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ABSTRACT With the wide-spread adoption of electric vehicles (EVs), introducing solar energy in building
EV charging stations is promising as it can reduce carbon emissions and improve air quality. The main
challenges are how to decide where to build solar assisted charging stations in a city and how to size the
charging stations, as the decision is affected by a broad range of factors, such as construction cost, solar
energy fluctuation, and user requirements. This paper proposed an approach to efficiently decide the locations
and sizes of solar energy assisted charging stations for an urban area. Experiments are conducted on real EV
history data from 297 users of an EV leasing company. The results show that the proposed method can
produce high quality decisions within reasonable computation time. The work of this paper will provide
important information for decision makers to integrate solar energy into the EV charging infrastructure.

INDEX TERMS Charging station, electric vehicle, metaheuristic, solar energy.

I. INTRODUCTION
Widespread adoption of electric vehicles (EVs) will reduce
carbon emissions and improve local air quality. As the power
source of the grid mainly comes from coal combustion in
quite some regions [1], adopting EVs itself may not help
energy conservation and emission reduction. Considering
solar energy in the EV ecosystem, for example, building
solar-powered charging stations, provides an opportunity for
the sustainable use of electric vehicles. For example, dur-
ing the daytime, employees with access to daytime plugs
can charge their EVs with solar energy at their workplaces.
According to a study by Oak Ridge National Laboratory,
installing solar panel roofs above a parking space can pro-
duce enough electricity in one year to provide the electricity
required to drive a Nissan LEAF or similar vehicle approx-
imately 10,000 miles [2]. Solar charging systems can also
help the electric grid to meet the increasing charging demand
from EVs and reduce the pressure on distribution systems and
transmission infrastructure.
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To adopt solar energy in EV charging stations, deciding
the sizes and locations of the charging stations is challenging.
First, to collect as much solar energy as possible, a large size
solar power system could be designed, but this may increase
construction and maintenance costs and under-utilize the
solar power system. A small solar power system can be fully
utilized but may fail to satisfy user requirements. An optimal
design must consider both the cost and the energy supply
capability of the solar power system. Second, the problem is
further complicated when considering deploying solar power
systems for EV charging in a city, in which the location
and sizing of charging stations must consider the variations
in user requirements in different regions. As the collected
solar energy is affected by the weather, time of day, and
surrounding environments, deciding how to construct solar
energy charging stations will become even more challenging.

In this paper, we consider the problem of locating and
sizing of EV charging stations that are assisted by solar
energy in an urban area. The objective is to maximize the
profit of utilizing solar energy in charging stations to satisfy
charging requirements, in the presence of the above problems.
We propose a method to jointly decide the locations of the
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charging stations and the size of each station. As the state
space of the optimization problem is too large due to its
scale, we also propose a heuristic algorithm to reduce the
computation overhead. Although this work mainly focuses
on servicing EV users that rent EVs from a leasing com-
pany, which is a promising business model of further EV
market [3], the proposed methods can still be used for other
business models or private users. The main contributions of
this work are summarized as follows:
• We formulate a novel solar assisted EV charging sta-
tions planning problem. It maximizes the overall profit
considering both the utilization and distribution of such
charging stations in an urban area.

• We propose a complete set of methods to solve the
problem, especially a technique to speed up the opti-
mization when the scale of the problem becomes very
large considering the whole urban area.

• We conducted a multi-dimensional analysis of the cal-
culated planning results, which shows that our proposed
method is effective and efficient. The rules proposed
in this paper have a guiding significance for the future
construction of solar assisted EV charging stations.

The rest of this paper is organized as follows: Section II
presents an overview of related work. Section III presents the
data set and analysis models and followed by the preliminar-
ies and formulate the problemmodel in Section IV. Section V
introduces the speed-up techniques and optimization solution
method. Section VI conducts a case study and explains the
experiment results and Section VII discusses the work and
gives an outlook for future work.

II. LITERATURE REVIEW
Various methods have been developed to help decision-
makers effectively determine the location and size of charg-
ing stations. Some researchers build mathematical models
by targeting different optimization objectives and combine
various underlying data, such as power grid data and EV
charging data, to make the proposed method more applicable
to practical situations. Related works focus on finding the
locations of charging stations, the sizing of charging stations
or both, which will be detailed below.

