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ABSTRACT Imperceptible latency, uninterrupted communication, and the availability of inexhaustible
bandwidth are conceptualized as essential milestones to revolutionize the modes by which societies gen-
erated, circulate, receive, and perceive information. The exponential increase in wireless data traffic has
raised concerns to investigate suitable bands in the radio spectrum to satisfy the intensifying user’s data
rate requirements. Overall the wireless infrastructure needs development and exploitation to synchronize
with the massive capacity and connectivity demands. The Terahertz (THz) frequency band (0.1-10 THz)
is considered as a pivotal solution to fulfill the needs of applications and devices requiring the high speed
transmission, and have received noticeable attention from the research community. Technologies in this
spectrum are facing rapid development and hold high potentials in applications like ultra-fast short-range
wireless communications, remote sensing, biological detection, and basic material research. The antenna
is one of the critical components to support the THz systems and require a considerable attention in terms
of precision. Compact high-gain antennas are desirable for low latency and high data rate THz wireless
communication systems, specifically for applications having space limitation, for example, in the high speed
interlink inside the high density wireless communication base station (BS). Nevertheless, there still exist
many challenges, while designing the antenna for THz communications requiring innovative solutions. This
paper serves an introductory guideline to address the challenges and opportunities, while designing a THz
enabled antenna.

INDEX TERMS THz antennas, material, antenna, large array THz, on chip antennas, mmWave, antenna
array, beamformer, THz beamformer, THz communication.

I. INTRODUCTION
Globally, augmented and virtual reality traffic will grow
nearly 12-fold from 22 petabytes per month in 2017,
to 254 petabytes per month in 2022 [1]. This transition per-
suades an exponential growth in the demand for high data
rates, requiring increased bandwidth, which is approaching
its maximum capacity limits. The use of multimedia services
is expeditiously gaining popularity in modern wireless com-
munication due to rapid progress in handheld smart termi-
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nals [2], [3]. The number of users of wireless networks is
dramatically increasing, and currently, 23 billion devices are
connected to the internet, and these numbers are expected
to increase to 75 billion by 2025 [4], [5]. Moreover, users
are consuming more digital information with mobile devices,
while comparing to a stationary personal computer connected
to a wired network. Nevertheless, the current communication
technology is not sufficient to meet the exploding data rate
requirements of an ultra-high bandwidth communication net-
work [6]. Such shortcomings have driven the urge to investi-
gate suitable regions in the radio spectrum to satisfy user’s
expediting demands. The future ultra-fast communication
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systems target terabits per second (Tbps) data rate. However,
the communication systems operating at and below 60 giga-
hertz (GHz) are unable to provide such communication links.
To this end, terahertz (THz) frequency band in the range
of 0.1-10 THz gained considerable attention in providing a
communication link of Tbps speed.

The IEEE 802.15 in 2008 established a THz interest group
to standardize the THz communication over the frequency
band ranging between 275-3000 GHz [7]. In 2014, the task
group 3d (TG3d) was formed to revise 802.15.3 metrics to
achieve 100 gigabits per second (Gbps) data rate. The THz
spectrum provides much larger bandwidth, i.e., 1 Tbps that
can satisfy the beyond 5G (B5G) requirements (providing
very high data rate, extremely low latency and ultra-high
reliability [8]), as compared to a millimeter-wave (mmWave)
system, which offers a 10 Gbps link [9]. The THz signal
propagation offers higher directionality and ensures higher
security from eavesdroppers [10]. Moreover, the THz fre-
quencies have some advantages over the optical frequencies
by supporting the non-line-of-sight (NLoS) communication.
The NLoS propagation over the THz band is beneficial even
under inappropriate weather conditions [11]. In addition to
this, the THz frequencies show a resistive behavior towards
the noise originating from optical sources [12].

Practical applications in THz domain include internet-of-
nano-things (IoNT), on-chip communication, remote sens-
ing, biological detection, software-defined meta-materials
(SDM), in/on-body networks, military defense applications,
information shower, THz local area network (T-LAN), THz
wireless personal area networks (T-WPAN), THz wireless
LAN (T-WLAN), and secure wireless communication. Even
with the rapid technological advancements in innovative
transceiver architectures, antennas, channel models, mate-
rials, medium access control (MAC), and physical layer
schemes, there still exist many research challenges that need
to be addressed to achieve Tbps data rate. Among these,
antenna designing and material selection (for THz-enabled
antennas) for THz communication are the least explored
areas. High precision in antennas is considered to be a critical
component of any communication system, whereas using
a suitable material to build up the same plays a key role
in achieving such high precision. This paper presents an
introductory guideline and state-of-the-art survey on antenna
designing and material selection for THz applications.

A. CONTRIBUTIONS OF THIS ARTICLE
This work aims to make the following contributions:

• To provide a detailed summary of the literature on fea-
tures and characteristics of THz frequency band.

• To survey the various applications of THz band.
• To discuss and compare the types and materials for THz
antennas.

• To discuss the design specifications of THz antennas and
summarizing the performance metrics.

• To highlight the fabrication and measurement tech-
niques of THz antennas.

• To provide open issues, challenges, and future research
directions for the THz antennas.

