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ABSTRACT Spatial sampling, finite bandwidth, and overlying-strata shielding are three key issues to
affect the spatial resolution of seismic imaging for deep targets. Some factors have a great impact on
the horizontal resolution, whereas others influence the vertical resolution. How to quantify these effects
remains controversial for complex media. Most previous studies on seismic acquisition geometries focus
on the horizontal resolution for layered media but neglecting to measure the vertical resolution especially in
complex media. Conventional criteria for vertical resolution are based on the theory of geometric seismology
with the assumption of a simple medium. As a practical alternative for resolution estimation in complex
media, numerical methods with wavefield extrapolation for focal-beam analysis can provide comprehensive
insight into the combined effect of acquisition geometries, bandlimited frequencies, and complex media
on the horizontal and vertical spatial resolutions of acquisition geometries. We incorporate some classic
criteria into the focal-beam numerical analysis to measure the spatial resolutions. Four parameters are used
to quantify the performance of acquisition geometries. The horizontal (vertical) resolution is defined as the
main-lobe width of a focal beam along the horizontal (vertical) direction, whereas the square root of the
peak-to-total ratio of energies is referred to as the horizontal (vertical) sharpness. These parameters describe
the horizontal and vertical spatial resolution and sharpness to image the target. Numerical examples with
typical acquisition geometries demonstrate the performance of numerical resolution analyses in complex
media.

INDEX TERMS Seismic imaging, spatial resolutions, spatial sampling, acquisition geometry.

I. INTRODUCTION
Spatial sampling characterization of seismic acquisition
geometries is a rapidly growing area of research because of
its impact on seismic imaging. Prior resolution analyses of
an acquisition geometry to predict the quality of acquired
datasets can optimize the design of acquisition parameters
before the implementation of seismic acquisition. However,
there are still controversies about how to measure the effect
of spatial sampling (e.g., sparse and un-uniform) on the
performance of seismic imaging in complex media. Most
previous studies on seismic acquisition geometries focus on
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the horizontal resolution in layered media [1]–[4]. Classic
criteria for temporal vertical resolution [5] are modified from
geometrical optics with the assumption of a simple medium.
In practice, spatial sampling, finite bandwidth, and overlying-
strata shielding have a significant influence on both the hori-
zontal and vertical spatial resolutions of seismic imaging for
deep targets. In this paper, numerical methods with wave-
field extrapolation for focal-beam analysis are modified to
investigate the combined effect of acquisition geometries,
band-limited frequencies, and complex media on both the
horizontal and vertical resolutions.

Quantification of the vertical resolution of acquisition
geometries and associated influences have not yet been clar-
ified especially in complex media. Traditional studies on the
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vertical resolution are mainly based on the minimum layer
thickness that can be distinguished on seismic data composed
of seismic waves vertically reflected by subsurface reflectors.
The widely used methods for temporal vertical resolution are
based on the Rayleigh, Ricker, and Widess criteria [6], [7].
These classic criteria have been extensively studied relevant
to the limit of vertical and lateral resolutions [8]–[11], discuss
the horizontal resolution limit [12]–[15] of migrated images
in a homogeneous medium based on a Rayleigh-like zero-
crossing criterion. Lee et al. [16] apply the classic criteria
to resolution analyses for marine seismic acquisition. These
classic criteria, however, only consider the case of a simple
homogeneous or layered medium, leading to the analytical
expression for normal-incidence responses.

Current industry techniques for seismic survey design
do not directly target the imaging of complex structures.
We need an effective tool to quantitatively measure image
resolutions for seismic survey design in complex media. The
imaging-driven design of seismic surveys must invoke the
extrapolation of surface acquisition geometries to deep tar-
gets with complex geologic models. Ray-based techniques
have been proposed for this purpose with imaging resolution
analyses to evaluate the performance of acquisition geome-
tries. Based on the Born approximation to scattered acoustic
waves, Gibson and Tzimeas [17] extend the Beylkin’s equa-
tion [2] to reconstruct the scattering image of a target point
for the resolution analysis of a given geometry. The mapping
are done by simple ray-tracing for the traveltimes and ampli-
tudes from the source to target point and back to receivers.
Gelius et al. [18] analyze the imaging resolution function of
Born and Kirchhoff scattering models for the distorted and
blurred effects because of a limited aperture and bandlimited
signals. Lecomte [19] employs the ray-based approach to
calculate the point-spread function (PSF) of point scatterers
to identify the effect of various factors on the resolution of
prestack depth migrations (PSDM). Despite finite accura-
cies without considering the frequency dependence and other
wave phenomena, these approximation methods provide a
simple yet effective tool to predict the spatial resolution of
acquisition geometries for seismic imaging.

Wavefield extrapolation methods have been widely used
for resolution analyses of both acquisition and imaging sys-
tems, which can be classified into two categories. For the first,
the wave-equation extrapolation of wavefields from sources
and receivers to subsurface targets establishes directional
energy fluxes by a local plane-wave analysis at a target [20].
The resulting local energy matrices can be used to quantify
the target illumination conditions. The local incident and scat-
tered plane waves at the target for both sources and receivers
can be used to calculate the PSF of point scatters [21], which
can also be formulated based on the local angle domain
decomposition of Green’s functions [22]. The scattering PSF
or local illumination matrices, however, only enable reso-
lution/illumination analyses, rather than directly calculating
the horizontal and vertical resolutions of seismic imaging.
In addition, the wavefield extrapolation for both sources

and receivers is computationally intensive, especially for 3D
cases. The second category of wave-equation-based resolu-
tion analyses results from the focal beam theory [23], which
can assess the spatial sampling for sources and receivers
separately. In this paper, wemodify the focal-beam resolution
analysis to circumvent the problems involved with the first
category.

