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ABSTRACT This paper presents a new approach to state estimation (SE) of distribution networks, which
becomes more complex when there is lack of monitoring. Several studies have been carried out on SE to
compensate for the lack ofmonitoring; however, the observability of the distribution system is poor compared
to the transmission system. In the proposed approach, the representative load profile and the electricity
charges of consumers are required to obtain the load profile of each consumer. In addition, the uncertainty
was considered owing to the poor accuracy of these obtained load profiles, and the results were analyzed
according to the uncertainty. The obtained load profiles were used to calculate the voltage magnitudes and
angles by power flow calculations, and the calculated voltage magnitudes and angles were used to train the
used supervised learning algorithms including the feed-forward neural network (FFNN), linear regression
(LR), and support vector machine (SVM). IEEE 13-, 34-, and 37-node test feeders were used to verify
the proposed approach. The proposed approach is not applicable to a terminal bus; however, the voltage
magnitudes and angles of consecutive unmeasured buses more than two can be estimated. In addition,
the impact of input data on the results was analyzed for each algorithm, and the impact of measurement
errors was also analyzed for FFNN and SVM.

INDEX TERMS Distribution system state estimation (DSSE), supervised learning, support vector machine
(SVM), linear regression (LR), feed-forward neural network (FFNN).

I. INTRODUCTION
A distribution system that was built and designed to accom-
modate expected seasonal demand variations and growth can
become more complex and difficult to control [1]. However,
the measuring and monitoring of a distribution system are
not well established unlike those of a transmission system.
In particular, the measurement devices are often limited to
substations [2] or are installed in a low number of buses
in a low-voltage (LV) network [3]–[6]. It is practically and
economically impossible to install measurement devices in all
measurement locations because the number of measurement
points increases exponentially from the substation to the end
customers [8]. In addition, the reliability of the installed
measurement devices is poor because the measured values
of the two measurement devices installed under the same
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transformer are different [9]. For this reason, it is difficult
to determine the cause of the problem with an LV network.
Therefore, measurement with high accuracy in distribution
systems becomes essential. A number of studies have been
carried out to improve upon the lack of monitoring, to sup-
plement insufficient data, and to filter out bad data through
smart meters, the distribution system state estimation (DSSE)
method, etc.

Deploying smart meters was proposed in [3], [6] to obtain
necessary information from buses through communication;
however, installation of smart meters in every bus is tech-
nically impossible. It cannot be guaranteed that the gath-
ered data are measured at the same time due to the limited
bandwidth, infrequent delays and synchronization problems
in communication. Furthermore, delay differs among smart
meters, as synchronizing the measurements of huge number
of devices is too expensive. Aggregators are required to man-
age vast amount of data, which also incurs costs. In addition,
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data missing still occurs due to unexpected device power off,
communication failure, measurement error, or other unknown
errors [7]. It is still not clear how the communications infras-
tructure for transmitting expected measurement data to a
distribution management system (DMS) will change [6].

Pseudo-measurements are often used to compensate for the
lack of data in monitoring. Generally, pseudo-measurements
are performed before state estimation (SE) to improve the
accuracy of estimated values and measured values [10]. One
of the valuable functions of SE is detecting and identifying
bad measurements. Because of these functions, in transmis-
sion systems, SE is an effective way to obtain the states of
systems. However, state estimation of the resulting distribu-
tion systems may be unreliable owing to the poor accuracy
and high variance of pseudo-measurements [5], [6], [10].

In [1], a new methodology using artificial neural net-
works (ANNs) was proposed for pseudo-measurement mod-
eling. Load profiles and load flow simulation results were
trained through the ANN, and the error was modeled through
a Gaussian mixture model (GMM). The results of the GMM
and ANN training were used as input data for DSSE to
increase the accuracy. However, this requires much more
input data than output data for ANN training to estimate the
voltage magnitudes and voltage angles of the target buses.
In addition, the approach with an ANN was proposed to
estimate state variables in [11]; however, this requires mea-
surements and cannot estimate the state variables of more
than two buses at a time. The authors of [5], [10] intro-
duced a technique for meter placement to improve the quality
of voltage and angle estimates across a network. In [4],
a novel probabilistic approach was presented to distribu-
tion network observability. Also proposed were a revised
branch current-based distribution system state estimation
algorithm for obtaining a snapshot of the distribution system
as accurately as possible in [12], a new pseudo load profile
determination approach for estimating states of unmeasured
buses and improving the accuracy of pseudo-measurements
in [2], [13], and a method for enhancing the observability
of a distribution system for compensating of missing spec-
ifications on non-metered buses in [3]. In addition, several
approaches for DSSE using machine learning have been
proposed in [14]–[17]. In [14] and [15], methods were pro-
posed to detect harmonic and to estimate voltage harmonic
waveforms in distribution system using echo state network
(ESN), respectively. In [16], a hybrid machine learning with
optimization approach for determining the way of initializing
Gauss–Newton through the shallow neural network using
available measurements is proposed, and a nodal load esti-
mation approach using relevance vector machine (RVM) was
proposed in [17]. However, approaches were all based on
measurements.