B. COMPARISON BETWEEN THz AND OTHER WIRELESS
TECHNOLOGIES
The traditional cellular communication enabling technolo-
gies, i.e. long term evolution (LTE), global system for mobile
communication (GSM), etc. provides a maximum data rate
of 100 megabits per second (Mbps) while incorporating
the high mobility scenarios. However, the IEEE 802.16e
(WiMAX) was deployed in some countries in integration
with the fourth generation (4G) of cellular communication
operating at 2.5-2.7 GHz with a peak data rate of 128 Mbps
[13]. The IEEE 802.11 (WiFi) operates on 2.4 GHz band
having a peak data rate exceeding 150 Mbps, whereas,
the IEEE 802.15 ZigBee operating on, 2.4 GHz, 868 MHz,
and 915 MHz bands, respectively, provides a peak data rate
of 250 kilobits per second (Kbps). Bluetooth 4.0, which is
also known as Bluetooth low energy (BLE), also operates at
2.4 GHz band and delivers a peak data rate of 1 Mbps. The
long-range wide area network (LoRaWAN) is operational on
868 MHz, 915 Mhz, and 1 GHz bands, providing a peak
data rate of 50 Kbps. Narrowband IoT (NB-IoT) utilizes a
frequency band ranging between 700-900 MHz and can be
integrated with LTE, supported by the 3rd generation part-
nership (3GPP) in Release 13. The peak data rate of NB-IoT
is 200 Kbps.

The free space attenuation and the molecular absorption
increases as you move towards a higher value in the fre-
quency spectrum. The frequencies lying in the THz band
are more prone to water vapor absorption, and while con-
sidering a NLoS scenario, the THz waves experience a high
reflection loss [14]. The scattering effect in the transmitted
waves becomes severe as you decrease their wavelength.
However, the frequencies above 10 GHz are more affected
by atmospheric losses, i.e. fog, rain, pollution, etc. The THz
can be used to achieve a drastic improvement in the data rate.
The THz band mainly corresponds to 100 GHz-10 THz with
the data rate varying from 10-160 Gbps and supporting a
transmission range of 10 meters [15]. The new transceiver
and physical layer designs for the THz band are required
to increase spectral efficiency and the data rate. Moreover,
a detailed approximate comparison of different technologies
is shown in Table 1.

C. COMPARISON OF THz COMMUNICATION SURVEY
ARTICLES
Mukherjee and Gupta [16] delineates the concept of THz
frequency generation techniques and highlights the suitable
materials for fabricating THz antennas. The paper outlined
the features of the THz band and quantum cascade tech-
niques. However, the article is published in 2008, which lacks
the significant literature related to the requirements of 5G
and B5G applications. The article emphasizes on frequency
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TABLE 1. Comparison between THz and other wireless technologies.

generation instead of antenna designing and material selec-
tion. Elayan et al. [17] presents an up-to-date analysis and
review on THz communication architectures. The survey was
published in the fourth quarter of 2019, which makes it the
most recent. The article covers the THz generation methods,
comparison between THz communication over other wireless
communication technologies, channel models, and applica-
tion of THz band.

Huq et al. [18] provides a brief survey on THz wireless
systems for 5G and B5G. The article is published in the
third quarter of 2019. The main focus of the paper is radio
access network designs over the THz spectrum. The article
outlined the real-life applications and layer-wise research
challenges in shaping B5G over the THz band. The paper
also presents an overview of standardizing activities for THz
wireless communication. Chen et al. [19] highlights the sub-
stantial hardware research development and challenges in the
context of THz high-speedmodulators, practical THz channel
models, transceiver designs, and efficient beamforming tech-
niques. Ranjan Jha and Singh [20] presents the research chal-
lenges imposed by atmospheric losses. The authors pointed
out high power sources, efficient detectors, and high gain
antennas as a remedy to the losses incurred by the atmo-
sphere. The research paper was published in 2013, and there-
fore did not include the literature for the current requirements
of wireless communication systems.

Akyildiz et al. [6] presented a survey on the THz com-
munication regime. The survey paper delves with the discus-
sion on the application domain of THz communication and
research challenges related to channel coding, modulation,
synchronization, network, transport, and MAC layers. The
survey paper was published in 2014. A review of suitable
materials for THz technology is presented in [21]. Huang
and Wang [22] described the generalized concept of THz
communication while discussing the prospective wave prop-
agation models, transmitters, pulse generators, mixers, and
oscillators. In [9], the authors defined a road-map for the
commissioning THz for wireless communication. The article
highlights potential solutions for prospective THz network
designs.

All the research work discussed above does not include
the discussion from the perspective of antenna designing
and material selection. This article provides the introductory

guideline for antenna designing with an emphasis on THz
spectrum, performance metrics for THz antennas, techniques
for fabrication and measurements, and practical used cases
of THz spectrum. Table 2 presents a comparison of this paper
with other state-of-the-art.

D. ORGANIZATION OF THIS ARTICLE
The rest of the paper is structured as follows; Section II high-
lights the features and characteristics of the THz band. After-
ward, Section III focuses on THz-enabled applications in the
context of the future wireless network paradigm. Moreover,
it summarizes the opportunities of THz-enabled antennas for
various scenarios. Section IV outlines the different types of
THz-enabled antennas from the literature. In addition, this
section also discusses some potential aspects of different
materials used to build a THz antenna. Section V discusses
the design parameters needed to construct a THz antenna. The
implementation of THz antennas in MIMO and array domain
is demonstrated using some examples. Different approaches
to measure the performance of a THz-enabled antenna are
discussed. Section VI points out some open issues, which
restricts the performance of a THz antenna. In the light of
these open issues, some key future research directions are
pointed out, which are expected to open up new opportunities
for the research community. Finally, in Section VII, we have
concluded our discussion. The organization of the paper is
illustrated in Fig. 1.

II. FEATURES AND CHARACTERISTICS OF TERAHERTZ
BAND
The THz band lies between the microwave and infrared
waves on the traditional radio spectrum, as shown in Fig. 2.
Laser andmicrowave-based communications are not replaced
by THz. However, the THz has some distinct characteris-
tics which enhance the superiority of THz over laser and
microwave. Above 275 GHz, the main part of the THz band
exists, also known as sub-millimeter (mm) radiations, and has
a frequency range between 0.275-10 THz with a wavelength
of 0.03 mm-3 mm. The band above 275 GHz has unique
characteristics as compared to other radio frequency bands.
The main features and characteristics of THz as listed by
International Telecommunication Union (ITU) recommenda-
tions [23] are as follows:
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TABLE 2. Survey papers discussing the THz communication.