Focal-beam analysis [24] can provide quantitative insight
into the combined influence of acquisition geometries and
subsurface structures on the resolution. The theory of
focal-beam analysis in a homogeneous medium [25] has
been extended to complex media [26] with a fast multi-
frequency focal-beam analysis [27] used to investigate the
effect of acquisition geometries on the horizontal resolu-
tion in complex 3D media [28]. Recent researches extend
the focal-beam analysis to account for surface waves [29]
and surface/internal multiples [30], [31]. Most the studies
of focal-beam analysis address the horizontal resolution of
acquisition geometries for seismic imaging. Although some
simple examples of focal-beam analysis on the vertical res-
olution are presented [25], [26], quantitative studies on this
issue are neglected as a whole, especially in complex media.

Following the studies on the horizontal resolution of acqui-
sition geometries [28], [32], we incorporate classic reso-
lution criteria into the multifrequency focal-beam method
with an attempt to measure both the horizontal and verti-
cal resolutions of acquisition geometries for seismic imag-
ing in complex media. Unlike the aforementioned conven-
tional wavefield extrapolation from sources (forward) and
receivers (backward) to subsurface targets, we modify the
focal beaming of wavefields by a more efficient way, that
is, we mainly concern the upward continuation of wavefields
from a deep target to the surface, significantly reducing the
computational cost of high-density andwide-aperture seismic
acquisitions. We formulate the spatial resolution function
of multifrequency focal beams in complex 3D media. Four
critical parameters calculated by the focal-beam analysis
are used to quantify the horizontal and vertical resolutions
(HR and VR) and their corresponding sharpness (HS and VS)
in the depth domain for a given acquisition geometry. Based
on the classic resolution criteria, the HR is defined as the
horizontal main-lobe width determined at the 35%-amplitude
points [33] of a focal-beam horizontal profile, with its HS
as the square root of the ratio of the peak energy to the
total energy of the horizontal profile. Similarly, the VR is
measured as the distance between two inflection points deter-
mined by the second derivative of a focal-beam vertical pro-
file. The corresponding VS is computed as the square root of
the ratio of the peak energy to the total energy of the vertical
profile.

We validate the proposed focal-beam resolution analy-
sis by analytical methods for a simple medium. With sev-
eral velocity models (including the 3D SEG/EAGE salt
model), we investigate the effect of coverage deficiencies,
detector-line lengths, and overlying high-velocity anomalies
on the resolution of acquisition geometries. Case studies with
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3D seismic data from an oil field in China demonstrate the
utility of the proposed survey design tool. Prior HR, VR,
HS, and VS analyses of an acquisition geometry will help
to improve the design of acquisition parameters for seismic
imaging.

II. HORIZONTAL AND VERTICAL SPATIAL-RESOLUTION
MATRICES OF FOCAL BEAMS
The focal-beam analysis originates from seismic migration
by the double focusing concept [1], [23], which can be
explained by the WRW model [34]. For primary reflections,
each frequency component P(z0, z0) of wavefields for pairing
detectors and sources of a stationary acquisition geometry at
the surface can be depicted as:

P (z0, z0)=D (z0)

[
M∑
m=1

W (z0, zm)R (zm, zm)
∗W (zm, z0)

]
S (z0) , (1)

where, z0 is the surface depth, and zm is the depth of the mth

reflection layer (1 ≤ m ≤ M ) with M being the number
of reflection layers. D (z0) and S (z0) represent the detector
and source matrices, respectively. W (z0, zm) is a one-way
propagator, which depicts upward wave propagation from
depth zm to z0.R (zm, zm) is the reflectivity matrix at depth zm,
W (zm, z0) is a one-way propagator, which depicts downward
wave propagation from depth z0 to zm, and ∗ denotes matrix
multiplications.

In the matrices above, each column and row indicate a
lateral location of detectors and sources, respectively. The
lateral coordinates (x, y) and the frequency ω are ignored for
convenience. Only considering the reflection from a depth
level zm, equation (1) can be simplified as follows:

P (z0, z0) = D (z0)W (z0, zm)R (zm, zm)W (zm, z0)S (z0) .

(2)

If the reflectivity is angle-independent, the total reflectivity
matrix R (zm, zm) is a diagonal matrix as a sum of individual
reflectivity matrices at gridpoints as follows:

R (zm, zm) =
∑
k

δkR (zm, zm), (3)

where, k indicates the lateral location (xk , yk ).δkR (zm, zm) is
the angle-independent reflectivity matrix including only one
nonzero element at the gridpoint (xk , yk , zm). It can be written
as a matrix multiplication of a column vector and a row vector
as follows:

δkR (zm, zm) = ik (zm, zm) i
†
k (zm, zm) , (4)

where ik is a unit column vector that includes only one
nonzero element at the gridpoint (xk , yk , zm) and the dagger
symbol (†) denotes a row vector. According to the superpo-
sition principle of waves, P (z0, z0) can also be depicted as a
sum of all gridpoint responses, as follows:

P (z0, z0) =
∑
k

δkP (z0, z0), (5)

where δkP (z0, z0) represents the seismic response of the
gridpoint (xk , yk , zm) with the detectors and sources at the
surface, which can be written as,

δkP (z0, z0) = D (z0)W (z0, zm) δkR (zm, zm)

∗W (zm, z0)S (z0) . (6)

To evaluate the reflectivity at the target depth zm, we need
to extrapolate the gridpoint response δkP (z0, z0) to the target
depth zm. This process is equivalent to prestack depth migra-
tion, which can be achieved by applying additional focusing
operators F (zm, z0) and F (z0, zm) at both detector and source
sides:

δkP (zm, zm) = [F (zm, z0)D (z0)W (z0, zm)]δkR (zm, zm)