In this paper, a new approach is proposed that uses super-
vised learning algorithms to estimate the voltage magnitude
and voltage angle of unmeasured consecutive buses. If the
voltage and load information of adjacent buses of one unmea-
sured bus, which is called a ‘‘target bus’’, are known, then the

information of the target bus can be calculated. This is why
we assumed the consecutive unmea-sured buses more than
two buses.

This approach requires the electricity charges of cus-
tomers, a representative load profile (RLP), and the voltage
data of adjacent buses of the target buses. The voltage magni-
tude and angle, which cannot be obtained from the RLP and
the electricity charges, are obtained by power flow calculation
for training and testing. In the training step, the active and
reactive power of the substation, and the voltage magnitude
and angle data of several buses, which is called ‘‘input buses’’,
among adjacent buses of the target buses, which are most
affected by the state variables of the target buses, are required.

Only a few measurements are required to estimate the
consecutive unmeasured target buses. The proposed approach
was conducted on three supervised learning algorithms
including the feed-forward neural network (FFNN), lin-
ear regression (LR), and support vector machine (SVM).
To verify the proposed approach, the voltage magnitude and
angle of the assumed unmeasured buses were estimated for
three networks of IEEE 13-, 34-, and 37-node test feed-
ers [18]–[20]. The results through used three supervised
learning algorithms for each network, when one of input
buses is missing, were obtained to analyze the impact of each
input bus. In addition, the error distribution when there are
measurement errors in the data of the input buses was also
analyzed based on the published guideline for commercial-
ized products.

The proposed approach is best suited for LV networks
which have insufficient measurements. Furthermore, it is
advantageous for not requiring measurement data for training
of supervised learning algorithms unlike the previous works.
Moreover, no additional process of error modeling, such as
GMM, other than data generation, training, and estimation
is required unlike [1]. In addition, the proposed approach is
applicable even though one of input buses data is missing
or delay occurs due to communication failure, measurement
error, or other unknown reasons.

While the penetration of smart meters has been activated,
it still needs more time to be installed at all points. The
proposed approach uses information from small number of
measurement devices to estimate the voltage information
of consecutive unmeasured target buses. Therefore, it can
also be used as a way to estimate the voltage information
of the whole network using only the information acquired
from some smart meters in the transition period before the
smart meter is 100% deployed. However, the application of
the proposed approach to terminal buses of the network has
some limitation of poor accuracy. Moreover, the validation of
the proposed approach has only been verified for networks
consisting of consumers of the same load type without gen-
erators.

This paper is structured as follows: Section II describes
how the data are generated and organized with the RLP for
training supervised learning algorithms. How the generated
data are used to estimate the voltage magnitude and angle,
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and a brief explanation of the used supervised learning algo-
rithms, are presented in Section III. The results are presented
in Section IV, and Section V outlines the conclusions.

II. DATA CONFIGURATION
In order to obtain valid outputs for any inputs, sufficient
data must be used to train for various input and output data.
In this paper, the RLP and electricity charge of consumers
were used to generate these data. Load modeling consists
of two steps: selecting a load model structure and identi-
fying the parameter of the load model structure. The types
of load model structures include static load model, dynamic
load model, ANN-based load model, etc., and there are two
ways of identifying the parameters of load model struc-
ture which are component-based approach and measurement-
based approach [21]. However, these approaches require
the characteristics of individual load components or field
measurements which are difficult to be obtain. Therefore,
in this paper, the data are generated to train and estimate
the voltage information based on the RLP and electricity
charge of consumers which can be obtained without addi-
tional measurements.