A. LOCATING CHARGING STATIONS
Concerning the optimal location of charging stations, related
research works studied various application scenarios. Sreten
and Pantoš [4] introduced an electric power system reliability
checkmethod into the optimal allocation of charging stations,
taking into account the constraints of power system operation
and EV owners’ requirements. Three models in [5] were
proposed to locate the charging stations by considering the
spatial and temporal distribution of EV drivers’ behaviors,
and the model framework was verified by the actual geo-
graphic data and EV usage data. In [6], metro Boston data
were used to obtain the movement patterns of individuals
to find an efficient layout of charging stations to minimize
overall energy overhead and EV drivers’ driving distance to

charging stations. From the perspective of city-scale,
the authors of [7], [8] formulated an optimization problem
to find the locations for installing charging stations based
on large-scale taxis trajectory data and explored the potential
impact of electric taxi fleet charging on the environment and
power grid. Yin and Zhao [9] combined traffic flow data and
Voronoi diagram to segment the map and locate the charging
station. Lingfors et al. [10] analyzed the relationship between
solar power generation and vehicle charging load from spatial
and temporal domains for station construction and charging
management. Yan et al. [11] analyzed the net costs and net
profits associated with building and operating a distributed
solar PV project during its lifetime in all 344 cities in China.
The most valuable message is that solar generation electricity
prices can compete with desulfurized coal benchmark elec-
tricity prices in 22% of those cities, which can help decision-
makers to choose the right areas to build solar power charging
stations. The work does not provide a method to optimize the
location of charging stations.

B. SIZING CHARGING STATIONS
Luo et al. [12] introduced the multi-types of charging facil-
ities mixedly installed in the electric vehicle charging sta-
tion (EVCS) during the planning stage and proposed an
optimization problem to minimize the annual social cost of
an EV charging system. Xu et al. [13] combined multiple
data sources (mobile phone activity, charging sessions, and
electric vehicle surveys) to understand the charging demand
in residential regions which can be used to decide the size
of charging stations. Some researchers [14] focused on inte-
grating renewable energy sources into transport systems and
EVCS. In [15], the charging demand and renewable energy
generation were modeled and a genetic algorithm to max-
imize the profit measured by its net present value (NPV).
Mehrjerdi andHemmati [16] proposed amodel that optimizes
the rated power of charging facilities, power and capacity
of battery energy storage system, hourly operation of diesel
generator, and hourly operation of battery energy storage
system which helps design an EVCS integrated with renew-
able energy. In a further study [17], the authors addressed
an advanced model for dynamic capacity expansion in the
micro-grid and investigated the ability of hybrid storage in the
electrical networks including parametric uncertainty [18].

C. JOINTLY LOCATING AND SIZING CHARGING STATIONS
To meet different charging requirements, Bai et al. [19]
proposed a hybrid evolutionary algorithm that combines the
non-dominated sorting genetic algorithm-II (NSGA-II) with
linear programming and neighborhood search to solve the
location, size, and type of charging station. Du et al. [20]
showed that the location and sizing problem is NP-hard, and
they designed a charger-based greedy solution with theoret-
ical guarantees to maximize the satisfied charging demand.
Li et al. [21] analyzed the real EV users’ charging behavior
data, and proposed a Bayesian-inference-based algorithm to
solve the mixed-integer programming EVCS problem with
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TABLE 1. A sample set of vehicle trajectory data. It includes the time
stamped location, vehicle speed and gears position.

TABLE 2. A sample set of vehicle battery data. It includes the time
stamped battery working information (SOC is the abbreviation of state of
charge) and charging/discharging status.

a flexible objective function. Zhang et al. [22] proposed a
mixed-integer second-order cone programming model for
the joint PEV charging station and distributed PV genera-
tion planning considering both transportation and electrical
constraints. This was ideally convex and can be effectively
addressed by off-the-shelf business solutions. A two-stage
optimization model [23] was proposed to allocate and design
standalone EVs charging stations on highways. The opti-
mization model addressed the uncertainties of solar power
generation, daily EV numbers, and traffic demand using a
probabilistic distribution model.

To the best of our knowledge, this work presents the first
practice for jointly sizing and locating EV charging stations
that are assisted by solar energy for a city-wide area. Specif-
ically, with the constraints of users’ charging convenience
and solar energy utilization, we optimize the overall profit
of EV charging stations considering both construction and
operational cost.

III. DATA SET AND ANALYSIS
This section presents the data set used in our study,
the method to use map data, the definition of user behavior,
and the modeling of charging demand, which will be used in
the optimization problem presented in the next section.

A. DATA SET
1) EV TRAJECTORIES
Our data set comes from an EV leasing company and con-
tains the vehicle trajectory and battery data recorded from
May 31st, 2015 toMay 31st, 2017with a 10 seconds sampling
rate. The data covers 297 long-term lease customers (with
a lease period of more than half a year) in Beijing, China.
Examples of the data are shown in Table 1 and Table 2.

