filters and sampling
intervals for different channels. Finally, after sampling down
from the first floor, the ground feature maps obtained by
multiple channels are input into all the fully connected floors,
and finally used to classify ground features. Experimental
results show that the network proposed in this paper can
effectively recognize images and has strong robustness to
translation, scale, and rotation transformation.
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