A. REPRESENTATIVE LOAD PROFILE
The RLP can be defined as the demand pattern of a single or
group of consumers over a period of time. It is mainly used
to obtain pseudo-measurements, to select transformer ratings
or to determine the charges of consumers, who do not have a
measurement device [22]. In addition, if the monthly energy
consumption of a particular consumer is known, then his daily
load curve can be determined by multiplying the values in

the RLP in p.u. of the range to which it belongs by its power
base [23].

In other words, monthly energy consumption can be cal-
culated through the electricity charge of certain consumer.
Moreover, the peak load can be estimated through the
monthly energy consumption using (1), as follow:

monthly energy consumption

= 30×
∫

(peak load)× RLP(t)dt (1)

where RLP(t) is the power load of RLP in percentage of peak
load at t . Thus, the daily load curve of a particular consumer
can be obtained if the RLP and the electricity charges of
certain consumers are available.

B. DATA GENERATION
In this paper, we assumed that the electricity charges of
consumers and the power curve supplied by the substation
are known. If the power supplied by the substation can be
monitored and load types (such as industrial, commercial
or residential) of the customers who are supplied by the
substation, are the same, then the RLP can be inferred through
the power curve of the substation. Therefore, the load profiles
of consumers can be obtained. However, the accuracy of the
obtained load profiles is poor due to a high variation of load
patterns of consumers. For this reason, this paper also ana-
lyzed the estimated voltage magnitude and angle according
to the variation. This is called the ‘‘uncertainty’’ as shown
in Fig. 1.

Fig. 1 presents the generation of M random load profiles
within the range of the uncertainty based on the RLP for M

FIGURE 1. Overall process of data generation and configuration for M consumers.
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TABLE 1. Variables for Generation load profiles.

consumers using (2) and (3), as follows:

P(n, t,m) = RLPP(t)× (1+ RP(n, t,m))× SP(m) (2)

Q(n, t,m) = RLPQ(t)× (1+ RQ(n, t,m))× SQ(m) (3)

where the variables are listed in Table 1. RP(n,t,m) and
RQ(n,t,m) are introduced to consider the uncertainty, and
these parameters have randomly generated values between
−uncertainty/(100%) and +uncertainty/(100%). The unit
of the uncertainty is %, and the uncertainty is a uniformly
distributed random variable. In this paper, the uncertainty
ranges from 10% to 50% in 10% intervals. For example, when
the uncertainty is 20%, the range of values that RP(n,t,m) and
RQ(n,t,m) can have is between –0.2 and +0.2. In addition,
the values of these variables are different for n, m, and t.
In other words, if one of n, m, and t is different, then the value
of RP is also different. The same is true for RQ. The reason
for adding 1 to the random variable in the second term in (2)
and (3) is to vary the uncertainty from the original value.

The randomly generated load profiles, which are based
on the RLP and the uncertainty, are scaled based on Sm
calculated through each consumer’s electricity charge. These
generated load profiles are used for power flow calculations
to obtain the voltage magnitudes, voltage angles, and gen-
erated daily data including the voltage magnitudes, angles,
active power, and reactive power. These are defined as a
‘‘set,’’ as shown in Figs. 1 and 2.

FIGURE 2. Generation data ‘‘set’’ through power flow calculation.

In addition, each data set includes different randomly gen-
erated load profiles and the obtained voltage magnitudes
and angles calculated using these load profiles. The power

flow calculation was conducted using OpenDSS, which is
a power system simulation tool developed by the Electric
Power Research Institute (EPRI). Therefore, the additional
data, which are the voltage magnitudes, angles, and the power
of the slack bus, can be obtained from the generated load
profiles by power flow calculations for training.

The data were generated based on IEEE 13-, 34-, and 37-
node test feeders. A total of Ntotal sets were generated for
each IEEE network. Ntrain sets were used for training and
Ntest sets were used for testing of the training results. A graph
of changes in the rate of peak load usage during the day
in [24] was used as the RLP, and the load value of each bus of
the IEEE network was assumed as the peak load to generate
the data for training and testing. In other words, the load
profiles for all buses of each IEEE network were generated
by multiplying the load usage pattern graph in [24] by the
load usage of each bus based on (2) and (3).