∗ [W (zm, z0)S (z0)F (z0, zm)]

= dk (zm, zm) s
†
k (zm, zm) , (7)

where δkP (zm, zm) represents the double-focusing matrix.
dk (zm, zm) and s†k (zm, zm) represent the focal-detector (a
column vector) and focal-source (a row vector) beams for
the gridpoint at (xk , yk , zm), respectively. These beams can be
defined as follows:

dk (zm, zm) = F (zm, z0)D (z0)W (z0, zm) ik (zm, zm)

= F (zm, z0)D (z0)wk (z0, zm) , (8)

and

s†k (zm, zm) = i†k (zm, zm)W (zm, z0)S (z0)F (z0, zm)

= w†
k (zm, z0)S (z0)F (z0, zm) , (9)

wherewk (z0, zm) andw
†
k (zm, z0)mean one-way propagation

from a target point at the gridpoint (xk , yk , zm) to detectors
and sources, respectively.
In the double-focusingmatrix δkP (zm, zm), all the diagonal

elements generate the resolution function δkp (zm, zm), which
can be calculated by an element-by-element multiplication of
the focal-detector and the focal-source beams, as follows:

δkp (zm, zm) = dk (zm, zm)⊗ s†k (zm, zm) , (10)

where⊗ denotes element-by-element multiplications. Ideally
by making use of the perfect focusing operators F (zm, z0)
and F (z0, zm), the wavefield energy can converge to the
target point at the location

(
xk , yk , zm

)
, i.e., δkp (zm, zm) =

ik (zm, zm), which means the evaluated reflectivity equals to
the real reflectivity after migration.
By applying the focusing operators F (zn, z0) and F (z0, zn)

to a different level of focused depths zn(zn 6= zm) in (8)
and (9), the resolution function can be expressed as:

δkp (zn, zn) = dk (zn, zm)⊗ s†k (zm, zn) , (11)

where dk (zn, zm) and s†k (zm, zn) represent the focal-detector
and focal-source beams, respectively, from the target point(
xk , yk , zm

)
to the focused depth level zn. They can be written

as,

dk (zn, zm) = F (zn, z0)D (z0)wk (z0, zm) , (12)
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and

s†k (zm, zn) = w†
k (zm, z0)S (z0)F (z0, zn) . (13)

Ideally, δkp (zn, zm) = o (zn, zm) is a zero column vector,
which means no wavefield energy leaks into the non-target
depth levels in migration. Combining the resolution vectors
at all the depths (z1, z2, . . . , zm, . . . , zN ) (z1 < zm < zN ),
we obtain a 3D spatial resolution matrix,

δkB (zm) =
[
δkp (z1, z1) , δkp (z2, z2) , . . . ,
δkp (zm, zm) , . . . , δkp (zN , zN )

]T
, (14)

where the superscript T represents the matrix transposition.
In the matrix δkB (zm), the column and row correspond to the
depth zn and horizontal position k(x, y), respectively. It indi-
cates that δkB (zm) is a function of the 3D spatial coordinates
x, y, and z. It contains both the horizontal and vertical spatial-
resolution functions. The ideal 3D spatial-resolution matrix
can be expressed as follows,

δkB (zm)=
[
o (z1, z1) , o (z2, z2) , . . . ,
ik (zm, zm) , . . . , o (zN , zN )

]T
=Ik (zm) , (15)

where Ik (zm) contains only one nonzero element at(
xk , yk , zm

)
. However, because actual acquisition geometries

do not always satisfy the perfect focusing, δkB (zm) 6=
Ik (zm). This offers an opportunity to evaluate the imaging
performance of acquisition geometries using (14). By taking
y ≡ yk or x ≡ xk , δkB (zm) is reduced to its submatri-
ces, δxB (zm) or δyB (zm), which represent a vertical slice at
y ≡ ym or x ≡ xm of the full 3D spatial-resolution matrix.
In addition, δkB (zm) can be extended to the non-stationary
configuration of acquisition geometries by summing over all
the templates,

δkB (zm) =
∑
l

δkB[l] (zm), (16)

where superscript l is the template index. Note that only
the focal beam of primary waves is discussed above with
multiple reflections being ignored. To consider the effect of
multiple reflections on the spatial resolution, the primary-
wavefield focal beam can be extended to a full-wavefield
focal beam that can include multiple waves in the manner of
iterative modeling [30]. The full-wavefield focal beam can
be used to analyze the nonlinear effect of complex media
(e.g., high-velocity anomalies) on the horizontal and vertical
resolutions, which will be discussed in the example section.
We then propose an alternative implementation for focal-

beam analyses. We mainly consider the upward extrapolation
of wavefields from the points around the target to the surface,
significantly improving the computation efficiency especially
for wide-aperture and high-density acquisition geometries.
By ignoring the nonlinear factors, e.g., the effect of multiple
reflections, the focusing operator F can be approximated as
F = W−1 ≈ WH, where the superscript H represents
the complex conjugate operation. Based on the reciprocity

FIGURE 1. Schematic of resolution matrix computation. Wavefields are
extrapolated from the target at (xk , yk , zm) (solid line) and its adjacent
grid points at (xk , yk , zn) (dash lines), through heterogeneous media
v (x, y, z), to the surface sources and detectors at z0, yielding the
focal-source and focal-detector beams, respectively. The resolution matrix
of acquisition geometry at the target can be estimated by multiplying the
focal-source and focal-detector beams.

theorem [35], the focal-source beam obtained by (13) can be
represented as,

s†k (zm, zn) = w†
k (zm, z0)S (z0)F (z0, zn)

= [F (zn, z0)S (z0)wk (z0, zm)]T

≈

[
[W(z0, zn)]H S (z0)wk (z0, zm)