2) MAP PRE-PROCESSING
We take the urban area of Beijing as the target area to
locate charging stations. To extract the road network with
vehicular trajectories and to reduce computational complex-
ity, the urban area is partitioned into an I×J grid map G

FIGURE 1. Converting trajectories into grid based map data. The attribute
values of grid cells change with time and location.

based on the Universal Transverse Mercator [24] coordinate
system. Figure 1 shows the flow of converting trajectories
into grid-based map data. The specific method is to map
the data analysis results to the corresponding cells at each
time step according to the geographic location information
of EVs.

B. USER BEHAVIOR
EV users’ parking events are the main factor the influences
the charging demand. In our study, we identify a parking event
if an EV stops at a location for more than 10 minutes and
is in P gear (means parking). The parking events partition
the record of each EV into multiple trajectories. Whether
a user will charge his EV is highly related to the parking
time duration. Most of the short-term parking behavior is
temporary and random, so it cannot effectively reflect the
real charging needs. Based on the user behavior of our data
set, if parking time duration is less than 20 minutes, users
are not willing to charge EV, in other words, there is no
charging demand. In addition, solar energy is not available
roughly between 8pm and 5am. By analyzing the frequency
and location information of parking behavior, we find that
parking behavior often occurs in residential areas, which
contradicts the goal of building stations in public places.
Therefore, this paper focuses on parking behavior that lasts
more than 20 minutes in non-residential areas from 5am to
8pm (daytime).

Further exploration of the SOC status of the EVs shows
that EV users are willing to keep their EV at high SOC, and
tend to charge the EV regardless of the current SOC status.
Figure 2 shows the distribution of charging events regarding
different SOC status. The green bars give the charging fre-
quency distribution and the blue curve gives the cumulative
probability for charging the EV. It can be seen that most of
the time the EV is at a relatively high SOC status. Figure 3
shows the statistic histogram of start SOCwhen charging. The
cumulative probability curve approximates a straight line.
This phenomenon further indicates that EV users expect to
charge their vehicles as long as there is a charging equipment
when parking. In the following analysis, we assume that the
users’ charging decisions are not affected by the SOC status
and they will charge the EVs as long as the battery is not fully
charged.
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FIGURE 2. The initial SOC when parking. In more than 50% of parking
behavior, the starting SOC when parking is nearly higher than 70%.

FIGURE 3. The initial SOC when charging. From the figure, most users are
more likely to charge their EVs when SOC is between 20% and 80%.

C. CHARGING DEMAND COMPUTATION
Estimating the charging demand for all EVs in an urban area
is important for guiding the construction of charging stations.
EV charging demand has spatial and temporal characteristics,
and the charging demand for each grid cell also varies with
time. We first simplify the charging method from constant
current and constant voltage (CCCV) charging method to
constant power Pcharge. Given the grid map G, the parking
events of each driver in each time slot are put into the corre-
sponding grid cell of the map, then we can get the number of
EVs in a grid cell (i, j) at time t , denoted by Ni,j(t), and the
n-th EV’s parking duration T ni,j. Then we can compute each
EV’s charging demandEni,j, and its charging powerP

n
i,j at time

t by equation (1). The total charging power Pi,j is calculated
by summing all EVs’ demands. Enbatt is the nominal capacity
of the n-th EV. If the Energy is larger than Enbatt , the charging
will be stopped, which is specified by equation (2) and (3).

Eni,j =

T ni,j∑
t0=0

Pni,j(t)1t (1)

When Eni,j ≥ E
n
batt :

Pni,j(t) = 0 (2)

When Eni,j ≤ E
n
batt :

Pni,j(t) = Pcharge (3)

The power demand at time t for the whole city can be
calculated by Equation (4), and Equation (5) gives the total

energy demand EDmdi,j of cell (i, j) in time period T .

Pi,j(t) =
Ni,j∑
n=1

Pni,j(t) (4)

EDmdi,j =

T∑
t0=0

Pi,j(t)1t (5)

IV. PROBLEM FORMULATION
This section presents the formulation of the locating and siz-
ing of solar assisted EV charging stations into an optimization
problem which will be solved by the methods proposed in the
latter section.

A. MODELING THE LOCATING OF CHARGING STATIONS
We use a set L = {l1,1, l1,2, l1,3, . . . , lI ,J } to model in which
cells a charging station will be built. In this set, li,j = 1 means
a charging station will be built for grid cell (i, j), and li,j = 0
otherwise.

In this paper, charging demand can be covered if the
location of demand is within a specified distance from at
least one charging station. The set of the covered demands
DCoveri,j by a station at cell (i, j) and the total number of the
covered demandsNCover

G in the study areaG can be calculated
as equation (6) and (7). The coverage rate, computed by
equation (8), is to reflect whether a strategy is good or bad.

