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ABSTRACT Density Peaks Clustering (DPC) is a density-based clustering algorithm that has the advantage
of not requiring clustering parameters and detecting non-spherical clusters. The density peaks algorithm
obtains the actual cluster center by inputting the cutoff distance and manually selecting the cluster center.
Thus, the clustering center point is not selected on the basis of considering the whole data set. This paper
proposes a method called G-KNN-DPC to calculate the cutoff distance based on the Gini coefficient and
K-nearest neighbor. G-KNN-DPC first finds the optimal cutoff distance with Gini coefficient, and then the
center point with the K-nearest neighbor. The automatic clustering center method can not only avoid the error
that a cluster detects two center points but also effectively solve the traditional DPC algorithm defect that
cannot handle complex data sets. Compared with DPC, Fuzzy C-Means, K-means, KDPC and DBSCAN,
the proposed algorithm creates better clusters on different data sets.

INDEX TERMS Density peaks clustering, adaptive algorithm, K-nearest neighbor, Gini coefficient.

I. INTRODUCTION

Big data has been rapidly and widely used in the fields of
physics, biological engineering, life medicine etc [1]. Explor-
ing massive amounts of information and obtaining useful
information about future actions is one of the most important
applications of big data. Due to a large amount of diverse data,
clustering algorithms for data processing and generalization
research are imminent. Clustering is based on the similarity
between data objects divide the sample of the data set into
such clusters reasonable, clustering result objects within the
same cluster have high similarity, but the similarity is low
between clusters. The object of clustering is one of the most
important objects for understanding the world. People who
use clustering can discover knowledge from data and reveal
hidden patterns and rules. Therefore, it is widely used in the
fields of scientific data analysis and systems engineering.
There is an ever-increasing interest in clustering algorithm
that can automatically understand, process, and summarize
the data.

The clustering algorithm includes partitioned clustering
method, hierarchical clustering method, density-based clus-
tering method, grid-based clustering method, and integrated
clustering algorithm [2]-[4]. K-means is the most widely
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used partitioned clustering algorithm [4]. However, the clus-
tering results of the K-means algorithm is heavily dependent
on the center of the initial cluster, it is difficult to find non-
convex clusters, which are sensitive to noise points and out-
liers, and the number of clusters needs to be set in advance.
The fuzzy C-means clustering algorithm (FCM) has a large
amount of calculation, because it has to calculate its distance
to all known samples for each sample to be classified, in order
to obtain its K-nearest neighbors.

Alex Rodriguez published a novel density peaks clustering
algorithm (DPC) in the journal Science in 2014 [5]. Different
from other clustering algorithms, this algorithm uses local
density and distance to characterize the spatial distribution
of each data point, and obtains the clustering center with a
decision graph. Since the DPC algorithm has the advantages
of a novel idea, easy implementation, and high clustering
efficiency, it has been widely recognized in various fields.

Hou analyzed the influence of the kernel density estimation
method in DPC algorithm on the clustering results, and used
the K-nearest neighbor idea to redefine the local density, and
designed a new cluster center selection by using the distance
normalization principle [6]. Xie uses the local standard devi-
ation of each data point to define its local density, which
improves the accuracy of the algorithm to select the cluster
center point from the sparse data [7]. The 3DC algorithm uses
the recursive method to find the optimal number of clusters in
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the original data [8]. Rashid Mehmood proposed the Fuzzy-
CFSFDP algorithm by introducing fuzzy rules [9]. Wang
proposed a method for obtaining the cutoff threshold d, from
the original data set by using the potential entropy of the data
segment [10]. Mehmood proposed a CFSFDP HD algorithm
based on the thermal diffusion theory [11]. Gao designed
a method for calculating the parameter d. using the stan-
dard deviation of each attribute of the original data [12].
Xu proposed a manifold density peaks clustering algorithm,
which uses geodesic distance to calculate the manifold dis-
tance between each data point and input cluster by pre-input.
The numbers allow the algorithm to automatically complete
the clustering, and also introduces an equidistant mapping
to map high-dimensional data sets to lower dimensions for
dimensionality reduction [13].

K-nearest neighbor (KNN) is a classification algorithm,
which is simple and efficient. It can not only deal with text
and stream data classification problems [14], but also shows
very well in clustering and strong skill, so this method is
constantly introduced into the DPC algorithm. Liu proposed
an adaptive density peaks clustering algorithm, which calcu-
lates the parameter by introducing KNN [15]. Du proposed
DPC-KNN. The algorithm uses the KNN idea to estimate the
density of each point and uses principal component analy-
sis to reduce the dimensionality of the data, improving the
processing ability of high-dimensional data and obtaining a
good clustering effect [16]. Huang proposed QCC, which
determines a cluster center with K nearest neighborhood or
reverse K nearest neighborhood and defines a novel concept
of similarity between clusters to solve the complex-manifold
problem [17]. However, since the clustering process of
G-DPC-KNN algorithm is the same as DPC, the defect of
the DPC algorithm still exists in this algorithm. Although the
quality of the classification is improved, the model is more
complicated.