]T
. (17)

Combining (17) and (12), the focal-detector and focal-source
beams can be written as,

dk (zn, zn) ≈ [W(z0, zn)]H D (z0)wk (z0, zm) , (18)

and

s†k (zm, zn) ≈
[
[W(z0, zn)]H S (z0)wk (z0, zm)

]T
. (19)

Combining (11), (14), (18), and (19) yields a new imple-
mentation for the resolution matrix δkB (zm). Because we
only use the upward extrapolation (forward) instead of using
both the upward and downward extrapolations, the resulting
computational cost depends mainly on the number of zn and
k(x, y), rather than numerous parameters of an acquisition
geometry, (especially, the inline and crossline rolling num-
bers). Therefore, the focal-beam implementation described
by (18) and (19) can be expected to be more efficient
for wide-aperture and high-density acquisitions than the
conventional focal-beam implementation that involves both
upward and downward extrapolations in complex media [26].
As shown in Figure 1, to estimate the horizontal and vertical
resolutions at the target, we set some gridpoints around the
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target, which are used as the sources for upward extrapo-
lation of wavefields. Therefore, the number of these grid-
points and associated modeling operations mainly affect
the computational cost of implementing (14). Note that
the primary-wavefield focal beam is considered during the
implementation.

To reduce the computational cost further, we calculate
the submatrix of δkB (zm) only, i.e., the δxB (zm) (y ≡ ym)
or δyB (zm) (x ≡ xm) to obtain a vertical slice in the full
3D spatial-resolution matrix. Computation of the resolution
matrix δxB (zm) consists of the following steps (see Figure 1),
(1) Select a target point at (xk , yk , zm) located at depth zm.
(2) Simulate forward propagation from the target point

to the surface located at depth z0 to obtain the wavefield
wk (z0, zm) and apply the acquisition geometry to select traces
corresponding to source and receiver matrices D (z0) and
S (z0).

(3) Define a 3D mesh around the target point. Note that
there are some conditions on choosing the mesh range and
spacing in every direction to ensure the accuracy of continued
quantitative analysis of resolutions and sharpness, which will
be discussed in the next sections.

(4) Simulate individually forward propagation from each
point in the 3D mesh to the surface located at depth z0
to obtain the propagator W(z0, zn) and apply the acquisi-
tion geometry to select traces corresponding to source and
receiver matrices D (z0) and S (z0).
(5) Calculate the focal-detector beams by multiplying the

wavefield emitted from the target point and the conjugates of
the wavefields emitted from the grids around the target point
according to (18).

(6) Calculate the focal-source beams by multiplying the
wavefield emitted from the target point and the conjugates
of the wavefields emitted from the mesh points around the
target point according to (19).

(7) Substitute the focal-source and focal-detector beams
into (11) and (14) to obtain the resolution function.

(8) Repeat steps (1) to (7) to obtain the resolution functions
for different frequencies, and sum all the frequency compo-
nents to obtain the multifrequency result.

(9) Sum beams for each template rolling to obtain the result
of the non-stationary geometry.

In our focal-beam analysis, the wavefield extrapolation is
implemented from the deepest layer to the shallow. The com-
putational cost required for the multifrequency focal-beam
analysis described above depends heavily on the method
used for wavefield extrapolation. To achieve an accept-
able trade-off between numerical accuracies and computa-
tional costs for given computer resources, we extrapolate
wavefields through a thick slab by a degenerate Fourier oper-
ator [36], [37] and then interpolate wavefields for individ-
ual small layers inside the thick slab by a Born-Kirchhoff
interpolation operator [38], [39]. The Fourier extrapolation
technique with thick-slab extrapolation plus thin-slab inter-
polation can significantly enhance the efficiency of 3D mul-
tifrequency focal-beam analyses in complex media. We can

improve the accuracy of focal-beam analyses by reducing the
depth-step size for wavefield extrapolation and computing
more single-frequency beams for interpolation but at the cost
of computational efficiency.

III. COMBINATION OF FOCAL BEAMS AND CLASSIC
CRITERIA FOR RESOLUTION ANALYSES
A. HORIZONTAL/VERTICAL RESOLUTION AND
SHARPNESS
We first take an example to demonstrate the resolution analy-
sis in homogeneous and heterogeneous media, respectively.
The velocity of the homogeneous model is 4 km/s. The
heterogeneous model has a dimension of 3 km (x)× 3 km (y)
× 3 km (z) at a grid interval of 10 m, with vmin = 3.8 km/s
and vmax = 5.15 km/s. The velocity gradients with respect to
x-, y-, and z-axis are 2 s−1, 1.5 s−1, and 1 s−1, respectively.
The acquisition geometry includes one source and 11 detector
lines with a 200 m spacing and each line containing 11 detec-
tors with a 200 m interval. The focal-beam analysis for the
target point at (1 km, 1 km, 1 km) is computed using a zero-
phase Ricker wavelet with a peak frequency of 25 Hz. The
bandwidth ranges from 1Hz to 75Hzwith an interval of 1 Hz.

In an ideal case, the resulting resolution function converges
to a point at the target location, as shown in Figure 2a.
However, in practice, as shown in Figure 2b, the resolu-
tion function of focal beams always has a wider distribu-
tion with obvious sidelobe noises even in a homogeneous
medium because of bandlimited frequencies, finite recording
apertures, and discrete spatial samplings. For heterogeneous
media, the effect of lateral velocity variations on focal beams
further reduces the peak-to-total ratio by increasing sidelobe
noises (see Figure 2c).

FIGURE 2. Comparison of resolution functions (a) for the ideal case,
(b) in a homogeneous medium with a constant velocity of 4 km/s, and
(c) in a heterogeneous model with varying velocities.