DCoveri,j =

{
∅ li,j = 0
{(k, l)|(k, l)∈G, di,j→k,l ≤ Rs} li,j = 1

(6)

NCover
G = |

G⋃
i,j

DCoveri,j | (7)

ηCr =
NCover
G

N dmd
G

(8)

In equation (6), di,j→k,l is the distance between the vehicle
parking cell (i, j) and the charging station (k, l) which is cal-
culated by Chebyshev distance method [27] in equation (9);
Rs is the maximal distance of service on the grid map. NCover

G
and N dmd

G are the total number of charging demands covered
by at least one station and the total number of charging
demands in the study area.

di,j→k,l = max(|i− k|, |j− l|) (9)

B. MODELING THE SIZING OF THE SOLAR ASSISTED
SYSTEM
To make rational use of solar energy and reduce energy usage
from the state grid, the size si,j of solar power that integrated
into the charging station should be precisely planned. In this
paper, we focus on the grid-connected solar power system.

The total power of each solar assisted charging station,
PSolari,j , can bemodeled by equation (10). Note that the produc-
tivity of solar energy in a region depends on solar radiance,
which varies throughout the day and is influenced by location
and climate. In order to reduce the impact of extreme weather
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events, we use the average data obtained by Meteonorm
software [25] as the weather input, and use an open source
simulator software PVlib [26] to simulate the solar power
output. The simulation accuracy of each grid cell can be
further improved by adding parameters, such as the shadow
shading coefficient. In order to simplify the calculation, this
paper assumes that the station will be built in a place where
there is no shelter. The total power PSolari,j of each station can
be computed as follows.

PSolari,j = PSolarUnit × si,j (10)

where PSolarUnit is the nominal power output of a single solar
panel and si,j is the size of the solar power system. We use
a set S = {s1,1, s1,2, . . . , sI ,J } to represent the size of each
station in the study area. The spatial-temporal charging power
information affects the design of the solar assisted system and
then affects the amount of solar energy that can be used to
charge EVs. We assume that EV users will choose the nearest
station to charge their EVs. The total charging power PChi,j (t)
is supplied by both the solar power PUseSolari,j and the grid
power PGridi,j for station (i, j). The used solar power for time t
is modeled as bellow:

PUseSolari,j (t) = min(PChi,j (t),P
Solar
i,j (t)) (11)

The used solar energy EUseSolari,j , the total generated solar
energy ESolari,j can be modeled by equation (12) and equa-
tion (13) respectively, and the solar energy utilization ηSUi,j at
grid cell (i, j) can be defined by equation (14).

EUseSolari,j =

T∑
t0=0

PUseSolari,j (t)1t (12)

ESolari,j =

T∑
t0=0

PSolari,j (t)1t (13)

ηSUi,j =
EUseSolari,j

ESolari,j

(14)

C. PROBLEM FORMULATION
The optimization objective is to maximize the profit of build-
ing solar assisted EV charging stations with constraints to
satisfy minimal efficiency of the solar assisted system.

The construction cost, denoted byCco, is generally linearly
related to the size of the solar assisted system. Equation (15)
models the construction cost where Cassited is the unit cost of
install and maintenance of the solar assisted system.

Cco =
∑
i,j∈G

si,jCassited (15)

In our model, the solar energy collected by the solar
assisted system is free of charge. So the operation incomeCop
is the income from providing charging service minus the cost
of electricity purchased from the grid to meet the charging
energy requirement that cannot be satisfied by collected solar
energy, shown by equation (16). CuseSolar is the income of

charging EV with solar energy, CuseGrid is the cost to buy
electricity from the grid. Cch(t) is the charging price at time t .
Cgrid (t) is the price of buying electricity from the grid at time
t (as grid electricity price may change over time).

Cop = CuseSolar − CuseGrid

=

∑
i,j∈G

∑
t∈T

[Cch(t)PUseSolari,j (t)

−Cgrid (t)(Pdmdi,j (t)− PUseSolari,j (t))]1t (16)

The problem is to find a plan ρ to maximize the profit Cpr
of building and operating the charging stations in the city, and
at the same time meeting minimal requirements on charging
station coverage α and solar energy utilization β, as shown
by equation (17), where suij is the upper bound of the designed
size of solar power system in the station (i, j). ρ is defined as
ρ = {ρi,j|ρi,j = (li,j, si,j)}.

maximize Cpr (ρ) = Cop(ρ)− Cco(ρ)

subject to ηCr ≥ α,

ηSUi,j ≥ β,

0 ≤ sij ≤ suij. (17)

V. METHODS
This section presents our proposed method to solve the above
optimization problem. Note that the optimal solution can be
found by exhaustively search all possible configurations, but
this is computationally impractical. Therefore, we propose
a heuristic to first decompose the big problem into several
smaller ones regarding the urban regions and then search for
the best location and size decision for each region.