III. SIMULATION ENVIRONMENT
A. SUPERVISED LEARNING ALGORITHMS
In this paper, three supervised learning algorithms–FFNN,
LR, and SVM–were used. The artificial neural network was
motivated by the structure of a real brain. Each neuron,
which together comprise the network, is connected to least
one neuron, and each connection is evaluated by a weight
coefficient [25]. The network learns the relationship between
inputs and outputs using the activation function and the cost
function through the weight coefficient. The role of the acti-
vation function in the neural network is to represent a non-
linear relationship between inputs and outputs. This feature
makes the neural network suitable for nonlinear relationships.
The FFNN is a representative supervised learning algorithm
based on the ANN [26].

Simple linear regression is an algorithm that estimates the
response variable by obtaining an equation of a straight line
that represents best the given data points in the coordinate
distribution of the dependent variable for an independent
variable. In addition, it can be applied to multi independent
variables [27].

The SVM is a technique that was proposed by Vapnik and
coworkers in 1992. The objective of the SVM is to find a
hyperplane in an N -dimensional space that distinctly classi-
fies the data points by maximizing the margin. In addition,
it can be used to estimate an unknown target value as a
regression algorithm [28].

The relation between the power and the voltage is as
follows:

Pi=
N∑
k=1

|Vi||Vk | (Gikcosθik+Biksinθik ), i=1, 2, · · · ,N

(4)

Qi=
N∑
k=1

|Vi||Vk | (Giksinθik−Bikcosθik ), i=1, 2, · · · ,N

(5)
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FIGURE 3. IEEE 13-node Test Feeder.

FIGURE 4. IEEE 34-node Test Feeder.

FIGURE 5. IEEE 37-node Test Feeder.

where Pi, Qi, Gik , Bik , Vi and Vk are the active and reactive
power of the ith bus of the network, the elements of the con-
ductance matrix and susceptance matrix, and the voltages of
the ith bus and k th bus, respectively. As denoted in (4) and (5),
the relationship between the power and voltage is nonlinear.
The FFNN was used to learn these nonlinear features and
to estimate state variables. Moreover, the LR was used to
learn regarding the unexpected linear characteristics between
the power and the voltages. However, the linearity of the
relationship cannot be predicted easily. Hence, the SVM was
used, since it is advantageous when the relationships between
data are not well understood [29].

B. SIMULATION CASES
IEEE 13-, 34-, and 37-node Test Feeder networks are shown
in Figs. 3–5, respectively. The proposed approach was tested

TABLE 2. Study cases.

TABLE 3. Matrices for training and test.

FIGURE 6. FFNN training concept.

assuming unmeasured consecutive buses for each network,
as described in Table 2, and a single phase was considered
for estimating the voltage magnitudes and angles of the target
buses.

The FFNN is organized with one hidden layer of 12 neu-
rons between the input layer and the output layer. The data
matrices used for training the FFNN, LR, and SVM are
represented in Table 3. The number of target buses and input
buses are defined asMtar andMin, respectively. Vtar (n,t,m) is
the element of matrix Vtar of the mth target consumer at t in
the nth set, and this expression is also applied to othermatrices
including Vtrue, Vest , θtar, θtrue, and θest . The matrices used as
input or output are shown in Figs. 6 and 7 for each algorithm.
In the case of the LR and SVM, the training was conducted
for every hour and for each target bus repeatedly, unlike the
FFNN.

In other words, since the voltage magnitude and angle
of the target bus at the time determined by the user was
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FIGURE 7. LR or SVM training concept.

FIGURE 8. Flowchart of training and testing.

estimated, no time data was used as the input. Fig. 8 shows a
flowchart of the overall learning process using the generated
data described in the previous section. The total Ntotal sets
of load profiles were generated, and the same amounts of
the voltage magnitudes and angles were obtained through
these load profiles. The load profiles, voltage magnitudes,
and angles were rearranged into matrices for use in training
and testing, as shown in Table 3. Ntrain sets of the Ntotal sets
were used to train the three supervised learning algorithms,
and the rest were used for testing.

The configuration, training, and testing of the FFNN, LR,
and SVM were performed using MATLAB [30], [31].

IV. SIMULATION RESULTS
In this paper, the maximum absolute magnitude error was
calculated to analyze the error. Each equation is as follows:

εV ,p.u.(m) = max

 a11 · · · a1t
...

. . .
...

an1 · · · ant

 ,

m = 1, 2, · · · ,Mtar (6)

εθ,deg(m) = max

 b11 · · · b1t
...