Based on many improvements for the density peaks
clustering algorithm [18]-[26] and outliers detection strat-
egy [27], [28], we propose a method to calculate the cut-
off distance based on the Gini coefficient and find center
points by KNN. The rest of this paper is organized as fol-
lows: In Sec.2, we describe the principle of the DPC and
its analysis. In Sec.3, we make a detailed description of a
new algorithm. In Sec.4, we present experimental results in
synthetic data sets and UCI data sets compared with several
well-known algorithms including DPC, KDPC, FCM, and
K-means. And we test the adaptive of parameter K. Finally,
we derive the conclusions given in the last section along with
the expected future works.

Il. RELATED WORK

The density clustering algorithm is easy to identify clusters
of arbitrary shapes. The basic idea of this kind of algorithm
is to treat data in high-density areas as the same cluster.
Typical algorithms include Density-Based Spatial Clustering
of Applications with Noise(DBSCAN) [29] and Ordering
points to identify the clustering structure (OPTICS) [30].
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Thereinto, there is no need to know in advance the num-
ber of cluster classes for the DBSCAN algorithm proposed
by MMihael that overcomes the sensitivity of inputting
parameters.

The basic idea of density peaks cluster is that cluster cen-
ters are surrounded by low-density points, and their distance
from any point with a higher density is larger [5]. The DPC
algorithm effectively finds the cluster center and assigns the
remaining points to the appropriate clusters. Because the
algorithm is simple in designed process and excellent in
clustering performance, it has been applied in many domains.

The core idea of the clustering algorithm is to characterize
the clustering center. Rodriguez and Laio believed that the
clustering centers have the following two characteristics:

(1) They have a high density, that is, it was surrounded by
neighbor points with a lower density;

(2) They are relatively far away from data points with
higher density than them.

There are two main quantities to be calculated for density
peaks clustering: local density p; and the distance &; between i
and high-density points. The definitions of local density and
relative distance are as follows: [5], local density p can be
calculated in two ways:

Cut-off kernel:

Local density of sample point i:

pi = Z x (dij —d.) (1
J

Here

ifx <0
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x ()= {0 if other

Gaussian kernel:
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The relative distance from the sample point i:
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where Ig ={k €l : pr > p;} when p; = max (d,j)lé = ¢.
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As for how DPC search and find the clusjters center point.
The main idea is to plot the decision graph and choose points
which have higher & and p;. The premise is to collect &;
and p; for every point. The clustering centers can then be
detected by analyzing the decision graph. The points of high
& and relatively high p; can be chosen as cluster centers.
After finding the cluster centers, assign each remaining point
to the same cluster as its nearest higher density neighbor.
DPC performs efficiently because the allocation strategy is
performed in a single step.
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DPC defines the boundary area of each cluster. This is the
set of points assigned to the cluster. The distance between
these points and the points belonging to other clusters is d..
Then, find the highest density point in its boundary area for
each cluster and express its density by p;. Cluster points with
a density higher than p; are considered as the core of the
cluster and other points are cluster halo, which is understood
as noise.

From the results of testing DPC on several different data
sets, it is clear that DPC can perform well in many instances,
though the following drawbacks are apparent: [31]-[40]

i) After the distance matrix is constructed, two important
variables &; and p; need to be solved, and the solution
of these two parameters is closely related to the only
parameter d. of this algorithm. The selection of the
distance threshold is directly related to the quality of
the clustering effect, especially on some small and
medium-sized data sets, the density peaks clustering is
sensitive to d. anomaly.

ii) In the same cluster, two or more points with large den-
sity and distance often appear. When manually select-
ing the cluster center point in the decision graph, it is
impossible to determine whether the two points are in
the same cluster. The center point will likely split a
cluster into two. And the algorithm allows the user to
select the cluster center by providing a decision map
which is subjectivity.

iii) After finding the clustering center, assigning the
remaining points to the class of the nearest neighbor
with higher density may bring error propagation, that s,
once the points are misallocated, it may cause several
points that are lower in density than the point to be
misclassified, resulting in poor clustering effects.

Many scholars have optimized and improved the DPC
algorithm from different angles. To remedy some limita-
tions in DPC, we propose an algorithm named G-KNN-DPC.
G-KNN-DPC first finds the optimal cutoff distance with
the Gini coefficient and finds the center points with the
K-nearest neighbors. Gini coefficient is calculated based on
the potential energy of every data point in the data field,
then get the threshold value d.. The algorithm proposed
was tested on several synthetic and real-world data sets
which are often used to test the performance of a clustering
algorithm. The results demonstrate that G-KNN-DPC can
consider the true distribution of a data set and has better
performance.

lIl. PROPOSED ALGORITHM

There are still some defects in DPC, including some of
its improved algorithms. To solve these problems, we will
improve DPC in three aspects by calculating cutoff distance
with Gini coefficient, choosing a new way to select initial
cluster centers with the K-nearest neighbors, and aggregating
clusters if they meet a criterion. In this section, we will give
the details of the algorithm we proposed and analyze its
complexity theoretically.
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A. CALCULATE THE CUTOFF DISTANCE BASED ON GINI
COEFFICIENT

In the DPC algorithm, the selection of cutoff distance d. is
the key to compute density. It is found that cutoff distance
d. has an important influence on the result of clustering.
If d. is too large, the density value of each data point will
be approximately equal, resulting in that the partition of all
data points will be into the same class cluster. If d, is too
small, each class cluster will contain few sample points, and
one cluster will likely be divided into several parts. Moreover,
one threshold can’t fit all data sets because of the different
density of data points in different data sets. In order to cover
the shortage of the DPC algorithm, it is necessary to find an
index to describe the overall situation of the different data
sets. So, in this paper, the Gini coefficient in which all the
data points are considered is proposed to calculate the optimal
cutoff distance.