A. SPEED-UP TECHNIQUES
Before explaining our proposed optimizationmethod, we first
present several observations which can be used to improve the
computation efficiency.

The first technique is related to partition the problem into
smaller sub-problems, i.e., partition the problem of site loca-
tion in the urban area into site locations for several sub-
regions. We observe that the construction of a new charging
station will affect the charging habits of surrounding users,
that is, it will affect the spatial-temporal charging demand
in a certain area, and then will affect the design of a solar
assisted charging station. Two charging stationswill not affect
each other in providing charging services if they are far from
each other. In fact, the reason is that users will not choose a
farther station for charging. The observation can be specified
as follows:

ρ+ = (ρ − {ρ(i,j)≤Rs}) ∪ {ρ
+

(i,j)≤Rs
} (18)

Cpr (ρ − {ρ(i,j)≤Rs}) = Cpr (ρ+)− Cpr (ρ
+

(i,j)≤Rs
) (19)

where ρ+ is the new strategy in the study area. ρ+(i,j)≤Rs means
the updated location plan of the previous plan ρ(i,j)≤Rs within
the Rs distance range of (i, j). The target value of the rest area
that excludes the new planned area will not be affected.
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The second observation is that users are more likely to
choose the location near the destination to park for daily
charging. The parking behavior of users will influence the
decision-makers to choose the appropriate locations for build-
ing charging stations, but the size of the solar energy system
in the charging station cannot affect the decision-making pro-
cess of the station location. Once the locations of the station
are determined, the optimal size of the solar assisted system
can be decided according to the users’ historical behaviors.
The observation can be modeled as bellow:

ρ+i,j = (li,j, si,j + ni,j) (20)

ρ+ = (ρ − {ρi,j}) ∪ {ρ
+

i,j} (21)

1ηCr = ηCr (ρ+)− ηCr (ρ) = 0 (22)

where ρ+i,j means the new plan by changing the size of the
solar assisted system for the station (i, j), ni,j is the changed
amount. The coverage parameter will not be affected by the
new plan ρ+i,j.

The last technique is introduced to find the optimal size of
each station. Based on the equation (17) and its constraints,
equation (23) can be derived as follows:

ESolari,j ≤
EUseSolari,j

β
≤
EDmdi,j

β
(23)

where EDmdi,j can be obtained from the charging demand
model. In the same way, based on the actual weather data
and solar energy system parameters, the unit output of solar
energy ESolarUniti,j can be obtained. The value range of the size
of grid cell (i, j) can be calculated by equation (24). This
greatly reduces the number of iterations to find the optimal
value.

0 ≤ si,j ≤
EDmdi,j

βESolarUniti,j

(24)

B. DECOMPOSING THE STUDY AREA
The non-linearity of the objective function makes it imprac-
tical to exhaustively search all possible solutions. In this
work, we decompose the problem into smaller ones based
on the first speed-up technique. Our approach is to use the
modified grid based on density-based spatial clustering with
noise (DBSCAN) algorithm [28] to cluster the candidate
charging demand cells by Algorithm 1. The algorithm clus-
ters the data points to separate the areas with high density
charging demands with the areas with low density charging
demands, and the clusters formed can have different shapes
based on the density of data points. The algorithm can also
identify data points as outliers that are in the low-density
regions which help to simplify the problem size by defining
outliers directly as the locations to build the station. The size
design of each independent grid cell can be carried out based
on the third speed-up technique.

Different clusters are captured by two parameters, the max-
imum distance eps between a pair of points and the minimum

number minPts of points required to form a dense cluster.
Algorithm 1 shows the process of clustering.