. . .
...

bn1 · · · bnt

 ,

m = 1, 2, · · · ,Mtar (7)

where

ant = |Vtrue(n, t,m)− Vest (n, t,m)| (8)

bnt = |θtrue(n, t,m)− θest (n, t,m)| (9)

for n = 1, 2, · · · ,Ntest and t = 1, 2, · · · , 24. Equations (6)
and (7) are the maximum absolute magnitude error of the
estimated voltage magnitude and the angle for themth ofMtar
target consumers, respectively. The elements of the matrices
in (6) and (7) are described in (8) and (9). In other words,
εV ,p.u.(m) and εθ,deg(m) are the magnitude of the maximum
absolute errors of the mth target consumer for all day and, all
test sets.

A. DETERMINATION OF NUMBER OF SETS
In order to determine the values of Ntotal and Ntrain, the max-
imum value of the absolute percentage error of the estimated
voltage magnitude for a 13-node network was analyzed when
the uncertainty equals 50%. As shown in Fig. 9, themaximum
absolute percentage error of the estimated voltage magnitude
was obtained as Ntotal increased. Ntrain was set to 80% of
Ntotal , and the FFNN was used to obtain the error tendency.
The minimum error occurred when the value of Ntotal was
300, and the error increased drastically whenNtotal was 500 or
higher. For this reason, the value of Ntotal was set to 300.
Fig. 10 shows the maximum error of the estimated voltage
magnitude according to the ratio of Ntrain to Ntotal when
Ntotal equals 300. The error was decreased when the ratio
was 60% or higher, and the minimum error occurred when
the ratio was 80%. Hence, Ntrain was set to 240, and Ntest was
set to 60. These tendencies were equally obtained for most
uncertainties in 13-, 34-, and 37-node test feeder networks,
and the cases with the most prominent changes were shown
in Figs. 9 and 10.

FIGURE 9. Change of maximum error of estimated voltage magnitude
through FFNN according to number of Ntotal .

B. VOLTAGE MAGNITUDE
The maximum values of εV,p.u. in 10−2 p.u. of the estimated
voltage magnitude with respect to the uncertainty are listed
in Table 4. The values in Table 4 were obtained for all target
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TABLE 4. Error of estimated voltage magnitude.

FIGURE 10. Change of maximum error of estimated voltage magnitude
through FFNN according to ratio of Ntrain to Ntotal .

FIGURE 11. Max magnitude error result through FFNN of 13-node Test
Feeder when uncertainty equals 40%.

buses, all test sets, and for a day. All values of εV,p.u. through
the FFNN, LR and SVM are below 1.00× 10−2 p.u., 0.34×
10−2 p.u., and 0.70×10−2 p.u., respectively. Therefore, it can
be said that the voltage magnitudes of two or more unmea-
sured buses at a time were successfully estimated by the gen-
erated data and, not based on the measurements. In addition,
cases, that have the maximum values of εV,p.u. in Table 4 are
described in Figs. 11–13, and the maximummagnitude errors
of each target bus with respect to time (hours) are shown.
In general, as the uncertainty increases, the maximum error
of the estimated voltage magnitude also increases as repre-
sented in Fig. 14. As shown in Figs. 11 and 12, the errors of
the estimated voltage magnitude of target buses for 13-node
network were exceptionally large between 6 and 11 o’clock

FIGURE 12. Max magnitude error result through LR of 13-node Test
Feeder when uncertainty equals 50%.

FIGURE 13. Max magnitude error result through SVM of 34-node Test
Feeder when uncertainty equals 40%.

compared to other networks, and its reason will be described
in Appendix.

In general, the error in the voltage magnitude estimated by
the FFNN is relatively greater than that of the LR and the
SVM. This is because the FFNN is optimized for learning
the nonlinear features. The FFNN is relatively disadvanta-
geous to learning linear relationships between the input and
output because it is the algorithm for learning nonlinear
charac-teristics through the activation functions. In addition,
the relationship between the voltage and power is nonlinear
as represented in Equations (4) and (5); however, the voltage
difference becomes smaller when the voltage is expressed
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TABLE 5. Error of estimated voltage angle.

FIGURE 14. Max magnitude error tendency through LR of 733 bus of
37-node Test Feeder.

in p.u. Thismakes the linear feature stronger, and the resulting
error of the estimated voltage magnitude by the FFNN is
large relatively compared to that of other algorithms. This
argument is supported by the relatively small error in the
voltage magnitude estimated by the LR compared to other
algorithms.