Objects distributed in certain areas are often interrelated
and interact with each other. There is radiation restriction
between different objects. At the beginning of the 19th cen-
tury, the physicist Ferrari proposed the term ‘field’ to describe
the interaction between objects. In the data field, each object
is affected by all other objects, and each is affected by other
objects. The data field can be regarded as a space full of data
energy, and the data emits energy to other data in the field
through its own data field, thereby generating effects.

A potential field is usually described by a potential
function. Potential functions vary with location and can
be superimposed. The law of spatial distribution is usually
depicted by equipotential lines. In the spatial domain, each
data object contributes to the potential energy of any point,
and the size of the contribution is inversely proportional to
the square of the distance between them. The potential energy
is stronger in data-intensive places. Otherwise, it will be
relatively weak.

In the data set, the points with higher potential energy are
in the dense region, while those with lower potential energy
are in the sparse region. Given that, the potential energy in
the data domain is similar to the local density of the points in
the data set. Therefore, the potential energy of each point is
used as an indicator of the overall distribution of the data set
to estimate the potential energy of the whole data set.

For data set {x1, x2, - - - , x,}, the formula for the potential
energy at each point is

n _( [l )2
5=Y e\ 7 “
j=1

o is the impact factor that controls the interaction between
objects. The value of o will directly affect the density degree.
The smaller the value o is, the more compact the network
will be. On the contrary, if the parameter is large, the cluster
structure will be relatively sparse. This characteristic is the
same as that of d.. If the points in the data set are dense,
we will also choose a smaller d. according to the distance
between objects. If the points in the data set are sparse,
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FIGURE 1. The original graph of Jain data set and the potential energy of Jain data set.

the threshold we choose will be larger. It is found that the
method of calculating the potential energy of the point is
similar to that of calculating the local density in the DPC
algorithm when comparing Eq. (4) and Eq. (2).

In the data domain, if the data is evenly distributed, the
uncertainty of the data distribution will be greater and the
impurity of the data will be greater as well. If the data is
not evenly distributed, the uncertainty of the data distribution
will be small and as well as the impurity of the data. The
impurity of the data can be described by the Gini coefficient.
The calculation formula of the Gini coefficient in the data
domain is as follows:

n 5: 2
G=1-3(3) s)
Z= Z‘Sf (6)

i=1

Z is the total potential energy of all data points in the data
domain, §; is the potential energy of each point. Combined
with Eq. (4) and Eq. (5), when the influence factor o increases
gradually from O, it changes with the change of Gini index G.
When the Gini index value G takes the minimum value,
it reflects that the data has the smallest impurity, the least
uncertainty, the uneven potential energy distribution of the
data, the more differences of the data potential energy, and
the easier clustering, which is the ideal result. Combining
the similarity of d. and o with the characteristics of Gini
coefficient, the value of the optimal impact factor is obtained
when the Gini index value is the smallest. The optimal value o
is used as the value of truncation distance d,, so as to achieve
the effect of adaptive truncation distance, d, = o.

As it is shown in Figure 1, the moon-shaped cluster below
is denser than the one above, so the closed loops in yellow
and green which represent higher potential appear more fre-
quently than above one. Take Jain data set as an example,
o gain optional value which is 9. So, we take d. = o0 = 9.
As we can see from Figure 2, it shows the relationship curve
of Gini index G and impact factor o in Jain dataset. With o
going up to infinity, G is going down first and o reaches the
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FIGURE 2. Change of influence factor o of data set Jain.

optimal value 9, then G is going up. Experiments on Jain data
set are described in detail in the experiments section.

B. FIND THE CENTER POINTS BY USING K-NEAREST
NEIGHBOR

There are two key points to find center points by using the
DPC algorithm. They are density and distance. In this new
algorithm, the formula of density for each point is the same
as DPC shown in Eq.(1). We compute distance based on
K-nearest neighbors. K represents the number of the nearest
neighbors. The set of K-nearest neighbors of a certain point
is defined by Eq. (7)

NN; = {j| min (dg) . i #j} ™)

The set of point i and its K-nearest neighbors is defined by
Eq. (8)

O; = {NNj, i} ®

The set of the points which density is higher than i is
defined by Eq. (9)

HP; = {jl pj > pi,j # i} ©)

Some of the points have overlapping parts by comparing its
NN; and HP;. This leads to inaccurate distance calculations.
So we delete the overlapping parts in HP;.
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The distance of each point is defined by Eq. (10)
& = min {distance (HP;, O)} HP,N O; = @ (10)

The distance of G-DPC-KNN find distance between
K-nearest neighbors of a certain point and those points whose
density is denser than it.

The local density of point is given by Eq. (1). Then calcu-
late p; x &; for each point, and sort them in descending order.
Select n points in the upper order as the center points.

C. ASSIGN REMAIN POINTS TO DIFFERENT CLUSTER
Cluster centers are selected by order p; x §;, and the remaining
points are assigned to each cluster. The remaining point i
is absorbed in the set which points with higher density and
smaller distance from i belongs to. So, we assign points with
higher density at the beginning. To prevent the interference of
outliers, we checked each point before assignment. Accord-
ing to Eq. (11), if N; > 1 for a certain point, it does not be
assigned. The allocation process continues to iterate.