FIGURE 1. Pictorial view of this article.

1) Penetration power of radio signal above 275 GHz for
dielectric materials and non-polar liquids is impressive.
Higher penetration power of THz makes it suitable for
scanning opaque objects, making it suitable for quality
control or safety inspection based applications. The
transmission loss of a THz wave in the smoke or dust
is very minute as the wavelength of the THz wave is
larger than that of a dust particle. Therefore, it can be
used for imaging in a smoky environment such as fire
rescue fields or deserts.

2) The attenuation loss of the radio signals above
275 GHz is severe, which can be used in various med-
ical fields for detection and diagnostics. The water
content in the tumor tissue is significantly different
from normal tissue cells, and THz can be used to

locate or detect cancerous cells by analyzing the data
related to the water contents of the tissues.

3) The photons energy of the THz waves is in milli-
electron volts (meV) and is significantly lower than the
energy in the chemical bonds. Therefore, the ionization
reaction cause due to THz waves is very less, that
makes it suitable for the detection of biological samples
and human body checkup. The THz is less likely to
penetrate the human body that makes it favorable for
skin disease detection as the water absorption effect is
significantly high for THz.

4) The THz waves contain abundant spectral informa-
tion, including chemical and physical information of
the materials. Organic molecules show strong absorp-
tion and dispersion properties in this band. Exploiting
these spectral properties, THz can be used for identi-
fying the characteristics, features, and the composition
for physical and chemical analysis of the materials.

5) The THz waves show better spatial resolution as com-
pared to the microwave band. The wavelengths in
the sub-mm wave band augment the resolution of the
images as compared to microwave imagining.

6) The high directivity of THz waves is because of a high
reflection and absorption loss over such high frequen-
cies, which restrict the communication to a directive
line-of-sight (LoS) scenario, as the NLoS condition
experiences spreading losses. These features make THz
waves promising for high-speed wireless links.

III. OPPORTUNITIES AND CHALLENGES FOR THz BAND
COMMUNICATION
The high usage of mobile devices like smartphones, digital
cameras, and high definition (HD) video cameras have expe-
dited the recent trends and pushed the data traffic expan-
sion around the globe. The steady progress in increasing
the data capacity, cannot fulfill the future demands to sup-
port these trends for both industry and end-users. Moreover,
the new industrial applications such as augmented/virtual
reality, tactile Internet, vehicular communication/network,
and the Internet of Everything (IoE) will cause amajor shift in
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FIGURE 2. Simplistic representation of Terahertz band and its applications in the radio spectrum.

FIGURE 3. Taxonomy of the THz applications.

key industrial applications. The requirements of these appli-
cations mainly include a high throughput, ultra-low latency,
ultra-reliability, and a massive level of connectivity. The THz
bands, specifically the bands above 275 GHz, are alluring a
huge concern because of wider spectral bandwidth. Typically,
the spectrum between 0.1-10 THz is considered as a scientific
breakthrough to support the requirement for 5G and B5G
network [24]. Hence it is essential to explore the possible
multimedia applications and extend the existing wireless
applications over the THz band. The THz-enabled applica-
tions are categorized into nano and macro-scale networks
that are sub-divided into indoor and outdoor applications due
to the difference in the coverage level and the environment.
In this section some of the applications are discussed to show
the sustainability of the THz band to meet the requirements
of existing and emerging applications. Fig. 3 depicts the
taxonomy of THz band applications. Moreover, the affects
on the designing parameters of an antenna for such nano and
macro scale applications is also discussed.

A. NANO SCALE APPLICATIONS
Nanotechnology comprises nano components that are
designed to perform simpler and specific tasks, such as
computation, storage, actuation, and sensing. The nano com-
ponents are integrated into a tiny device of a few cubic
meters, which leads to the development of more advance
nano-devices. The nano-devices are deployed in a cen-
tralized or distributed manner to achieve complex tasks.
These nano-devices enable unique and interesting applica-
tions in plant monitoring, bio-medical, health monitoring,
chemical, and biological attack prevention, military, nano-
sensor network, and system-on-chip wireless networks. The
communication range in nano-sensor network is in centime-
ters (cm) or below 1 meter. The main challenges in nano-
technology is to design transceiver, channel models, and
physical layer communication protocols. The THz spectrum
is the prospective enabling technology for communication in
the nano network. In molecular communication, the absence
and the presence of molecules are digitally encoded in
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messages to communicate. The applications of molecular
communication include health monitoring, disease detection,
and drug delivery. These applications are categorized into
indoor, outdoor, and in-body networks [25].

The detection of diseases and monitoring of glucose,
cholesterol, and blood pressure levels can be performed using
nano-scale sensors. The nano-sensors can be used to detect
infected tissues even before the infection is started by using
the THz communication. The gathered information can be
transmitted over the Internet for analysis. One of the main
challenges in nano-scale in/on-body networks is the antenna
designing on THz frequency. Efficient THz frequency usage,
medium access control (MAC) designing, channel propaga-
tion model, the interaction between nano-devices, efficient
communication protocol, and safety constrained are addi-
tional challenges. The indoor applications of THz include
IoNT, On-chip communication, and SDM.