The methodology proposed in [1] was used to estimate
the voltage magnitudes and angles of only two buses out
of 95 buses network of the U.K. Generic Distribution System.
On the other hand, the number of unmeasured target buses
estimated by the proposed approach in this paper is 11 con-
secutive buses out of 37-node network, which is far higher
than that of methodology in [1]. Moreover, the maximum
value of percentage error of the estimated voltage magnitude
from the methodology in [1] was 0.883% assuming 10%
uncertainty in pseudo-measurement, whereas that of the pro-
posed method in this paper was 0.51% and the minimum
value was 0.10% for all target buses, where the uncertainty
is assumed to be 50%. This implies that not only the number
of estimated buses in the proposed approach is much higher
than that in [1], but also the accuracy of the estimation is far
higher.

C. VOLTAGE ANGLE
Table 5 lists the maximum values of εθ,deg in degrees of the
estimated voltage angles for each algorithm, and for each
network according to the uncertainty. The maximum value

FIGURE 15. Max magnitude error result through FFNN of 34-node Test
Feeder when uncertainty equals 50%.

FIGURE 16. Max magnitude error result through FFNN of 13-node Test
Feeder when uncertainty equals 50%.

of εθ,deg of the 13-node network is higher than that of the
others. For the 34-node network, the error differences in
degrees are lower than 0.010◦ through the FFNN and the
LR. The SVM is the best algorithm for the 13-node net-
work. In addition, the greater the uncertainty, the larger the
error in common with the result of the estimated voltage
magnitude. Figs. 15–20 show the best and the worst cases
of the results for each algorithm when the uncertainty equals
50%. As shown in Figs. 16 and 18, the errors of the estimated
voltage angle of target buses for 13-node networks were
exceptionally large between 6 and 11 and between 18 and 22,
and the reason will be described in Appendix.
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FIGURE 17. Max magnitude error result through LR of 34-node Test
Feeder when uncertainty equals 50%.

FIGURE 18. Max magnitude error result through LR of 13-node Test
Feeder when uncertainty equals 50%.

D. IMPACT OF INPUT BUS
The estimated voltage magnitudes and angles of target buses
were analyzed when one of the input buses shown in Table 2
was omitted, as there are no additional available adjacent
buses of consecutive target buses to use as the input data
on selected phase for 13- and 34-node networks. How-
ever, the results were further analyzed when additional more
adjacent buses as input buses were used to estimate voltage
information, as 37-node network had more additional avail-
able adjacent buses of consecutive target buses. All of the
results described in this section are those with the uncertainty
of 50%, and the error magnitudes are all values of εV ,p.u.(m)

FIGURE 19. Max magnitude error result through SVM of 37-node Test
Feeder when uncertainty equals 50%.

FIGURE 20. Max magnitude error result through SVM of 13-node Test
Feeder when uncertainty equals 50%.

and εθ,deg(m) for each target bus in the error distribution
results shown in Figs. 21–28.

1) 13- AND 34-NODE TEST FEEDER
Figs. 21 and 22 show error distributions of the estimated
voltage magnitudes and angles of 13-node network for three
supervised learning algorithms according to input buses used
among the adjacent buses, respectively. In Figs. 21 and 22,
the first row with red letters in used input buses is the
result of the study case described before, and the second
and third rows show the results of missing one input bus
from the original study case. In general, the error was small
in the original study case of the first row when the voltage
magnitudes and angles were estimated through the FFNN
and LR. On the other hand, the error had the largest value

FIGURE 21. Error distribution of estimated voltage magnitudes for 13-node Test Feeder over target buses
according to input buses.
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FIGURE 22. Error distribution of estimated voltage angles for 13-node Test Feeder over target buses
according to input buses.

FIGURE 23. Error distribution of estimated voltage magnitudes for 34-node Test Feeder over target buses according to input buses.

FIGURE 24. Error distribution of estimated voltage angles for 34-node Test Feeder over target buses according to input buses.

when the data of 680 bus was missing. However, the results
of estimated voltage magnitudes and angles through the
SVM were not significantly affected by the lack of one
input bus.

The error distributions of the estimated voltage magni-
tudes and angles for 34-node network through three super-
vised learning algorithms are shown in Figs. 23 and 24,
respectively, according to the input buses used among the
adjacent buses. As shown in Figs. 23 and 24, the results
of original study case with red letters in used input buses
through the FFNN and LR had small errors relatively as with
the 13-node network. In addition, the error, when 818 bus
or 854 bus was missing, had generally large value in both
estimated voltage magnitudes and angles. However, as with
13-node network, the error of the estimated voltage magni-
tudes and angles through the SVM were not significantly
changed according to the input buses.