N; = Count({j| djj < d.}) (11)

Jj represents other points in the data set.
The steps of the algorithm are as follow:

Algorithm 1 Adaptive Density Peaks Clustering Based on
K-Nearest Neighbor and Gini Coefficient
Input: Initial points, K, n

Output: The label vector of cluster index

Step 1: Calculate d,

1. Calculate djj according to Initial points;

2. Determine d,. according to Eq. (4).

Step 2: Adaptive find cluster center

1. Calculate p; based on Eq.(1);

2. Calculate &; based on Eq. (10);

3. Compute p; x &;, then sort them in descending order;
4. Find cluster center.

Step 3: Assign remain points to different cluster
1. Point i is absorbed to clusters and assigned;

2. [Tterate until all points are assigned.

D. COMPLEXITY ANALYSIS

Supposed that the data set has n points and let CN denote the
number of clusters. The space complexity of DPC is O (%),
where n is the size of the data set, which is mainly due to
storing the distance matrix. In the process of G-KNN-DPC,
there are three objects need storing spaces: First, the algo-
rithm needs space to store the distance from each point to
its K-nearest neighbors, it is K*N entries. Second, each point
has two attributes as p and &, which needs 2N spaces. The
space complexity of G-KNN-DPC does not increase more
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than O (nz) because the extra space required by our algorithm
does not exceed O (an). So, the space complexity of our
algorithm is the same as DPC in [24].

The time complexity of DPC depends on the following
three aspects: (a) the time for computing the distance between
points; (b) the time to calculate the local density p for point i,
and (c) the time used to compute the distance & for each
point i. The time complexity of each is O (n?), so the total
approximate time complexity of DPC is O (nz)

The time complexity of G-KNN-DPC depends on the fol-
lowing four parts: (a) compute the distance between points
o (nz); (b) evaluate the local density for each point. To com-
pute this we need to search the K-nearest neighbors of point
i, whose time complexity is O (n), so the time complexity for
searching K-nearest neighbors for n points is O (nz) As a
result the time complexity to calculate the local density for
each point is of order O (nz); (c)evaluate the distance & of
point i, which has time complexity O (n?); (d) assign points
to their most appropriate clusters with time complexity also
o (nz)

Therefore, the overall time complexity of G-KNN-DPC is
o (nz) which is the same as DPC.

IV. EXPERIMENTS AND ANALYSIS

In this section, experimental results will show the superior
performance of G-KNN-DPC. To achieve this, we use two
kinds of data sets (1) six synthetic data sets [41]-[43] and (2)
seven real-world data sets: the banknotes data set, the bcw
data set, the seeds data set. the vertebral data set, the iris data
set, the wholesale data set, and the wifilocalization data set.
And all of the real-world data sets are obtained from the UCI
repository. These data sets are chosen to test the ability of
our algorithm in identifying clusters having arbitrary shapes
without being affected by noise, size, or dimensions of the
data sets. The numbers of features (dimensions), data points
(instances), and clusters vary in each of the data sets. The
details of the synthetic and real-world data sets are listed
in Tables 1.

We compare the G-KNN-DPC with improved DPC
algorithm, DPC algorithm based on kernel (KDPC) and
the classical clustering algorithms, such as, K-means [20],
Fuzzy C-means (FCM), Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). The code for FCM,
K-means and DBSCAN are provided by their authors. The
code of improved DPC is optimized based on the original
code provided by Rodriguez and Laio. The code of DPC is
optimized by using the kernel(KDPC) based on the original
code [44]. Three popular criteria clustering accuracy (ACC),
normalized mutual, information (NMI), rand index (RI) are
used to evaluate the performances of the above clustering
algorithms. Each benchmark value ranged from O to 1.0, and
the larger it is, the better is the clustering. We only keep
the valid data after the three decimal places, except the NMI
parameters of the Wifilocalization data set, because it could
not reflect the difference of data. We conduct experiments
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TABLE 1. The details for thirteen data sets.

Data sets Instances Dimensions Clusters
Aggregation 788 2 7
Spiral 312 2 3
D15 600 2 15
Jain 373 2 2
Four-lines 512 2 4
A3 266 2 3
Banknotes 1372 4 2
Bew 699 9 2
Seeds 210 7 3
Vertebral 310 7 2
Iris 150 4 3
Wholesale 440 6 3
Wifilocalization 2000 7 4

on a desktop computer with a Core i7 DMI2-Intel 3.6 GHz
processor and 16 GB RAM running MATLAB 2017A.

A. DECISION GRAPHS COMPARATIVE ANALYSIS

To evaluate the performance of the G-KNN-DPC method,
we used the Spiral dataset as an example. In the Spiral dataset,
some clusters are the composition of different densities. a is
pictured according to Eq. (1) and Eq. (10). All DPC algorithm
tends to find the largest dense point in each density and use
it as the clustering center of the decision graph, as shown
in Figure 4. To select the exact number of cluster centers from
decision graph, humans should have the domain knowledge
of a certain dataset. G-KNN-DPC will automatically select
the clustering center point, before which some interference
needs to be removed. As shown in Figure 4, we see that there
is little interference point when selecting the center point in a,
while there are many interference points in b. In particular,
it eliminates the interference of some points like the center
points.