The IoNT is a new mechanism that refers to the nano-
devices connected using the traditional Internet by means
of a communication stack. The IoNT devices are connected
using nano-antennas and nano-transceiver. The applications
of IoNT mostly lies in the field of healthcare and bio-
medicines [26]. The major challenge in THz based IoNT
is the nano transceiver designing [27] . As the number of
processing cores in the on-chip network increases, the wired
network faces a series of issues in performing routing with the
increased complexity. To address these issues, the use of the
on-chip network in wireless communication is under consid-
eration. On-chipwireless communication can only be enabled
with nano-scale transceivers, thus necessitate the THz band
to be used. Graphene-based THz electronics are the primary
enabler for massive multi-core wireless network-on-chip
(NoC) [28]. The SDM are artificial materials with special
structures and consist of nano-networks. Their properties can
be changed by programming via a computer interface and can
be controlled by a network of nano-machines, integrated into
the structures of meta-materials. The applications of SDM
are radiation absorption, efficient antennas for sensors, and
implantable communication devices [29].

The major application in the areas of nano-sensors uti-
lizing THz in outdoor locations are agricultural monitoring,
defense monitoring, and the biological attack prevention. The
plants have the ability to communicate with each other using
their biological system, which includes roots and pollination.
Nano-sensors at THz band can be used to better understand
andmonitor the communication to identify their requirements
and detect diseases. The characteristic of moisture sensitivity
of the THz frequency makes it favorable for monitoring and
data communication [30]. Nano-sensors operating at THz
band have the ability to work at the molecular level, which
makes them highly capable of detecting destructive biologi-
cal chemicals. In addition, due to the miniature-sized nano-
sensors, they can be deployed in a distributedmanner to detect
these threats at a rapid pace from the molecular level [31].
However, challenges exist while using THz band for nano-
sensors in defense and industrial applications, which includes

data acquisition, big data analysis at molecular level, highly
directive high gain nano-antennas, transmission range, and
channel propagation model.

B. MACRO SCALE APPLICATIONS
The applications of the THz band are categorized according
to their respective transmission range. The applications which
support transmission range higher than 1 meter are known as
macro scale applications. The transmission distance depends
upon the free space and absorption losses. These losses
open up new challenges for antenna characterization, which
includes transmission power and the size of the antenna. The
macro applications are further categories into indoor applica-
tions in which transmission ranges vary from 10-20meter and
outdoor applications that support transmission range between
few meters up to Km.

The indoor applications can have a peak data rate
of 100 Gbps and needs to uphold a sustainable molecular
and path loss. Outdoor applications suffer from reflection and
scattering phenomena due to path obstacles and absorption
losses. The indoor applications include information shower
and T-LAN. The small THz cell communication deployment
(few meters in radius) can be used for high data up to Tbps.
The access points (APs) associated with these small cell can
be deployed in an efficient manner to provide coverage in an
area with high humanmobility, i.e. subway stations, shopping
malls, building entrances, etc. Such a concept of deploying
APs is known as an information shower or data shower.
Information shower can provide the bulk of data to every
passing user. However, this requires redesigning of several
layer protocols to transfer the data in a minimum amount of
contact time [32]. The THz band can provide consistent com-
munication between fiber optics terminal point and wireless
routers to extend the wireless links for Ad-hoc devices, i.e.
laptops, cell phones, and wireless devices [33]. The users of
these devices can access high-speed Internet in Gbps or Tbps
using T-LAN [24].

The major applications in the area of macro-scale utiliz-
ing THz in outdoor locations are in radars, sensing, wireless
communication, etc. The impact of weather and light is
very minute on THz frequencies. These characteristics make
radars operating at THz frequencies very effective as com-
pared to light detection and ranging (LIDAR). The practical
applications of THz radar are driving assistance, flying in
foul, as well as in national and military security applications.
Radar operating at several hundreds of GHz can provide high
definition imaging quality as compared to radar operating at
lower frequencies, which provide longer range but low imag-
ing quality [34]. The small wavelength and wide bandwidth
of THz, enable high spatial resolution imaging. The THz
scattering exhibits specular and diffusing scattering from
most path obstacles surface. The strong specular from the
surface like an electrical mirror enables imaging around the
obstacles, while maintaining a high spatial resolution [35].

The THz frequencies can exploit the selective frequen-
cies from the environment to gain knowledge about the
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environment based on their signal propagation. Beam scan-
ning enables to create images of physical spaces through
systematic monitoring of received propagated signal from
different angles. Electrical beam steering in real-time and
small radio propagation distance enables to measure the prop-
erties of office, room, building, and complex structures in
less than a second. This ability is known as wireless reality
sensing, which opens up a new paradigm for wireless commu-
nication to create 3Dmaps on the fly and immediately upload
them on the cloud servers [36]. Few of the used cases of THz
communication comprises of antenna miniaturization, high
directivity [6], ultra-wide frequency bandwidth, manufactur-
ing power amplifiers, oscillators, and beam steering antennas,
etc. THz directional links can be used to provide ultra high-
speed wireless backhaul communication to the small cells
in 5G [6]. The high directive antennas using THz band with
large arrays results in very narrow, almost razor-shape beams,
which drastically limit successful eavesdropping.

C. IMPLICATIONS ON ANTENNA DESIGNING
There is a wide range of opportunities available in THz-
enabled communication, in nano as well macro scale appli-
cations. From an antenna designing perspective for such
applications, it imposes certain implications and challenges
to achieve such performance. The most important challenge
is first to grasp a complete understanding of the physics
of such structures and the issues related to the fabrications
and achieving high throughput, needs to be tackled in an
effective manner. To the best of our knowledge, there are
two important aspects, which make the design requirements
of metallic nano-antennas distinctive from the well-known
RF/microwave antennas, and are as follows:

• Firstly, the perfect electrical conductors (PEC) based
assumption in designing a RF-enabled antenna, losses
its validity at THz frequencies, as the Ohmic losses
substantially increases with an increase in the frequency
range [37].

• Secondly, at the nanoscale region the dielectric and
metallic interfaces can sustain surface plasmon polari-
tons (SPP) waves [37], which practically void the
RF/microwave antennas based assumptions on the man-
ufacturing of THz antennas.