In both networks, the error of results through the FFNN
and LR was large when the input bus, which is far from the
slack bus, was missing. In original study cases in Table 2,
the error of result through the SVM was generally larger
than the result through other two algorithms. However, it is

advantageous when one of the input buses is omitted as it was
not significantly changed by lack of one input bus.

2) 37-NODE TEST FEEDER
Figs. 25 and 26 show error distributions of the estimated volt-
age magnitudes and angles through three supervised learning
algorithms in 37-node network according to used input buses,
respectively. Unlike 13- and 34-node network, results when
input buses were additionally used in the original study case
were also analyzed. In Figs. 25 and 26, red letters are the
used input buses in original study case, and first and second
row are the results when additional 6 input buses and 3 input
buses among adjacent buses were used, respectively. When
one of the input buses was missing, it can be seen that the
error through the FFNN and LR was larger than the original
study case as in 13- and 34-node network, and the error was
also prominently large when the input bus, which is far from
the slack bus, wasmissing.When the voltage information was
estimated using the additional input buses as shown in first
and second row through the FFNN and LR, it was obtained
that the more input buses used, the less error in the estimated
voltage magnitudes and angles.
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FIGURE 25. Error distribution of estimated voltage magnitudes for 37-node Test Feeder over target buses according to input buses.

FIGURE 26. Error distribution of estimated voltage angles for 37-node Test Feeder over target buses according to input buses.

FIGURE 27. Error distribution of estimated voltage magnitudes for 37-node Test Feeder over target buses
according to measurement errors.

FIGURE 28. Error distribution of estimated voltage angles for 37-node Test Feeder over target buses according to
measurement errors.

However, when the voltage magnitudes and angles were
estimated through the SVM, there was little change in
the results, and there was no significant difference even
when more input buses were used. These are the results
of well emphasized characteristics of the SVM, which is
advantageous when the relationship between the data is not
understood.

E. IMPACT OF MEASUREMENTS ACCURACY
There are several guidelines for the accuracy of com-
mercialized measurement devices, however, the criteria
are not very different. Thus, in this paper, error of the
devices was considered based on the measuring instruments

directive (MID) published in official journal of the EU [32].
In MID, the accuracy of the device is classified into three
classes according to maximum percentage error (MPE), with
each set MPE of 0.5, 1, 2%. Hence, the error distributions of
the estimated voltage magnitudes and angles were analyzed
by setting the input data used in the testing step of the super-
vised learning algorithms to have randommeasurement errors
within the range of ±0.5, ±1 and ±2%.
Figs. 27 and 28 show error distributions of the estimated

voltage magnitudes and angles through the FFNN and SVM
when there were measurement errors previously assumed
for 37-node network. The results through the FFNN and
SVM were analyzed because the results through the FFNN
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FIGURE 29. ANOVA test results of voltage magnitudes of each target bus for 13-node Test Feeder: (a) 632 bus; (b) 671 bus;
(c) 633 bus; (d) 684 bus.

and LR were similar and the results through the SVM were
significantly different with the previous results. In addition,
since the results of 37-node network were most clearly distin-
guished, the measurement errors were assumed for 37-node
network.

First row of Figs. 27 and 28 is result of error distribution
without measurement errors, which is the original study case.
Second, third, and fourth rows in Figs. 27 and 28 are error
distributions of the results when measurement errors of±0.5,
±1, and ±2% were assumed, respectively. When using the
FFNN, error magnitude of both the estimated voltage magni-
tudes and angles significantly increased as the measurement
error range increases. However, with the SVM, error mag-
nitude of the estimated voltage magnitudes and angles was
significantly smaller than the results using the FFNN.

V. CONCLUSIONS
Three supervised learning algorithms were used to estimate
the voltage magnitudes and angles of the consecutive unmea-
sured buses, and the representative load profile and the elec-
tricity charges of consumers were needed to generate data
for training and testing. The data were generated based on
an IEEE 13-, 34-, and 37-node test feeders considering the
uncertainty. The proposed approach is best suited for LV
networks when measurements are not sufficient and the size
of the network is not very large.