B. EVALUATION ON METRICS
In this paper, three clustering metrics are used to measure
the performance of our algorithm: ACC [45], and NMI [46].
RI [47].

The ACC is calculated as:

> 8(Ik, map(gk))

Acc = =! (12)
n

where n represents the number of data samples, g; and Ik
represent the cluster label obtained by our algorithm and
the true classification label of the data sample xi, respec-
tively. map(e) is a mapping function that maps cluster labels
obtained by our algorithm to the true classification labels.
When [, = map(gy), the function value of (I, = map(gx))
is 1, otherwise it is 0.
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The NMI is defined by

> > mylog (""’)
i=1j=1 ity

NMI = (13)

(£most) (£ (%))

where ¢ represents the number of clusters, n represents the
number of samples in the data set, n;; represents the number
of data samples belonging to the i-th cluster in the label set
obtained by the algorithm and belonging to the j-th cluster
in the true label set, simultaneously. n; is the number of data
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FIGURE 4. Decision graph created by G-KNN-DPC and DPC on Jain dataset. a Decision graph created by

G-KNN-DPC. b Decision graph created by DPC.

samples belonging to the i-th cluster center obtained by the
algorithm, and n/ is the number of data samples belonging
to the j-th cluster in the real case. NMI effectively measures
the statistical information between the clustering result distri-
bution obtained by the algorithm and the actual classification
label distribution. The range of NM1 values is [0, 1]. Generally
speaking, the larger the NMI value, the better the clustering
result.

Supposed g represents the actual category information,
| represents the clustering result. RI is the rand index which
is defined as:

a+b
G

RI = (14)

where a represents the number of pairs of points that are in
the same cluster in g and [, and b represents the number of
pairs of points in different clusters in g and /, n represents the
number of samples in the data set, C} indicates the number
of pairs that can be composed in the data set. The value range
of RI is [0,1], the larger the value, the more consistent the
clustering result with the real situation.

C. ADAPTABILITY OF G-KNN-DPC

In the Eq. (7), the parameter K represents the nearest neigh-
bors of the object. The choice of K will affect the distance
calculated and thus the choice of the center point. In order
to make the experiment more credible, we will select four
different K to verify the adaptability of the algorithm in this
part.

As shown in Figure 5, (a) and (b) are Four-lines graphs.
The abscissa is different k, and the ordinate is the clustering
accuracy (ACC) obtained from the results of the algorithm
working on different data sets. (a) is the clustering results of
different K on the artificial data set, and (b) is the clustering
results of different K on the UCI data set. We found that
G-KNN-DPC performed well on the synthetic data set.
Except for the Spiral data set, the results of other data sets
are stable, and all of them are the best results or close to
the best results. Spiral has 3 clusters which embedded each
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other. KNN looks for its neighborhood in terms of the cir-
cle, so when K is bigger (such as K = 17), points with
higher density belonging to other data sets are also included
in the K-nearest neighbors. And in the allocation process,
it is allocated to the class with the highest density points in
the K-nearest neighbors. As a result, the clustering results
obtained are not accurate. G-KNN-DPC working on UCI data
sets is also more superior than other data set. As shown in (b),
when G-KNN-DPC works on vertebral, seeds and bcw data
set, the performance is stable. When K = 7 or K = 10,
the performance of this algorithm on seven UCI data sets is
very stable, and it is more superior when compared with other
algorithms. The results show that G-KNN-DPC has strong
robustness and superiority when K set in an appropriate
range.

D. EXPERIMENTS ON SYNTHETIC DATA SETS AND
RESULTS ANALYSIS

In this subsection, we show the performance of G-KNN-DPC,
improved DPC, FCM, K-means, KDPC and DBSCAN on
six synthetic data sets listed in Tables 1. The results of each
algorithm on six synthetic data sets are displayed embedded
in two-dimensional space as different marked and colored
shapes, just as Figure 6-11 shown. The performance of each
algorithm is benchmarked in terms of ARI, NMI, RI shown
in Table 2, Table 3, and Table 4. And the best results are shown
in boldface.

The Four-lines data set has 4 clusters of the shape of a
line, they are all separated. Figure 6 shows the algorithm
proposed, improved DPC and DBSCAN can both find cluster
centers and the correct clusters. In Table 2, Table 3, and
Table 4, the benchmarks data of the algorithm proposed are
all almost 1.00 exactly and their values of G-KNN-DPC are
also showed as 1.00 for data rounding. As shown in Figure 6,
FCM, K-means and KDPC could not find the right clusters
even some of them are departed.