Hence, the designing of nano-antennas is drastically differ-
ent in comparison to RF/microwave regime. Moreover, for
such nanoscale antennas, the antenna theory requires new
theoretical, analytical and modelling tools, which accounts
the deviation from RF/microwave range to nano-antennas.
Furthermore, some efforts have been reported in the litera-
ture to study such deviations of RF antennas to their nano
counterparts [38].

IV. CATEGORIZING THz ANTENNAS AND MATERIAL
SUITABILITY
This section discusses different types of THz antennas and
provides a comprehensive study of materials suitable for
developing such type of antennas.

A. THz ANTENNA TYPES
The very first link over 120 GHz was established by a planar
dipole and a slot-ring antenna integrated with a photo-diode
and Schottky-barrier diode for the transmitter [40], [41] and
a receiver [42], respectively. A short coverage range up to
1 meter is supported by providing a peak data rate of 10 Gbps.
Hirata et al. [43] proposed a Gaussian-optic lens antenna
to enhance the coverage range. The antenna has a diameter
of 375 mm, where a detector-diode and photo-diode are
assembled into hollow waveguides to exploit a horn antenna
as a feeder. Hirata et al. [44] extended the coverage range
up to 200 meters by using a 450 mm diameter Cassegrain
antenna for outdoor trials. The peak data rate achieved in
real-time video broadcast transmission is 10 Gbps. A pair
of the dielectric lens of 50 mm diameter and a horn antenna
operating at 300 GHz is used to demonstrate a transmission
over the range of 2 meters [45]. Nagatsuma and Carpintero
[46] achieved a gain of 48 dBi with a lens having a diameter
of 100 mm and is able to cover an area of 20 meters. Wave-
guides with slot array antenna, operating at 120 and 300 GHz
resonance frequency is explored to achieve a high gain while
reducing the overall antenna size [47]. Tekkouk et al. [48]
proposed a slotted array antenna having a resonance fre-
quency of 300 GHz with a hollow waveguide fabrication, and
such array antennas with slotted aperture are quiet beneficial
for near-field communication.

A taper slot structure of polymeric substrate for ultra-
broadband antennas with a low dielectric constant is demon-
strated over 120 and 300 GHz frequencies, respectively [49].
An increase in 3 dB gain is achieved in this study by
exploiting 8 elements array antenna. A reflector antenna over
300GHz band for real-time transmissionwith a coverage area
of 100 meters and 50 Gbps data rate is demonstrated in [50].
The gain of a planar antenna is effectively increased by using
a bow-tie antenna integrated with resonant tunneling diodes
(RTDs) on Indium Phosphide (InP) substrate and Silicone
(Si) lens [51]. The non-metallic antenna over 300 GHz band
with photonic crystal slabs on Si substrate is investigated
in [52]. A peak data rate of 10 Gbps is achieved by using
a rod (operating at 100 GHz) as a unit cell, while 40 ele-
ments antenna array is shown to have an overall antenna
gain of 20 dBi [53]. Fuscaldo et al. in [54] proposed a
leaky-wave based Fabry-Perot cavity antenna, operating at
1 THz, and showed that the antenna is able to achieve a gain
of 30 dB.

An ultra-wide circular microstrip patch antenna on Si
wafer is presented in [55]. The authors presented the results
of the Graphene microstrip antenna over the frequencies
of 504 GHz, 2 THz, and 3.5 THz, with an antenna effi-
ciency of -3.4 dB at 2 THz is observed. Luo et al. in [56]
investigated a reconfigurable multi-beam Yagi-Uda antenna
over THz frequency. Grzyb et al. in [57] presented a dual
polarization-based on-chip antenna. The authors tested the
on-chip antenna design up to 1 THz, and directivity of 27 dB
over 1 THz is verified. Wu et al. in [58] proposed a circular
polarized (CP) lens antenna. A linear polarized pyramidal
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TABLE 3. THz antenna designs [39].

TABLE 4. A comparison of material suitability for THz-enabled antennas.

horn is used to feed the CP lens antenna. The proposed
antenna operates over 300 GHz. A gain of 31 dBi at 300 GHz
is measured. A linear scaling methodology to scale-up the
microstrip patch and slot GHz antenna to THz antenna is
devised in [59]. The novel scaling methodology is justified
analytically for a rectangular patch antenna as well as for a
wide-band slot antenna. The proposed technique scaled up a
5 GHz antenna to a 4.9-5.9 THz antenna. Table 3 summarizes
some of the existing works in THz-enabled antennas and their
design methodologies.

B. MATERIAL SUITABILITY
The selection of a suitable material having minimum prop-
agation losses is yet another challenging task in designing
an efficient antenna. The properties of Copper makes it a
favorable choice for antenna fabrication. At THz frequency
range, the skin depth and conductivity of the Copper metal
decreases and hence reduce the radiation efficiency of the
antenna elements [60]. At lower THz frequency range, e.g.
at 6.45 THz resonance frequency, the ohmic-resistance plays
a dominant role in contributing to the surface impedance
of Copper, and hence making it a difficult task to design
such antennas using Copper material. Although the Copper is
considered as an appropriate material in designing antennas
operating at lower RF bands, yet it imposes considerable
disadvantages in developing THz-enabled antennas. To over-
come such constraints, the research community has explored
other elements. Literature shows that the use of Carbon, i.e.
Graphene and Carbon nanotubes (CNT) are the best alterna-
tive of the Copper for the fabrication of THz antennas [60].