Algorithm 1 Density Based Clustering for Spatial Features
Input: L = {l1,1, l1,2, . . . , lI ,J }, eps,minPts
Output: Spatial features {cr1, cr1, . . . , crn}
1: The set of core points CPs← ∅;
2: The set of non core points NonCPs← ∅;
3: cluster number k ← 0
4: for each li,j ∈ {l1,1, l1,2, . . . , lI ,J } do

Find the points Nε(li,j) in the eps neighbourhood
5: if the number of neighbors |Nε(li,j)| ≥ minPts then
6: CPs← CPs

⋃
{li,j}

7: end if
8: end for
9: for each li,j ∈ CPs do

10: Find connected components of li,j
11: crm = k + 1
12: end for
13: for each li,j ∈ NonCPs do
14: if cluster k is an eps neighbor then
15: crm← k
16: else
17: crm←−1 // marked as an outlier
18: end if
19: end for
20: return {cr1, cr1, . . . , crn}

C. MODIFIED GRASP METAHEURISTIC
The above process decomposes the big planning problem
into smaller ones. Now we are to find the optimal planning
for each smaller region computed in the above step. Even
though, it is still not efficient to validate every solution to
find the optimal one in each smaller region. Therefore, we use
the modified meta-heuristic to solve the planning problem.
Our approach is essentially a GRASP [29] which is a multi-
start or iterative meta-heuristic. The method has two phases:
a construction phase and a local search phase, and the best
overall solution is kept as the final plan. The pseudo-code of
Algorithm 2 depicts the GRASP procedure, wheremaxIter is
the number of iterations, and λ is used as the initial seed for
the pseudo random.

1) CONSTRUCTION PHASE
The traditional execution of a GRASP starts with an empty
solution and the construction phase gradually builds a solu-
tion by adding a candidate element to a partial solution. In our
work, the main task in this phase is to select a feasible subset
of locations to build charging stations. However, if stations
are built one by one, each new solution requires an assessment
of all demands to determine which ones are allocated to
the new station, and it is highly probable that the generated
solution may not meet the constraints at the early stage.
Therefore, in the modified selection method, it is assumed
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Algorithm 2 Procedure for GRASP
Input: maxIter , candidates, Demands, λ
Output: Best Plan ρ
1: initLoc← FilterCandidate(candidates)
2: baseLoc← AssignService(initLoc,Demands)
3: bestPlan← SizeDesign(baseLoc,Demands)
4: nIter ← 0
5: while (nIter < maxIter) do
6: greedyPlan←GreedyRandamConstruct(bestPlan, λ)
7: localPlan← LocalSearch(greedyPlan,maxLSIter)
8: if Cpr (localPlan) < Cpr (bestPlan) then
9: bestPlan← localPlan
10: end if
11: nIter ← nIter + 1
12: end while
13: ρ ← extract the planning matrix from bestPlan
14: return ρ

15: end procedure

that charging stations have been established on all candidate
grid cells at the beginning of the algorithm, and the final
solution satisfying the constraint conditions is computed by
gradually removing the charging stations. Once the solution is
determined, the potential charging demands will be assigned
to the nearest stations if the demands are within its coverage
distance. The advantage of removing the stations is that it
reduces the computational overhead compared to select a
location to build a station, as it is only necessary to reallo-
cate the demands from the closed stations to other unclosed
stations. In order to build a restricted candidate list (RCL),
the potential locations to be included in the partial solution are
intelligently evaluated according to a greedy evaluation func-
tion combined with the second and third speedup techniques.
The limitation criteria of the list cardinality can be either
based on the number of elements or based on their quality.
The set CS will contain the candidate plans, which will be
used for the plan ρ. Once a feasible solution is obtained,
a local optimum solution is frequently achieved by applying
a local search method. The construction phase operations are
shown in Algorithm 3.

2) LOCAL SEARCH PHASE
Given a feasible solution obtained in the construction phase,
the local search phase consists of two steps. First, determine
the plan that must increase the value of the target function to
make a new plan. These build locations in the new plan are
labeled as critical. Second, change the status of critical loca-
tions based on constraints to make the final new construction
plan feasible. In our paper, a Large Neighborhood Search [30]
method is deployed and a local optimal solution is obtained
by investigating the neighborhood. The neighborhood action
is defined as switching states between two candidate locations
in different states at each time to ensure that the number of
station constructions remains the same. Then, the optimal

Algorithm 3 Greedy Randomized Construction
Input: basePlan, λ
Output: A greedy feasible construction plan greedyPlan
1: CS ← ∅
2: for each li,j ∈ L do
3: if li,j == 1 then
4: li,j← li,j − 1
5: Lgp← (l1,1, . . . , lI ,J )
6: if ηCr ≥ α then
7: CS ← CS ∪ {Lgp}
8: end if
9: li,j← li,j + 1
10: end if
11: end for
12: Create newPlan based on location plan L
13: 1C(L)← Cpr (newPlan)− Cpr (basePlan)∀L ∈ CS
14: Cmin

← min{1C(L)|L ∈ CS}
15: Cmax

← max{1C(L)|L ∈ CS}
16: RCL←{L∈CS|1C(L)≥Cmin

+λ(Cmax
−Cmin)}

17: Select an element L∗ from the RCL at random
18: Calculate the best size of L∗ and get the greedyPlan
19: return greedyPlan

solution of all iterations is taken as the best plan. The local
search phase operations are shown in Algorithm 4.