From the viewpoint of focused array theory of Kirchhoff
summation, Safar [33] illustrates that two-point diffrac-
tors are resolved for the width of array responses at the
35%-amplitude points. Schoenberger [8] defines the ver-
tical resolution by the peak-to-sidelobe ratio between the
central-peak and sidelobe amplitudes. Koefoed [9] demon-
strates that the seismic vertical resolution is influenced by
three factors: the central-lobe width, the sidelobe ratio or
peak-to-trough ratio, and the amplitude of side-tail oscilla-
tion. Kallweit and Wood [10] define the vertical temporal
resolution in that two wavelets can be resolved when their
spacing is greater than or equal to the separation between the
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FIGURE 3. The horizontal (a) and vertical (b) profiles (solid line) extracted
from Figure 2b along the horizontal (at z = 1 km) and vertical
(at x = 1 km) directions, respectively. The derivative (dotted line) of the
vertical profile helps to determine two vertical inflection points. The
resolution parameters (HR and VR) and sharpness parameters
(HS and VS) can be calculated from these profiles in the spatial domain.

wavelet’s inflection points (referring to the Ricker limit [6]).
The inflection points can be determined by the second deriva-
tive of the wavelet function. Based on the same physical
implication, these traditional formulas can also be applied
to describe the horizontal and vertical spatial resolutions of
acquisition geometries.

Figure 3 shows the horizontal and vertical profiles
(solid line) extracted from Figure 2b along the horizontal
(at z = 1 km) and vertical (at x = 1 km) directions,
respectively. Based on these profiles, we demonstrate how to
calculate the two resolution parameters (HR and VR) and two
sharpness parameters (HS and VS) in the spatial domain. The
HR is defined as the horizontal main-lobe width, as marked
by a thick solid line in Figure 3a and determined at the
35%-amplitude points [33] from the maximum amplitude.
Similar toWidess [40], the HS can be calculated as the square
root of the ratio of the peak energy to the total energy of
the horizontal profile. Similarly, the VR is measured as the
distance between two vertical inflection points, as marked
by a thick solid line in Figure 3b. The vertical inflection
points are determined by taking the second derivative (dotted
line in the figure) of vertical profile to be zero. The VS is
computed as the square root of the ratio of the peak energy to
the total energy of the vertical profile. These characteristic
parameters quantify the horizontal and vertical resolutions
and their sharpness of an acquisition geometry for seismic
imaging at the target.

For clarity, we rewrite the resolution function δkB (zm) as
b (x, y, z). The horizontal resolution is defined as

HR = |xi1 − xi2| , (20)

where i1 6= i2. The amplitude of b(xi1, yk , zm) and
b(xi2, yk , zm) equals to 35 percent of the maximum amplitude
b(xk , yk , zm) in the resolution function at the target point, i.e.,
b (xi1, yk , zm) = b(xi2, yk , zm) = 0.35 ∗ b(xk , yk , zm). The
vertical resolution is defined by

VR =
∣∣zj1 − zj2∣∣ , (21)

where j1 6= j2. The second derivative of b(xk , yk , zj1) and

b(xk , yk , zj2) equal to zero, i.e., ∂
2b(xk ,yk ,zj1)

∂z2
=

∂2b(xk ,yk ,zj2)
∂z2

=

0. Note that the values of HR and VR may change with

x- and z-directional mesh spacings around the target. For
more accurate estimation of HR and VR, the z-directional
spacing should be less than half the wavelength, whereas the
x-directional spacing should be less than or equal to the bin
size.

The sharpness is generally defined as the peak-to-total
ratio of a resolution function. It is inversely proportional to
migration noises and has a significant impact on the signal-
to-noise ratio [40] of an acquisition geometry for seismic
imaging at the target. The sharpness of the spatial resolution
function b (x, y, z) is obtained by

S =

√√√√√ [b(xk , yk , zm)]2∑
x,y,z

[b(x, y, z)]2
. (22)

The vertical sharpness (VS) can be obtained from a vertical
slice (b(x, yk , z)) in the full 3D spatial resolution matrix by

VS =

√√√√√ [b(xk , yk , zm)]2∑
x,z

[b(x, yk , z)]2
. (23)

Similarly, the horizontal sharpness (HS) can be obtained from
a horizontal slice (b(x, y, zk )) by

HS =

√√√√√ [b(xk , yk , zm)]2∑
x,y

[b(x, y, zk )]2
. (24)

Note that the HS and VS values may also change with
x- and z-directional meshing spacing and range around the
target. For the computational stability of HS and VS val-
ues, the meshing spacing should meet the needs of HR and
VR calculation as previously mentioned, and the meshing
range around the target should be large enough to ensure the
wavefield amplitude reduced enough toward the border, less
than 0.1% of the maximum amplitude.

B. BENCHMARK MODEL FOR VALIDATION
Comparisons of focal-beam analyses and classic resolution
criteria are conducted for benchmark tests in a homogeneous
medium. The homogeneous medium has a velocity of 3 km/s,
with the target depth being 5 km. The horizontal and vertical
sampling rates around the target area are 10 m and 2 m,
respectively. The acquisition geometry includes 51 source-
and detector-lines with a 20m line interval. Each line contains
51 sources and detectors with a 20m spacing. The focal-beam
analysis is computed using a zero-phase Ricker wavelet with
a peak frequency of 45 Hz. The geometry template is not
rolled during the process of acquisition.