The Graphene was first discovered by Novoselov et al.
in 2004 by using a micro-mechanical technology [61]. The
atoms in the Graphene structure are arranged in the shape of
honeycomb hexagonal lattice, having an interplanar spacing
of 0.335 nm [61]. The electrical conductivity of Graphene
is very high. These rare properties of Graphene make it
highly suitable for the development of THz-enabled antennas.
One of the key phenomena of Graphene is the generation of
plasmon polariton wave at the THz frequency [62]. Using an
infinite thin conductive sheet, the Graphene can be modeled
to operate at THz frequency bands having complex surface
conductivity, and this complex surface conductivity can be
found using Kubo formula [63]. Moreover, with the help of
chemical doping or electrostatic biasing, the surface conduc-
tivity of Graphene can be controlled, and hence one can easily
tune the properties of THz-enabled antennas.

Similar to Graphene, the CNT also shows favorable cir-
cumstances for the THz frequency band. They are formed
using the rolling of Graphene sheets and have different prop-
erties and structure, which varies from single to multi-walled
CNT structures. At THz frequency band, the inverse relation
between the quantum resistance and the radius of wire (con-
ductive part) vanishes and is much smaller, while comparing
to a Copper wire of the same size [64]. The CNT uses
the π-bond of Carbon atoms to perform conduction, which
significantly reduces the skin-effect at THz frequencies to
such an extent that the skin-effect can be ignored as well [65].
This phenomenon leads to an increase in antenna efficiency
by minimizing power dissipation. In comparison to Copper,
the CNT supports low wave propagation modes, which helps
in miniaturization of the antennas [66]. A brief comparison
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between the material suitable for THz-enabled antennas, i.e.
Copper, Graphene, and CNT is provided in Table 4.

V. THz ANTENNAS: DESIGNING, MEASURING AND
PERFORMANCE EVALUATION
This section of the paper mainly focuses on the design param-
eters and performance evaluation of THz-enabled anten-
nas and encompasses the comparison of various techniques
available in literature used to improve the performance of
the radiating elements. Some measurement techniques are
discussed to verify the performance and suitability of such
devices. Moreover, the key differences between MIMO and
array antenna is explained using detailed examples. In the
last of this section, some key design challenges and existing
technologies of phased array for THz multi-antenna systems
is discussed.

A. BASIC THz ANTENNA DESIGN
The electromagnetic radiations produced by any antenna fol-
lows the regulations set by James Clerk Maxwell [67], [68].
According to his famous equations, the changing electric field
caused by the acceleration of charged particles will give rise
to changing magnetic fields, and this combined effect would
generate electromagnetic field radiations. These four sets of
vector-differential equations are as follows

∇ · E =
ρ

ε0
, (1)

∇ · B = 0, (2)

∇ × E = −
∂B
∂t
, (3)

∇ ×H = µ0

(
J + ε0

∂E
∂t

)
. (4)

The Eq.1 defines the Gauss law. In Eq.1, ∇ · E is the
divergence of the electric field, ρ represents the total charge
density, and ε0 is the electric constant. Eq.2, explains the
Gauss law of magnetism, where ∇ · B is the divergence of
magnetic field. Eq.3 represents Faraday’s law of induction,
where ∇ × E shows the curl of electric field. The Eq.4
shows the mathematical formulation of Ampére’s circuital
law. In Eq.4,µ0 is themagnetic constant and J is themagnetic
current density. In any antenna simulation andmanufacturing,
the most critical designing parameter is the resonance length.
A simple antenna being fed using a frequency source having
a resonance length L, which can be calculated using the
following expression

L =
λ

2
=

c
f ×√eff

, (5)

where λ is the wavelength of electromagnetic waves, c is
the speed of light, f is the operating frequency of the dipole
antenna, and√eff is the dielectric constant, and for free space,
it is 1. A plethora of work is available in the literature, which
discusses the basic designing parameters of THz antennas
[16], [69], [70]. The antennas in the starting generations
of THz systems were designed inside the semiconductor

devices by using InP or Gallium Arsenide (GaAs) [71]. The
controlling of input impedance and the radiation pattern in
these semiconductors are considered to be a tedious task,
as they possess a high dielectric constant having εr ≈ 12.
To overcome the issues of high dielectric constant, the lens
antenna was proposed [72]. For instance, in [73], a metallic
lens-based antenna operating at 412.5 GHz is proposed. The
design is feed using a horn, and ten symmetrical waveguides
are further employed to adjust the phase in radiation plane
[73]. The horn antenna is considered as a suitable choice for
feeding such structure. Similarly, in [74], a folded reflector
array antenna (FRA) have been proposed for THz-based
wireless applications. Although the lens antenna provides
an alternative way to overcome the problems related to the
controlling of input impedance, it reduces the efficiency of
the device and results in a subsequent increase in the size [72].

To overcome antenna efficiency problems, new approaches
have been proposed, which include the stacking of different
substrate layers having different dielectric properties. The
stacking approach enhances the upward radiation. A THz-
enabled antenna is proposed in [75], and shows that an effi-
cient power coupling between the antenna and source, results
in a considerable improvement in the performance of the
antenna. Moreover, the layering concept is used in [76] to
build up a simple printed Yagi-Uda antenna, which uses two
different substrates, i.e. InP (high εr ) and benzocyclobutene
(BCB) (low εr ) to place the conducting part.

B. FABRICATION AND MEASUREMENT TECHNIQUES
The antenna operating at THz frequencies imposes a ver-
satile set of challenges. Although the THz-enabled anten-
nas provide very high improvements in the performance of
a system, yet the fabrication and measurement restrict the
antenna engineering. These challenges have been actively
addressed in the literature using a series of experimental trials
[77]–[79]. Mostly the design techniques employed for lower
frequencies are applicable for THz as well, but the process of
fabrication completely changes the scenarios, and new novel
ideas are needed to achieve such goals. In [80], two different
approaches have been discussed to overcome the fabrication
difficulties and to develop a low cross-polarization and high
gain horn antenna. Moreover, the accuracy and the precision
of the fabrication process can be effectively increased by
using Si-based micromachining process. In [81], the similar
Si-based micromachining process is used to develop a 2 ×
2 array, operational at 1.9 THz. A similar way of micro-
machining has been utilized in the development of micro-
lens antenna [82]. Again, in [80], the fabrication process for
the leaky-waveguide has been discussed, which contains air-
cavity, waveguide, and membrane. Graphical illustration of
this antenna can be seen in Fig. 4.