Jain has 2 clusters with 373 points. The -clusters
distribute randomly on 2-dimensional space and some
have mild overlapping. The algorithm proposed achieves
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TABLE 2. ACC for four algorithms on thirteen data sets.
Data sets Proposed algorithm DPC FCM K-means KDPC DBSCAN
Four-lines 1.000 1.000 1.000 0.670 0.699 1.000
parameter k=7; n=4 dc=0.033 n=4 n=4 n=4 k=6; Eps=0.033
Jain 1.000 1.000 0.751 0.753 1.000 1.000
parameter k=7; n=2 de=13.2 n=2 n=2 n=2 k=10; Eps=0.08
Spiral 0.994 1.000 0.340 0.346 1.000 1.000
parameter k=7; n=3 de=13.6 n=3 n=3 n=3 k=4; Eps=2
Aggregation 1.000 1.000 0.632 0.736 0.741 0.957
parameter k=7; n=7 de=3.11 n=7 n=7 n=7 k=6; Eps=3
A3 1.000 1.000 1.000 0.629 0.711 0.670
parameter k=7; n=3 dc=0.026 n=3 n=3 n=3 k=6; Eps=0.026
R15 1.000 1.000 0.948 0.737 0.997 1.000
parameter k=7; n=15 dc=0.58 n=15 n=15 n=15 k=6; Eps=0.58
banknotes 0.732 0.674 0.677 0.671 0.626 0.555
parameter k=10; n=2 dc=2.559 n=2 n=2 n=2 k=20; Eps=2.559
bew 0.711 0.424 0.609 0.612 0.414 0.491
parameter k=4; n=2 dc=1.414 n=2 n=2 n=2 k=20; Eps=1.414
seeds 0.866 0.227 0.539 0.600 0.746 0.314
parameter k=17; n=3 dc=0.896 n=3 n=3 n=3 k=20; Eps=0.896;
vertebral 0.978 0.761 0.962 0.956 0.682 0.471
parameter k=10; n=2 de=16.511 n=2 n=2 n=2 k=20; Eps=16.511
Iris 0.727 0.640 0.527 0.547 0.567 0.333
parameter k=10; n=3 dc=0.2 n=3 n=3 n=3 k=20; Eps=2.1;
Wholesale 0.561 0.514 0.545 0.532 0.382 0.532
k=7; n=3 dc=4356.5 n=3 n=3 n=3 k=20;
parameter 41 Eps=4356.541
Wifilocalization 0.970 0.761 0.962 0.957 0.747 0.250
parameter k=10; n=4 dc=9.274 n=4 n=4 n=4 k=20; Eps=9.274

an optimal result on this data set. The optimal cut-
off distance obtained from the adjustment gives a good
result to Jain. The improved DPC, KDPC and DBSCAN
work well while FCM and K-means have average
performance.

Spiral has 3 clusters which embrace each other. From the
results shown by Figure 8, we can see the algorithm proposed
based on density get correct results while K-means and FCM
are powerless. In (b) of Figure 8, we found that two blue

VOLUME 8, 2020

points are misclassification. This is a phenomenon well worth
discussing. As it shown in (a) of Figure 5, G-KNN-DPC get
perfect result when K = 4. the special assignment strategy
help explain this phenomenon. It may assign data points to
clusters erroneously once a data point with a higher den-
sity is assigned to an incorrect cluster. But improved DPC,
KDPC and DBSCAN overcome this defect. Aggregation
has 788 points partitioned into 7 clusters. The results show
G-KNN-DPC can find all cluster centers correctly and assign
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FIGURE 6. Clustering results of Four-lines data set on different algorithms.

almost all points to their corresponding clusters on this data clusters will not be able to find out correctly. K-means and

set. Improved DPC can get similar results to our algorithm. FCM just find two almost correct clusters exactly. KDPC find
It is worth to point out that the initial cluster centers are four correct clusters, which is better than K-means and FCM,
selected manually from the decision graph when processing but it divided one true cluster into two, and two clusters are

the improved DPC algorithm. So sometimes the number of merged into one cluster as shown in Figure 9(f). Figure 9(g)
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FIGURE 7. Clustering results of Jain data set on different algorithms.

shows that DBSCAN finds six clusters, which is too close to K-means, FCM, KDPC and DBSCAN cannot find clusters

get perfect results.

correctly, one of the class is evenly divided into three cate-

A3 has three clusters with two kinds of different shapes. gories.
As Table 2 shows, G-KNN-DPC and improved DPC get the The R15 data set has 15 clusters containing 600 points.
precise clustering results on this data set. As Figure 10 shows, It distributed in a 2-dimensional space and is overlapping
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FIGURE 8. Clustering results of Spiral data set on different algorithms.

slightly. One of the clusters is surrounded by seven other clus-
ters closely. The experimental results of the four algorithms
are shown in Table 2, Table 3, and Table 4. The clustering
results are displayed in Figure 11. G-KNN-DPC, improved

113910

DPC, FCM KDPC, and DBSCAN can both find the correct
cluster centers. But K-means did not do well when assigning
all data points to their corresponding clusters. And K-means
did not find the right cluster centers.
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FIGURE 9. Clustering results of Aggregation data set on different algorithms.

E. EXPERIMENTS ON UCI DATA SETS AND RESULTS which are commonly used in clustering or classification and
ANALYSIS all listed in Table 1. These seven data sets come from the UCI
Seven UCI data sets were chosen to test the ability of machine learning repository. In this subsection, the perfor-
G-KNN-DPC to recognize the clusters on varied data sets, mance of each algorithm is benchmarked in terms of ARI,
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FIGURE 10. Clustering results of A3 data set on different algorithms.

NMI, RI shown in Table 2, Table 3, and Table 4. And the best
results are shown in boldface. Parameter in three tables is the
parameters specified.
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Banknotes 1
From the resu
G-KNN-DPC,

s composed of 2 clusters and 1372 data points.
Its shown in these tables, we can see that the
improved DPC, FCM, K-means and KDPC
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FIGURE 11. Clustering results of R15 data set on different algorithms.

improved DPC, FCM, K-means and KDPC. The clustering
accuracy (ACC) of G-KNN-DPC reaches 0.732, but other
algorithms did not do as well. This algorithm, however, has

can all find the cluster centers, but the benchmark data
of these five algorithms are very different. The bench-
mark results for G-KNN-DPC are much better than that for
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TABLE 3. NMI for four algorithms on thirteen data sets.