With the benchmark model, we compute resolution
functions for various peak frequencies. The HR and VR as
functions of frequency are extracted by the 35%-amplitude
criterion [33] and the 1/e-amplitude criterion [28], respec-
tively. The results are shown in Figure 4, compared with the
analytical HR estimates [13] and the analytical VR estimates
by the Ricker criterion [10]. We see that the focal-beam
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FIGURE 4. Comparison of the focal-beam numerical method and
analytical estimations for horizontal (a) and vertical (b) resolutions
versus frequency.

numerical results agree well with the analytical estimates
for all the frequencies. As is expected, both the HR and
VR increase with increasing frequencies. The focal-beamHR
by the 1/e-amplitude criterion shows some minor departures
from the analytical estimate because of 1/e ≈ 0.368 a little
larger than 0.35, overestimating the horizontal resolution of
acquisition geometries. The focusing process can be regarded
as an alternative way of migration [23] with a wavelet stretch
applied and affecting the imaging resolution [4]. The ana-
lytical estimation by classic resolution criteria ignores the
influence of migration process. In this simple example with
a homogeneous medium, there is less wavelet stretch in focal
beams, leading to consistent resolution estimates with classic
criteria.

IV. IMPACT OF KEY ACQUISITION FACTORS
A. DETECTOR-LINE LENGTHS
Focal-beam analyses are conducted for acquisition geome-
tries with different detector-line lengths. These templates
consist of 21 detector lines and 5 source lines both with a
50 m line spacing and a 50 m detector (source) interval, but
having different detector-line lengths from 2 km, 3 km,. . . ,
to 7 km. The target is at depth of 5 km below the center of the
spread. The focal-beam analysis for a 25 Hz Ricker wavelet is
computed in a homogeneousmediumwith a constant velocity
of 3.5 km/s. The horizontal and vertical sampling rates of
resolution function are 10 m and 1 m, respectively. The
resulting resolution functions with the detector-line length
2 km, 5 km, and 7 km are shown in Figure 5.

FIGURE 5. The resolution functions with the detector-line length 2 km (a),
5 km (b), and 7 km (c) for a peak frequency of 25 Hz with other
acquisition parameters unchanged.

The resolution functions for all the detector-line lengths
are computed and used to extract the HR, HS, VR, and VS,
as shown in Figure 6 versus detector-line lengths. We see

FIGURE 6. The horizontal/vertical resolutions (a) and sharpness (b)
versus detector-line lengths, estimated by the focal-beam analysis in a
homogeneous medium for a peak frequency of 25 Hz with other
acquisition parameters unchanged.

that the HR and HS significantly enhance with increasing
detector-line lengths, but the VR and VS remain almost
unchanged. The vertical resolution is essentially affected by
the maximum wavenumber along the vertical direction [41].
Different detector-line lengths contribute varying horizontal
wavenumbers and hence influence the horizontal resolution
rather than the vertical resolution.

B. HIGH-VELOCITY ANOMALIES
Overlying high-velocity anomalies generally impact on the
performance of surface acquisition geometries for imag-
ing a deep target. For example, high-velocity salts often
reduce the resolution beneath the salt structure [17]. How-
ever, the decreased resolution can be improved by increasing
detector-line lengths as demonstrated in the previous section.
This section uses focal-beam analyses to quantify the effect
of high-velocity anomalies on the horizontal and vertical
resolution properties of acquisition geometries.

As used in classic resolution analyses [10], [13], a simple
2.5D wedge model with gradual changes in thickness is used
to demonstrate the difference between the focal-beam and
classic resolution analyses. As shown in Figure 7 for the
x/z-section, the 2.5D model containing a wedge has a dimen-
sion of 6 km (x) × 1.5 km (z) with the wedge ranging
from 2 km to 6 km in the x-axis direction and from 0.5 km
to 1 km in the z-axis direction. Velocities are 3 km/s in

FIGURE 7. The x/z-section of a 2.5D wedge velocity model with the target
points (white points) at (x = 2 km, 2.2 km, 2.4 km, . . . , 4 km,
z = 0.55 km). Velocities are 3 km/s in the background and 4 km/s in the
wedge, respectively. The focal-beam analysis for the target points is
conducted using a Ricker wavelet of 25 Hz (peak frequency) with a
bandwidth of 5 to 75 Hz.
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FIGURE 8. The resolution functions (left panel), target-crossing horizontal
(middle panel) and vertical (right panel) profiles for the first four and last
two target points at (x = 2 km, 2.2 km, 2.4 km, 2.6 km, 3.8 km, 4 km, z =
0.55 km).

the background and 4 km/s in the wedge, respectively. The
full-wavefield focal-beam analyses for the target points at
(x = 2 km, 2.2 km, 2.4 km, . . . , 4 km, z = 0.55 km) are
conducted using a Ricker wavelet of 25 Hz (peak frequency)
with a bandwidth of 5 to 75 Hz. The 3D acquisition geometry
consists of 61 detector lines with 3 km in length and 50 m
for both line spacing and detector interval. There is a source
located at the center of the spread. The spatial sampling rate
is 10 m consistent with the model grid interval.

Strong lateral variations in velocity presented in the wedge
model significantly change both the horizontal and verti-
cal wavenumbers across the array of target points, which
affects the horizontal and vertical resolution properties of
acquisition geometries. The resulting focal beams and their
target-crossing horizontal and vertical profiles are shown
in Figure 8 for the first four and last two target points at
(x = 2 km, 2.2 km, 2.4 km, 2.6 km, 3.8 km, 4 km, z =
0.55 km). We see that the shapes of both profiles with asso-
ciated properties vary gradually from the first target point to
the last. The strong nonlinear effect of complex waves occurs
around the pinch-out of the wedge, including scattered waves
by the external point and multiples by the top and bottom
of the wedge. The thin-bed interference reduces gradually

toward the right, particularly after the distinguishable thick-
ness in the wedge model. Noted that the complex waves,
as well as the thin-bed interference, obviously affect the
extraction of HR, HS, VR, and VS.