Testing the performance of the fabricated antenna at THz
frequency is yet another challenging task, but with the
advancement in technology, sufficient amount of research
work is available. The antenna functioning at THz band can
easily be tested in reception instead of transmission, such
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FIGURE 4. Photographs of the antennas presented in (a) [81] (a 2 × 2
array, operational at 1.9 THz),(b) [82] (micro-lens antenna) and (c) [80] (a
leaky-waveguide THz antenna).

that the coupling between the few coherent sources and the
feed-points stays at the bear minimum. A simplistic graphical
representation of THz-enabled antenna measurement setup
is presented in [83], and can be seen in Fig. 5. In order
to perform the performance evaluation of micromachined
based waveguided circuits, tuned at 500-750 GHz operating
frequency, a novel measurement setup has been constructed
in [84]. The setup in [84], uses a novel micromechanical
compression pin to adjust the wafer alignment. In [85], two
hologram-based antenna test ranges centered at 322 GHz and
650 GHz are constructed and used to test a THz antenna.
Graphical illustration of a typical measurement setup can be
seen in Fig. 6 [83].

C. MIMO CONFIGURATIONS AND THz ANTENNA ARRAYS
The MIMO is considered an effective solution to overcome
the capacity constrain in a wireless communication system.
The merger THz with the MIMO technology can simplify the
things further by providing practical ways to address the ever-
increasing capacity demands [86]. On the other hand, an array
of antennas (mostly described as a phased array), is a group
of 2 or more than 2 antenna elements feeds using a single
frequency source. The key idea behind them is to combine the
signals from each antenna to enhance the overall performance
of the system.

Exploring the literature for MIMO THz antenna configu-
ration, a sufficient amount of work is available to understand
and validate the concept. In [87], the properties of Graphene-
based nano patch antennas are manipulated to develop a
novel reconfigurable MIMO antenna suitable for THz based
wireless communication. Moreover, the authors in [87], show
the improvement in capacity by employing the MIMO con-
figuration, while selecting the best channel state. In [88],
the THz band is explored in the context of high bandwidth

FIGURE 5. A graphical representation of the THz antenna measurement
setup [83].

coverage and providing higher data rates. The issues of low
power and short communication in the THz domain are
addressed and have been rectified by employing massive
MIMO antennas [88]. A 2×2MIMO antenna being separated
using pattern diversity, ensuring a coupling level suitable for
MIMO applications, tuned at THz band, is proposed in [89].
The proposed configuration uses the Graphene patch, which
provides flexibility in tuning the antenna parameters.

In the context of array THz antennas, adequate work have
been proposed in the literature by the research community.
In [90], microstrip patch-based antenna array, optimized
at THz frequency band is used to study the performance of
a THz based source and detector system. This is done by
employing quantum well-infrared photodetector and a quan-
tum cascade laser. To overcome the challenge endured while
achieving wide-bandwidth at THz frequency band, a 2 × 2
slot antenna array, backed by a cavity, is proposed in [91].
The authors use the approach of the unidirectional antenna
and achieved cardiac radiation pattern by the integration of
parallel-resonant magnetic dipole with a series-resonant elec-
tric dipole. Moreover, in [92], the liquid crystalline polymer
substrates are used to design simple microstrip patch antenna
array, operational at THz band. The proposed configuration is
suitable for medical and implant applications, which includes
cancer detection using THz spectroscopy and sign detection
using doppler radars, etc. Some of the reported designs can
be seen from Fig. 7.

D. DESIGN CHALLENGES FOR PHASED ARRAY
THz-ANTENNAS
The phased arrays antenna technology, in the RF band is
well explored and is mature enough to perform beam steering
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FIGURE 6. An illustration of the measurement setups for THz antennas
proposed in (a) [84] and (b) [85].

in the desired applications. However, in THz based applica-
tions, requiring the functionality of phased array, endure high
losses, due to the presence of semiconductor based switches
[93]. To overcome such losses the researchers have proposed
mechanism of shifting the phase before the frequency being
converted to THz. This technique requires the development
of spatial phase modulators, constructed using liquid crys-
tals and graphene [94]. Moreover, some of the techniques
being used in microwave and mm-Wave based phased array
technologies are still applicable in THz range as well, which
includes lens antennas, multibeam switching mechanism,
mechanical scanning, pattern reconfigurable antennas, etc.
The use of reconfigurable metasurface technology is yet
another promising solution to overcome the losses endured
due to beam steering functionality of phase array [95].

VI. FUTURE RESEARCH DIRECTIONS
It is envisioned that THz will revolutionize the wireless
communication industry, however, considerable attention is
needed on each component of THz based wireless com-
munication system. For instance, the antennas operating on
the THz band need exploration. Although sufficient research

FIGURE 7. MIMO configurations and array antennas presented in (a) [92]
(microstrip patch antenna array, operational at THz band),(b) [87]
(reconfigurable MIMO antenna suitable for THz) and (c) [91] (2 × 2 slot
antenna array).

work is available, yet it contains, following gaps that pave
the way for new research challenges. To best of the our
knowledge, some of the future research tracks and open issues
have been listed below (see Fig. 8).