Data sets Proposed algorithm DPC FCM K-means KDPC DBSCAN
Four-lines 1.000 1.000 1.000 0.602 0.635 1.000
parameter k=7; n=4 dc=0.033 n=4 n=4 n= k=6; Eps=0.033
Jain 1.000 1.000 0.190 0.193 0.994 1.000
parameter k=7; n=2 dc=13.2 n=2 n=2 =2 k=10; Eps=0.08
Spiral 0.971 1.000 0.220 0.515 1.000 1.000
parameter k=7; n=3 dc=13.6 n=3 n=3 n=3 k=4; Eps=2
Aggregation 1.000 1.000 0.764 0.813 0.874 0.956853
parameter k=7; n=7 de=3.11 n=7 n=7 n=7 k=6; Eps=3
A3 1.000 0.777 0.711 0.721 0.507 0.669173
parameter k=7; n=3 dc=0.026 n=3 n=3 n=3 k=6; Eps=0.026
R15 1.000 1.000 0.540 0.531 0.989 1.000
parameter k=7; n=15 dc=0.58 n=15 n=15 n=15 k=6; Eps=0.58
banknotes 0.214 0.108 0.206 0.255 0.240 0.056
parameter k=10; n=2 dc=2.559 n=2 n=2 n=2 k=20; Eps=2.559
bew 0.355 0.292 0.303 0.157 0.027 0.036
parameter k=4; n=2 dc=1.414 n=2 n=2 n=2 k=20; Eps=1.414
seeds 0.443 0.125 0.075 0.441 0.151 0.132
parameter k=17; n=3 dc=0.896 n=3 n=3 n=3 k=20; Eps=0.896;
vertebral 0.922 0.803 0.902 0.891 0.227 0.026
parameter k=10; n=2 dc=16.511 n=2 n=2 n=2 k=20; Eps=16.511
Iris 0.467 0.443 0.369 0.401 0.316 0.292
parameter k=10; n=3 dc=0.2 n=3 n=3 n=3 k=20; Eps=2.1;
Wholesale 0.021 0.014 0.001 0.002 0.004 0.017

k=7; n=3 dc=4356.541 n=3 n=3 n=3 k=20;
parameter Eps=4356.541
Wifilocalization 0.00330 0.00322 0.00326 0.00322 NaN NaN
parameter k=10; n=4 dc=9.274 n=4 n=4 n=4 k=20; Eps=9.274

a heavy computational load in searching for the optimal
parameter of a model. As NMI shown in Table 3, K-means
gets the best results but still poor, G-KNN-DPC did not do
well. As for RI, it shows that the result of G-KNN-DPC is
still better than others. However, DBSCAN gets the poorest
result and it cannot find these two clusters.

Bcw has two clusters. From the results in Tables 2-4,
we can see the clustering results obtained by G-KNN-DPC
are superior to those obtained by other methods. The ACC
of the algorithm proposed is about 10% higher than those
of other methods. The ACC value and the NMI value of the
G-KNN-DPC are better than those of other methods as shown
in and Table 3 and Table 4.

Seeds has 310 points of three clusters. Three evaluation
indicators of this algorithm indicate its remarkable. Further-
more, from the results of each algorithm on Seeds. We can
see that G-KNN-DPC is best among the five clustering algo-
rithms. G-KNN-DPC obtained the ACC, NMI, RI values
of 0.866, 0.443, and 0.767 respectively, which is higher
than those obtained by other algorithms. And the result of
K-means is a little better than that of FCM.

Vertebral has 310 points, and it is divided into two clusters.
We gain the best result on this UCI data set. Table 2, Table 3,
and Table 4 show the results of G-KNN-DPC are significantly
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better than those obtained by other methods. DBSCAN has
the worst performance on this data set.

Iris has 150 points, which divided into 3 clusters. From
Tables 3, we found that the clustering accuracy G-KNN-DPC
is highest, the ACC reaches 0.727. The same situation hap-
pens in Tables 3 and Tables 4, the value of NMI and RI
for G-KNN-DPC are 0.467 and 0.820. The improved DPC
is followed by G-KNN-DPC. The performance of improved
DPC is better than others. DBSCAN still get worse results.

The Wholesale data set consists of 440 data points and
3 clusters. From Tables 2-4, it is obvious that G-KNN-DPC
got the best values of ACC and NMI among all six clustering
algorithms. The values of ACC, NMI and RI obtained by
G-KNN-DPC are 0.561,0.021 and 0.553 respectively. Larger
values of these benchmarks indicate that the experimental
results obtained by G-KNN-DPC are closer to the true results
than those obtained by the other clustering algorithms.

The Wifilocalization data set consists of 2000 points
and 4 clusters. G-KNN-DPC obtained the ACC, NMI and
RI values of 0.970, 0.00330 and 0.960 respectively, which
are higher than those obtained by other algorithms. The
results also show that KDPC and DBSCAN has the worst
performance on this dataset, even it did not get experimental
results on NMI. And DBSCAN cannot identify all clusters.
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TABLE 4. Rl for four algorithms on thirteen data sets.