Algorithm 4 Local Search
Input: localPlan, maxLSIter
Output: Best local construction plan localPlan
1: initialize the set of neighborhood Nn, n = 1, . . . , nmax
2: while (lsIter < maxLSIter) do
3: n← 1
4: while n < nmax do
5: random choice a neighborhood Nm and generate the

Nm neighborhood plan neighPlan
6: if ηCr ≥ α and ηUS ≥ β then
7: if Cpr (neighPlan) > Cpr (localPlan) then
8: localPlan← neighPlan
9: n← 1

10: else
11: n← n+ 1
12: end if
13: end if
14: end while
15: lsIter ← lsIter + 1
16: end while
17: return localPlan

VI. CASE STUDIES
In this section, we evaluate the efficiency and effectiveness of
our proposed methods. The optimization methods are imple-
mented in python and the experiments are performed on a
machine with 4 Intel(R) Core(TM) i7-4790 CPU cores @
3.6GHz and 16G main memory.
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A. EXPERIMENTAL SETUP
For the study area, EV with longitudes between [116.0486,
116.7380] and latitudes between [39.6739, 40.1936] are con-
sidered which contains the main urban area of Beijing. The
GPS uses WGS-84 as the reference coordinate system. The
grid cell’s area is 300m × 300m. In such a way, the whole
area is partitioned into 200× 200 cells in total.
For planning parameters, the planning scheme is related

to the candidate locations, the minimum coverage rate α and
the minimum solar utilization rate β. In our data, some grid
cells have only a few times of parking behaviors in a long
time period. The first filter process for candidate locations is
that if a grid has more than 300 parking times per year, it is
selected as a candidate location to build a charging station.
The time step for the demand model and the solar energy
model is 15 minutes. The charging power Pcharge is 3.52 kW
(220V, 16A). The values of α and β in the experiments are
changeable to verify that different design goals lead to dif-
ferent solutions and will be discussed later. The construction
and maintenance cost Cco are assigned according to the latest
solar power system installation and maintenance costs [11]
and the electricity price is according to the Beijing electric
power policy [31]. This paper assumes that the lifetime of the
solar energy system is 20 years and that both the electricity
market price remains the same during the 20 year lifetime.
Through the average processing, the unit cost of solar energy
system Cassited is 0.75 CNY/kWh, the charging price Cch is
1.65 CNY/kWh, and the grid electricity price Cgrid is 0.9
CNY/kWh.

For algorithm parameters, we assume that all charging
stations have the same coverage radius r =1 km, which is
transformed to 3 cells in the grid map. This distance is in
line with user habits. Too long distance will reduce the user’s
convenience for charging, on the contrary, if the distance is
too small, the number of stations will increase, which will
result in higher construction costs. So eps in DBSCAN is set
to 3, andminPts is set to 1 to identify the demand location of a
single grid cell. For GRASP algorithm parameters, the correct
selection of the value of the RCL parameter λ is important to
achieve a good balance between the calculation time and the
quality of the solution. When λ is 1, it corresponds to pure
greedy construction, while λ = 0 is equivalent to a random
construction. In this experiment, the results only consider a
standard value of λ = 0.5 as a trade-off between intensifi-
cation and diversification. Additionally, the main parameters
that affect the speed of the GRASP depend on the size of the
candidate ncd in each spatial cluster. Specifically, the number
of max GRASP iterations maxIter and maxLSIter , are both
set to ncd , and the size of RCL is at most ncd if the candidate
plans satisfy the conditions.

B. EXPERIMENTAL RESULTS AND EVALUATION
1) CLUSTER RESULTS
The study areas after clustering are shown in Figure 4.
According to the number of elements and geographical
locations in each cluster, different clusters can be regrouped.

FIGURE 4. Cluster result. There are 26 clusters with different colors,
the maximum and the minimum number of each cluster are 22 and 1. The
black squares indicate 39 independent charging demand cells.

Based on the data and the information provided by Gaode
Map [32], we find that parking behavior is mainly distributed
near the city center, and there are several small areas in
the non-central areas. Most of the high and medium density
clusters are mainly public entertainment and shopping places,
such as parks, golf courses, and commercial streets. The
observation of outliers shows that there is no uniform way
to describe parking places. The reason is that EV users have
different lifestyles and different jobs, so there is no common
phenomenon.