A. THz SIGNAL GENERATION
One of the main research challenges in THz communication
is the signal generation for THz-enabled antennas. This issue
is generally referred to as ’THz gap’. In general, the regular
oscillators available in the market are not efficient enough to
work at such high frequencies. Despite these hurdles, there is
some work available in the literature to deal with such issues
[96]. At the moment, these solutions are quite expensive
and require a lot of research efforts in terms of cost and
complexity reduction.

B. THz TRANSCEIVER DESIGN
To overcome high path loss, experience by THz waves,
additional features such as high power, low noise, and high
sensitivity are required, while designing THz transceivers.
The THz band offers high diversity and directivity gain due to
the ability to host a large number of antenna elements in a rel-
atively smaller aperture area. Novel and efficient transceivers
and RF front end architectures are required to handle such an
antenna gain [97].

C. THz ANTENNA EQUILIBRIUM TEMPERATURE
The overheating is another critical issue faced by THz anten-
nas. The miniature size of THz antennas raises ambiguity
regarding the levels of energy radiated from them, with-
out facing overheating. One of the solutions available in
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FIGURE 8. An overview of future research directions.

the literature [98], is to utilize metallic antennas supporting
power levels for the lower THz band. The higher THz fre-
quencies require new research paradigms to solve the new
challenges both from academia as well industry.

D. HIGH DIRECTIVITY BEAM ALIGNMENT
The received power at the receiver is directly proportional
to the transmission power of the transmitter and inversely
proportional to the path loss [99]. The power at the receiver
increases with the transmission power and decreases with
an increase in path loss, and vice versa. The path loss
increases as the frequency become higher and decrease the
transmit power, which results in decreased received power.
The antenna gain is inversely proportional to the antenna
beam width. Thus, the THz antennas need to have a narrow
beam width [100]. However, the drawback of the directional
antenna is that the position of the receiver should be known,
which is possible in a static communication scenario. This
gives rise to the issue of beam alignment. Moreover, this
alignment time can increase exponentially in a densely popu-
lated area, which eventually reduces the overall throughput of
the system [101]. Therefore, mobility management is essen-
tial to avoid outages in THz communication.

E. 3-D BEAMFORMING
The abrupt increase in population in urban areas are pro-
jected to grow exponentially by 2050 [102]. With increasing
population density, the number of connected devices in the

cellular network is also bound to increase [103]. However,
advancement is still challenging for urban areas due to het-
erogeneous users and traffic. This scenario becomes more
challenging for THz band due to sensitivity for blockage and
3-D beam patterns [104]. Newmathematical models and tools
are needed to analyze and realize the benefits of 3-D beam-
forming in such a heterogeneous environment. The use of
reconfigurable metasurface technology is one of the promis-
ing solution to overcome such beam pattern issues [95].

F. CHANNEL ESTIMATION FOR THz COMMUNICATION
The primary source of error in channel state information
(CSI) is the channel coherence interval, which limits the
number of orthogonal training sequences that can be used and
can lead to severe pilot contamination. One of the interesting
aspects of THz frequencies is the LoS propagation that would
mitigate the pilot contamination effect [105]. A direction-of-
arrival (DOA) based estimation for the LoS scenario in THz
propagationwith narrow beamwidths could allow a fast chan-
nel estimation. However, the DOA-based estimation needs to
calibrate a large array and adds to the complexity of DOA
estimation.

G. FABRICATION AND TESTING
Fabrication and testing of THz antennas is yet another chal-
lenge and needs exploration. The cost associated with the fab-
rication of THz antennas is immense, as it requires very high
precision. The work in [106], proposes a batch processing
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mechanism, which reduces the cost and time of THz antenna
fabrication. Although, based on our discussion in the previous
section, the research community is putting their efforts to
resolve this issue, but still, a lot is to been done.

H. MASSIVE MIMO ANTENNA ARRAYS
The THz band allows miniature antennas, which offers the
integration of a large number of antenna arrays for cover-
age enhancement. However, such massive MIMO structures
require efficient antennas with low RF cross talk and mutual
coupling, having a capability of sharing transceiver resources
and choosing the carrier frequency of their choice [107].

I. MUTUAL COUPLING
A high antenna gain is required to overcome the path loss
experienced at THz frequency range [108]. To enable anten-
nas with such high gain, large antenna arrays are required
[109]. Although a large antenna array structure can be manu-
factured using printed antennas, yet it arises some significant
issues, such as mutual coupling [110]. A significant amount
of research work is available in the literature regarding the
reduction of mutual coupling [111], [112], but in the THz
domain, it requires considerable attention.

J. MOLECULAR ABSORPTION
The molecular absorption (coexistence of natural resonance
frequency of many atmospheric molecules in THz band)
at THz frequency range is a significant issue, which reduces
the achievable data rates by impairing the communication,
despite the presence of huge bandwidth [113]–[115]. Some
of the work in literature put emphasis on this issue [116],
while considering a wireless communication scenario, still,
it needs a plethora of research. For instance in [117], [118],
the researchers proposed a solution based on exploiting the
perceived knowledge of atmospheric window, which can
largely mitigate the atmospheric losses. In our opinion the
reinforcement learning based algorithms can also play an
important role in exploiting the knowledge of atmospheric
window in an effective manner.

VII. CONCLUSION
In this paper, we have surveyed characteristics, features,
and applications of the THz antennas. A brief overview of
the THz communication has been covered up. The necessity
of enabling the THz band and its applications in the future
wireless communication have been discussed. A detailed
comparison of different types of THz antennas available in
literature is provided, along with that some discussion on the
selection of material for the THz antennas is presented. The
basic designing parameters of a THz antenna are explained
using some examples, and their manufacturing and fabrica-
tion process is discussed in detail. Moreover, the difference
between array and MIMO THz antennas is well explained.
In the end, we have pointed out some open research issues,
which open up new horizons for the researches.
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