The extracted HR, HS, VR, and VS for the target points
are shown in Figure 9 versus their x-coordinates. These res-
olution curves are not quite smooth because of the interfer-
ence by complex waves aforementioned. As expected from
the lateral variations in velocity, both the horizontal/vertical
resolution and sharpness have dramatic changes across the
wedge. Lateral variations in both wedge thickness and veloc-
ity affect the horizontal/vertical wavenumbers of acquisi-
tion geometries. The resultant horizontal/vertical resolution
properties shown in Figure 9 can be categorized into three
situations in terms of the location of target points. (1) The
target points with x < 2.4 km are located in the background
medium and have rather high horizontal/vertical resolutions
with few effects by complex waves. (2) The target points
near the bottom interface (2.4 km) of the wedge have the
strongest effect of complex waves and characterize abnor-
mal horizontal/vertical resolutions. (3) The target points with
x > 2.4 km are located in the high-velocity wedge and
have rather low horizontal/vertical resolutions. For ease of
comparison, the classic vertical resolution analysis is per-
formed by a 25 Hz (peak frequency) and zero-phase Ricker
wavelet, with the result marked by the black squares shown in
Figure 9a.

FIGURE 9. The horizontal/vertical resolutions (a) and sharpness
(b) across the array of target points shown in Figure 8, estimated by the
focal-beam analysis for a peak frequency of 25 Hz. The black squares
represent the classical vertical resolutions.

C. COVERAGE DEFICIENCIES
Practical constraints to the implementation of acquisition
geometries often cause coverage deficiencies because of
obstacles such as lakes, rivers, and buildings. These cover-
age deficiencies, also referred as coverage holes, definitely
destroy the quality of acquired data. Evaluation of data degra-
dation has been extensively studied in terms of amplitude
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losses and time shifts in the final migrated image compared
to a reference model with full coverage [31], [42], [43].
In this paper, we address this issue by focal-beam resolution
analyses.

As shown in Figure 10, the model with a dimension of 3
km (x) × 3 km (z) m contains several coverage holes with
the size set as 0 km, 0.8 km, and 1.6 km, respectively. The
acquisition geometry contains 31 source- and detector-lines
with a 100m line spacing, and each line containing 31 sources
and detectors at a 100 m interval. The resolution function
of acquisition geometries is computed for a homogeneous
medium with a velocity of 4 km/s. The target point is located
at (2 km, 1.5 km). A 25 Hz Ricker wavelet is used with a
bandwidth ranging from 1 Hz to 75 Hz at an interval of 1 Hz.
The geometry template is not rolled during the process of
acquisition. The horizontal and vertical sampling rates are
10 m and 5 m, respectively. A coverage hole around the
center of the spread is created by removing all the sources
and detectors inside the square area.

FIGURE 10. The model with a dimension of 3 km (x) × 3 km (z) and the
target point at (2 km, 1.5 km) (marked by an asterisk) contains a coverage
hole with the size set as 0 km, 0.8 km, and 1.6 km, respectively. The
deficient coverage is created by removing all the sources and detectors
within the hole.

As shown in Figure 11, the resolution functions with dif-
ferent hole sizes are calculated for the target point at (2 km,
1.5 km). As expected sensibly, the focusing effect becomes
worse with increasing hole sizes. Both the horizontal/vertical
resolution properties are affected by the deficient coverage
of acquisition geometries. The main-lobe energy diverges
gradually, associated with strong sidelobe perturbations that
destroy the sharpness of acquisition geometries. We notice
that the deficient coverage impacts the horizontal resolution

FIGURE 11. The resolution functions for the deficient coverages of 0 km,
0.8 km, and 1.6 km. The focal-beam analysis for the target point is
conducted using a Ricker wavelet of 25 Hz (peak frequency) with a
bandwidth of 5 to 75 Hz.

and sharpness significantly more than the vertical resolu-
tion and sharpness because of few effects on the vertical
wavenumber.

V. EXAMPLES
A. 3D SEG/EAGE SALT MODEL
We apply the focal-beam resolution analysis to the 3D
SEG/EAGE salt model [44] as shown in Figure 12a. We set
two different target points (see Figure 12b) located above and
under the salt, respectively. The velocity model contains a
complex subsalt structures with strong velocity contrasts and
is often used as a good benchmark to test various imaging
algorithms. We discretize the model by a grid interval of
10 m for both lateral and vertical directions. The acquisition
geometry shown in Figure 12c contains 23 detector lines at
200 m spacing. Each line with 4.7 km in length contains
48 detectors at 100 m interval. The geometry template with
two sources at 100 m interval is not rolled during the process
of acquisition.

FIGURE 12. (a) The 3D SEG/EAGE salt model with a dimension of 4.75 km
(x) × 4.5 km (y) × 2.09 km (z) at 10 m grid intervals for all directions,
(b) Its 2D xz-section with two target points (red circle) at (2 km, 2.3 km,
0.6 km) and (2 km, 2.3 km, 1.3km), and (c) The acquisition template
consisting of 23 detector lines at 200 m spacing and with each 4.7 km in
length and containing 48 detectors (indicated by the cross +). Two
sources with a 100 m interval are marked by an asterisk.

The focal-beam analysis is conducted using a Ricker
wavelet of 25 Hz (peak frequency) with a bandwidth of 5 to
75 Hz. The spatial sampling rate is 10 m consistent with the
grid interval of the model. The resulting resolution functions
are shown in Figure 13 with the extracted resolution proper-
ties printed in the figure. As expected, the resolution function
for the subsalt target becomes divergent seriously because of
the distortion of subsalt wavefields, significantly impairing
both the horizontal/vertical resolution and sharpness of acqui-
sition geometries.