This approach requires minimal metering devices for
measuring voltage information of adjacent buses of the
unmeasured buses when applied in practice; however,
the measurement data are not required for the training.

In addition, the proposed approach can estimate the voltage
magnitudes and angles of several consecutive buses all at
once. The maximum absolute magnitude error of the esti-
mated voltage magnitude was 0.01 p.u., and the maximum
absolute magnitude error of the estimated voltage angle was
0.189◦. These results can be improved by using more input
buses among the adjacent buses. The best result of the esti-
mated voltage magnitude was obtained by the LR since the
linearity of the voltage magnitude was enhanced by convert-
ing to p.u. and a small voltage magnitude difference.

In order to analyze the impact of the adjacent buses used
as input buses on the results, the results when one of the input
buses in the proposed study cases is missing, and additional
input buses are further used were obtained through the FFNN,
LR, and SVM. In case of using the FFNN and LR, the error
magnitude increased when one input bus was missing. Espe-
cially, the error magnitude in the case of missing the input
bus, which is far from the slack bus, was larger than in other
cases. That is, the proposed approach in this paper is greatly
affected by the input bus which is distant from the slack bus.
Therefore, this approach cannot be applied to the terminal
buses of networks due to lack of adjacent bus data. Although
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FIGURE 30. ANOVA test results of voltage angles of each target bus for 13-node Test Feeder: (a) 632 bus; (b) 671 bus;
(c) 633 bus; (d) 684 bus.

results can be obtained through the proposed approach in case
of the terminal bus, the accuracy may be worse than expected.
When using the FFNN and LR, it can be seen that the error
magnitude decreases as number of input buses used increases
more when using the SVM.

On the other hand, results obtained using the SVM pre-
sented no significant difference when one of input bus is
missing or additional input buses are used. This feature was
also shown in results of estimating the voltage magnitudes
and angles with assumed measurement errors, and illustrates
advantageous characteristics of the SVM when the relation-
ship between inputs and outputs is not well understood.
In conclusion, it is advantageous to use the SVM if there
are measurement error or if there are few adjacent buses
to use as input buses, but there is no way to improve the
accuracy because the results using the SVM are not affected
by addition of input buses significantly, unlike when using
the FFNN or LR.

The proposed approach is not applicable to terminal buses
and has the disadvantage that estimating voltage information
using the FFNN and LR will be largely affected by measure-
ment errors. In addition, the validity was verified only when
the load types of consumers, which make up the network, are
the same, and optimization of measurement placement is not
carried out in this paper. However, a small number of input

buses were used to estimate the voltage information of the
target buses with high accuracy, and this feature can reduce
technical costs. Although there are still data missing occurs
from the smart meter, valid results can be obtained even if one
of input buses is missing or there are measurement errors.
Thus, these results can be advantageous over conventional
methods.

The validity of the proposed approach was verified only for
PQ buses with no generators and only loads. Future works
will be carried out on networks that include PV buses with
generators, with load forecasting and generation forecasting.

APPENDIX
ANOVA (analysis of variance) test was conducted to analyze
the cause of errors in the estimated voltage magnitudes and
angles using MATLAB. Figs. 29(a–d) show ANOVA test
results of Vtar of 13-node network, such as 632, 671, 633,
684 buses according to time when the uncertainty equals
50%, respectively. On each blue box, the central mark is the
median and the edges of the box are the 25th and 75th per-
centiles. The black broken lines extend to the most extreme
data points that are not considered outliers. The outliers are
plotted individually using the red ‘+’ symbol.

As shown in Figs. 29(a–d), for all target buses, the dis-
tributions of voltage magnitudes, which are the length of
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broken lines, between 6 and 11 were larger than other times.
In addition, the outliers had relatively large differences from
themedians compared to other times. In other words, the error
of the estimated voltage magnitude at a time when the vari-
ance of the voltage magnitude was large tended to be large.
This feature was shown not only in the results of the voltage
magnitudes of target buses but also in the results of the voltage
angles of target buses, which are the elements of θ tar, for
13-node network when the uncertainty equals 50%
in Figs. 30(a–d).

As shown in Figs. 30(a–d), the distribution of the voltage
angles of target buses between 6 to 11 and between 18 to 22,
which had large errors in the estimated voltage angles, can
be seen to be wider compared to other times. These results
support the rationale that the larger the distribution of voltage
magnitude and angle of the target bus, the larger errors of the
estimated voltage magnitude and angle.
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