2) ALGORITHM COMPARISON
The performance of the exhaustive method and metaheuris-
tic method are compared. Both methods use speed-up tech-
niques. Note that the exhaustive search method explores all
feasible plans satisfying the constraints, while our proposed
method only selectively visit a subset of the search space.
Table 3 gives the profits and the computation time to find the
optimal results for eachmethod. The cluster column gives the
ID of each cluster, and the amount column gives the number
of candidate stations for the corresponding cluster.

From the perspective of calculation accuracy, the result
obtained by the exhaustive search method is the global opti-
mal solution. In this case, our method can find the optimal
solution for all clusters. For computation time, due to the
complexity of the problem, with the increase of the number
of candidate cells in the cluster, the amount of computation
of both methods increases. The computation time of the
exhaustive search method increases much faster and fails to
produce any result (within 5 days) for the big clusters 17, 13,
and 5. The proposed method is able to finish within 6.5 hours.
With the increase of vehicle data in the future, both the
number of clusters and the number of candidate cells in the
cluster will increase, our method will be more applicable.
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TABLE 3. Algorithm comparison. Parameter α and β are both 0.6.

When the number of candidate cells in the cluster is less
than 5, the operation time is very similar.

3) FURTHER DISCUSSION
From the perspective of location selection, the resulted plans
tend to build only one solar assisted charging station to meet
the demands in a cluster, especially for a cluster with fewer
candidate cells or few parking events. The reason is that
the centralized construction scheme is more conducive to
gathering demands and improving solar energy utilization.
This phenomenon also appears in the cluster with large areas,
but due to the limitation of service capacity, several locations
will be selected to build charging stations. After the station
locations are determined, the charging demands of each sta-
tion can be obtained. We randomly select several stations and
report the average power demands in Figure 5.
Figure 5(a) shows the power demand profiles when Cpr

is positive and Figure 5(b) shows the profiles when Cpr is
negative. From Figure 5(a), the curves with a higherCpr value
fluctuate in a higher demand value range in the daytime.
The demands gradually rise during the day in the morning
and decrease in the afternoon. In contrast, when the Cpr is
negative as shown in the figure 5(b), the daytime demand is
relatively low, generally below 2500W , and the curves show
an upward trend from morning to night. Combined with the
geographic location information, the areas with high profit
are located at the workplace and business center and the areas
with low profit are mostly located at places such as parks.

FIGURE 5. The profiles of charging demands. (a) Demand profile with the
positive Cpr value, (b) Demand profile with the negative Cpr value.

FIGURE 6. Cpr of varying α and β. The value of β has a greater impact on
Cpr than α. When α is constant, as β decreases, the Cpr rises sharply
between 1 and 0.8, and then gradually rises with a stable slope.

In the construction process, as the number of EVs gradually
increases, the number of stations also increases. Due to the
different design targets, relevant decision parameters will also
change during the process. So we conducted experiments
with differentα andβ values to explore the impact of different
parameters on the planning results, as shown in Figure 6.

Although different values of α will affect the number of
stations and thus the demand value of each station, the clus-
tering process aggregates geographically adjacent charging
demands into one cluster, thereby making the number and
location of charging stations in a cluster relatively stable. For
β, based on existing data, excessive utilization rate setting is
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FIGURE 7. Oultiers’ Cpr of varying β.

not conducive to overall operations. The reason is that the dif-
ferent clusters or outliers have different demands, the impact
of β in each cluster is also different. Figure 7 depicts the
typical cases of outliers when β changes. From the overall
trend, the curves gradually decrease with an increase of β,
but the slopes are not the same. For example, the red curve
shows a good parabolic state, while the orange curve remains
unchanged after β is greater than 0.4. The reason is that when
β is equal to 0.4, the constraints can only bemet when the size
of the solar assisted system is at the minimum. As β continues
to increase, if the system can still meet the constraints, the size
will remain unchanged and Cpr will remain constant.

VII. CONCLUSION
This paper proposes an optimization model to plan the loca-
tions and sizes of solar assisted EV charging stations in a city
area. The main novelty of this paper is that the optimization
model considers the interaction between location selection
and size design of charging stations. We proposed a modi-
fied metaheuristic solution with three speedup techniques to
improve the computation efficiency in exploring a large state
space for optimization. Experiments are conducted on real
EV history data from 297 users of an EV leasing company.
The results show that the proposed method can produce
high quality decisions within reasonable computation time.
The work of this paper will provide important information
for decision makers to integrate solar energy into the EV
charging infrastructure. For future work, we plan to study the
influence of varying charging demands with some probability
model. For the analysis of solar power generation capacity,
the accuracy can be further improved by incorporating the
shadow model of urban buildings and the loss model of
the system. In addition, as the number of electric vehicles
increases, effective strategies for charging management are
also a further research direction.
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