FIGURE 13. The resolution functions for the oversalt (a) and subsalt
(b) targets with the extracted resolution properties marked in the figure.
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B. CASE STUDY
In this section, we demonstrate an example of focal beam
analysis applied to different acquisition geometries for an
oilfield in China. As is shown in Figure 14, two orthogonal
acquisition templates are exampled as Schemes I and II.
Both of them contain 16 detector lines with 100 m spacing
between lines and 4 km in length and three sources with
100 m source intervals. The detector intervals of Scheme I are
50 m, while Scheme II is a simplified version derived from
Scheme I, with 100-m detector spacing. And the full folds
(160) are same for the two acquisition geometries, where each
geometry template is rolled during the acquisition three times
transversely with each time crossline-rolling distance of 400
m, and 20 times longitudinally with an inline-rolling distance
of 100 m.

FIGURE 14. Two land survey acquisition templates of Scheme I
(top panel) and II (lower panel). Both of them consist of 16 detector lines
with 100 m spacing between lines and 4 km in length and 3 sources with
100 m source intervals. The intervals of detectors are 50 m and 100 m,
respectively. The cross indicates detectors and the square represents
sources.

We apply focal beam analysis to both schemes for a domi-
nant frequency of 20 Hz with a frequency range of 10-35 Hz.
The velocity model (see Figure 15), with a dimension
of 12.5 km (x) × 5 km (y) × 5.2 km (z), contains several
layers and some complex subsurface structures with veloci-
ties ranging from 5.2 km/s in the bottom layer to 2.1 km/s in
the top layer. The model grid intervals are 10 m for vertical
direction and 25 m for both lateral directions. The target point
is located at the (3.125 km, 1.25 km, 2.3 km). We calculated
separately every single frequency from 10 to 35 Hz with a
spacing of 5 Hz and then added each focal beam to get the
final result.

We apply the focal beam analysis to a homogeneous
medium with the geometries schemes. The resulting VRs
for both cases are 9.4 m, but with slightly different VSs
of 23.0% (see Figure 16a) and 23.4% (see Figure 16b),
respectively. In the heterogeneous medium, the resulting
focal beams become disperse with larger VRs than that in the
homogeneous medium. The estimated VRs for both cases are

FIGURE 15. The 3D velocity model of an oilfield in China. The velocity
model with a dimension of 12.5 km (x) × 5 km (y) × 5.2 km (z), contains
some complex subsurface structures with velocity range from 5.2 km/s in
the bottom layer to 2.1 km/s in the top layer. The model grid intervals are
10 m for vertical direction and 25 m for both lateral directions. The target
point is located at the (3.125 km, 1.25 km, 2.3 km).

FIGURE 16. Focal beams of Scheme I (left) and Scheme II (right) for a
homogeneous medium (top panel) and the velocity model (lower panel)
shown in Figure 15 with the target point at (3.125 km, 1.25 km, 2.3 km).

24.4 m, with slightly different VSs of 12.3% (see Figure 16c)
and 13.4% (see Figure 16d). For complex media, the effect
of velocity variations will increase the VR and decrease
the VS of acquisition geometry. The same VR values of
two Schemes means similar vertical resolution for migration
imaging in heterogeneous media. However, Scheme I with
denser detectors has a lager value of VS than Scheme II,
indicating more clarity in seismic imaging.

From the original real data which was gathered by imple-
mented a 3D densely sampled seismic acquisition in an oil-
field of China, we arrange seismic data according to Scheme I
and II, respectively. And the seismic data is processed with
the same parameters and procedure. The migration images
for both Schemes at inline 830 are shown in Figure 17, and
‘‘zoomed in’’ sections from selected zones are also shown.
We can see from the Figures that the two migration imaging
sections are almost the same, but the profile of Scheme I
has clearer continuous reflections and details, especially the
small units like the faults and pinch-out, than the profile
of Scheme II. In other words, Scheme I produces a higher
S/N ratio with more clarity in imaging. And these seismic
migration imaging comparisons agree with the previous focal
beam analysis for Scheme I and II.
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FIGURE 17. The seismic migration imaging profiles at inline 830 for
Scheme I (a) and II (b) and their enlarged sections for Scheme I
(c) and II (d).

VI. DISCUSSION AND CONCLUSION
The main purpose of our paper is to develop a method
to quantify the imaging performance of acquisition geome-
tries in complex media by combining the characteristics of
conventional resolution criteria with the focal-beam anal-
ysis. The focal-beam results agree well with those by the
classic-criterion estimation for a given acquisition geometry
in a homogeneous medium with different peak frequencies.
This method can also be extended to a full-wavefield resolu-
tion analysis to evaluate the nonlinear effects of the vertical
and horizontal resolutions produced by complex media, e.g.,
high-velocity anomalies.

The effects of coverage holes and detector-line lengths on
the imaging quality are assessed. With the increasing cover-
age hole sizes, the vertical resolution and sharpness computed
by using vertical 3D resolution matrix slice slightly reduces,
while the horizontal resolution and sharpness computed
by only using resolution function profile along horizontal
direction are significantly enhanced. The vertical resolution
remains essentially unchanged when only the primaries are
considered, whereas the horizontal resolution and sharpness
reduce with increasing side lengths of high-velocity
anomalies.

We apply the focal-beam method to a revised 3D
SEG/EAGE salt model for a given acquisition geometry with

two different target points and obtain different horizontal
and vertical resolutions and sharpness. The combined effects
of complex subsurface structures, velocity variations, and
target depths impair the resolutions and sharpness of acquisi-
tion geometry. The prior analyses of acquisition geometries
described by the resolutions and sharpness of focal beams
can be helpful to indicate the performance of acquisition
geometries for seismic imaging.
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