Data sets Proposed algorithm DPC FCM K-means KDPC DBSCAN
Four-lines 1.000 1.000 0.792 0.779 0.743 1.000
parameter k=7; n=4 dc=0.033 n= n=4 n=4 k=6; Eps=0.033
Jain 1.000 1.000 0.626 0.627 0.999 1.000
parameter k=7; n=2 dc=13.2 n= n=2 n=2 k=10; Eps=0.08
Spiral 0.991 1.000 0.554 0.554 1.000 1.000
parameter k=7; n=3 dc=13.6 n=3 n=3 n=3 k=4; Eps=2
Aggregation 1.000 1.000 0.883 0.900 0.901 0.957
parameter k=7; n=7 dc=3.11 n=7 n=7 n=7 k=6; Eps=3
A3 0.837 0.707 0.843 0.828 0.707 0.667
parameter k=7; n=3 dc=0.026 n=3 n=3 n=3 k=6; Eps=0.026
R15 1.000 1.000 0.731 0.724 0.986 1.000
parameter k=7; n=15 dc=0.58 n=15 n=15 n=15 k=6; Eps=0.58
banknotes 0.607 0.559 0.562 0.557 0.530 0.511
parameter k=10; n=2 dc=2.559 n=2 n=2 n=2 k=20; Eps=2.559
bew 0.589 0.599 0.524 0.525 0.503 0.732
parameter k=4; n=2 dc=1.414 n=2 n=2 n=2 k=20; Eps=1.414
seeds 0.767 0.559 0.502 0.519 0.697 0.720
parameter k=17; n=3 dc=0.896 n=3 n=3 n=3 k=20; Eps=0.896;
vertebral 0.979 0.866 0.964 0.959 0.566 0.491
parameter k=10; n=2 de=16.511 n=2 n=2 n=2 k=20; Eps=16.511
Iris 0.820 0.783 0.780 0.717 0.780 0.329
parameter k=10; n=3 dc=0.2 n=3 n=3 n=3 k=20; Eps=2.1;
Wholesale 0.553 0.489 0.498 0.538 0.439 0.507
rameter k=7; n=3 dc=4356.541 n=3 n=3 n=3 k=20,
paramete Eps=4356.541
Wifilocalization 0.960 0.905 0.489 0.498 0.837 0.282
parameter k=10; n=4 dc=9.274 n=4 n=4 n=4 k=20; Eps=9.274
Computational time consumed by the six algorithms on thirteen algorithms
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FIGURE 12. Computational time consumed by the six algorithms on thirteen algorithms.

F. COMPUTATIONAL TIME CONSUMED RESULTS ANALYSIS
Figure 12 shows the average computational time consumed
by each of the algorithms to complete the process of cluster-
ing. For time graphs, G-KNN-DPC is represented in oranges
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bars, FCM by blue bars, K-means by red bars, DPC by green
bars, improved DPC by purple bars, and DBSCAN by yellow
bars. The time consumed is plotted against corresponding
algorithms and datasets. From Figure 12, it is observed that
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TABLE 5. The number of data sets in which each of the six algorithms
showed top clustering performance of the different evaluation indexes.

Algorithms ACC NMI RI

G-KNN-DPC 12 11 10
DPC 5 5 6
FCM 2 1 1
K-means 0 1 0
KDPC 2 0 1
DBSCAN 4 4 4

improved DPC has the highest execution run time across the
thirteen datasets, which means it gets the worst result in the
running time of the algorithm. This is followed by G-KNN-
DPC. Other algorithms have a shorter running time across
all the thirteen datasets. It however consumed a long time in
all its process, G-KNN-DPC achieved the best solutions as
earlier discussed.

Table 5 will make the results of the comparison experiment
clearer. Table 5 gives the number of data sets in which each
of the five algorithms showed the top clustering performance
for the different evaluation indexes when using synthetic data
sets and real data sets. For ACC, the G-KNN-DPC algorithm
gained the best clustering performance by achieving the high-
est value on twelve of the thirteen data sets. NMI and RI
both showed similar results. In all cases, the G-KNN-DPC
demonstrated the best clustering performance. In each eval-
uation index, the G-KNN-DPC showed the best clustering
performance. In conclusion, these results demonstrate that the
G-KNN-DPC algorithm is effective and better than the other
clustering algorithms.

V. CONCLUSION

The new algorithm proposed in this paper first calculate
optional d,, then redefines the distance with K-nearest neigh-
bors of every data point. The algorithm recognizes the core
point and constructs the cluster around the core point, then
attempts to detect the outliers. It makes full use of K-nearest
neighbors. It produces very good clustering results on the
two-dimensional data. The results are superior to other exist-
ing algorithms on the two-dimensional and high-dimensional
data set. We use the Gini coefficient to determine the
thresholds adaptively. The parameter d. of the algorithm
is automatically determined by the data themselves, and it
has application value. G-KNN-DPC recognizes clusters of
arbitrary shapes, of different sizes, of different densities, and
reduces the effect of outliers. The experiments indicate that
the algorithm runs very effectively. The effectiveness of the
algorithm on high dimensional data is tested with UCI data
sets. In the future, the accuracy of the algorithm needs to be
further improved for high-dimensional data.
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