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ABSTRACT SNARE proteins, known as membrane fusion proteins, play a primary role to mediate vesicle
fusion. Loss of function of the SNARE protein can lead to a variety of diseases. A method to accurately
identify the SNARE protein is important and necessary. In this paper, we try different kinds of combinations
of sampling methods (the resampling, SMOTE and no sampling), feature extraction approaches (the
188D, K-skip-2-gram and CKSAAP) and distance measurements (Chebyshev distance, Euclidean distance,
Manhattan distance and Minkowski distance) to find a suitable model for identifying the SNARE proteins.
By doing extensive experiments, we construct a Manhattan distance based KNN model by combining the
CKSAAP feature extraction approach with no sampling method, which achieves the best identification
performance among all combinations. Finally, we compare our KNN based model with a deep learning based
model (called SNARE-CNN) from SN, SP, ACC and MCC four aspects, the experimental results show that
the performance of our model is better than that of the SNARE-CNN.

INDEX TERMS Distance measurement, feature representation, SNARE protein identification.

I. INTRODUCTION
SNARE proteins, known as membrane fusion proteins, play
a primary role to mediate vesicle fusion [1], [2]. Researchers
have found that loss of function of the SNARE pro-
tein can lead to a variety of diseases, such as neurode-
generative diseases, mental diseases, cancer, etc. [3], [4].
Therefore, SNARE proteins are very important for human
health and it is necessary to construct an accurate model
to identify them. Researchers have done a lot of related
works to identify the SNARE proteins from different
aspects [2], [5]–[12]. But most of the works are from
a biological point of view. As we know, machine learn-
ing algorithms have been widely used in the classifica-
tion problem and they have successfully been used to
identify different kinds of proteins [13]–[31], [66], [67].
Compared with the biological method, the machine learning
method can save time and inexpensive.

In this paper, we propose a machine learning model based
on KNN algorithm [32] to accurately identify the SNARE
proteins. First, the SNARE dataset constructed by [31] is used
to train and test the model. As the dataset is imbalanced,
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which means the number of negative instances is far more
than the number of positive instances. Two kinds of sam-
pling methods are adopted to balance the data set, which
are the resampling and SMOTE methods [33]. The resam-
pling method can achieve a balanced data set by enlarging
the minority class or condensing the majority class. In this
paper, the former is adopted. While the SMOTE method
synthesizes some new instances by interpolation based on
the original data in the minority class. First, we need to
know whether the resampling and SMOTEmethods are more
effective to identify the SNARE than no sampling method.
Second, to train the KNNmodel, features need to be extracted
from the SNAREproteins. There are a lot of feature extraction
methods proposed for identifying proteins [34]–[69]. In this
paper, three kinds of feature extraction methods are used,
which are the 188D [37], K-skip-2-gram [38] and CKSAAP
[39], [40]. The 188D method considers both the structure
of a SNARE sequence and the physicochemical property of
the sequence when extracting the features. The K-skip-2-
gram and CKSAAP only consider the structure of a SNARE
sequence. We need to determine which extraction approach is
the best for the identification. Finally, the KNN algorithm is
used to learn the model. As KNN uses the distance between
two instances to classify an instance, it needs some distance
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FIGURE 1. Overview of the framework for SNARE protein classification.

measurements. Four kinds of distances are used, which are the
Chebyshev distance, Euclidean distance, Manhattan distance
and Minkowski distance. We need to determine which one is
best to do the SNARE classification.

To solve the three problems, extensive experiments are
done. We try different kinds of combinations of the sampling
methods, feature extraction approaches and the distance mea-
surements. First, we find that the performance no sampling
method is always better than the resampling and SMOTE
methods for different feature extraction approaches and dis-
tance measurements. The SMOTE method shows better per-
formance when 188D and K-skip-2-gram feature extraction
methods are used. The resampling method is more suitable
for the CKSAAP method. Second, we find the CKSAAP
method is more suitable for the SNARE classification prob-
lem. Even though the 188D considers both the structure and
physicochemical property of a sequence, the CKSAAP only
considers the structure of a sequence. Finally, we find that
the Manhattan distance is the best among the four distance
measurements for identifying the SNARE proteins. In sum-
mary, we constructed a KNN model by combining the Man-
hattan distance, CKSAAP feature extraction approach with
no sampling method, which achieves the best identification
performance. Finally, we compare our model with a deep

learning based model called SNARE-CNN [31], the experi-
mental results show that the performance of our model is also
better than that of the SNARE-CNN.

The contributions of this work include (1) Extensive exper-
iments are done to test the performance of different feature
extraction methods, sampling methods and distance mea-
surements of the KNN algorithm to identify the SNARE
proteins. (2) Experimental results show that the performance
of the KNNmodel based onManhattan distance, no sampling
method and CKSAAP feature extraction approach is the best
one among all models. (3) Compared with a deep learning
based model named SNARE-CNN, the performance of our
model is better.

The rest of the paper is organized as follows. The data
set used for the experiments and the methods for identifying
SNARE proteins is introduced in section 2. The experimental
results are given in Section 3. Finally, we conclude our work
in Section 4.

II. METHODS
Figure 1 shows the framework for the SNARE protein clas-
sification. First, three kinds of feature extraction methods,
named 188D, k-skip-2-gram and CKSAAP are used to extract
the features from the SNARE data set. As the number of
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positive and negative instances in the dataset is imbalanced,
two kinds of sampling methods, which are the SMOTE and
resampling methods, are applied to the data set to make the
instances in the dataset balance. The original imbalanced data
set is also used (no sampling in figure 1). Then, the three
data sets are used to train the models by KNN algorithms,
respectively. Four kinds of distance measurements are used
to compute the distance between two instances in the data
set in KNN. Finally, the cross-validation approach is used to
evaluate the performance of the models.

A. DATASET
From the UniProt database, a set of SNARE proteins
are downloaded, which consists of the positive instances.
To build a precise classification model, a set of general pro-
teins are collected as negative instances, which have a similar
structure and function with the positive instances. The vesic-
ular transport proteins are chosen, whose number is much
larger than the positive instances. Finally, an imbalanced data
set is formed and used to construct the KNN models.

B. FEATURE EXTRACTION METHODS
1) 188D
Based on the composition of proteins and physicochemi-
cal properties, a 188D Feature Vector FV can be extracted
from a SNARE protein. The first 20 features, represented as
FV1, . . . ,FV20, are extracted based on the composition of the
amino acids and calculated by the following formula:

FVi =
ni
L

(i = 1, . . . , 20)

where L is the length of the sequence and ni is the number of
AAs in the sequence.

The 168 features left are extracted based on eight kinds
of physicochemical properties of the protein, such as the
hydrophobicity, polarity, polarizability, surface tension, sec-
ondary structure etc.. Each property contributes 21 features.
For example, Features from FV21 to FV41 are extracted based
on hydrophobicity property and are calculated as follows:

(FV21,FV22,FV23) = (
CH1

L
,
CH2

L
,
CH3

L
)

where CH1, CH2, and CH3 are the size of three groups.

(FV24, . . . ,FV28;FV29, . . . ,FV33;FV34, . . . ,FV38)

= (
DH11

L
, . . . ,

DH15

L
;
DH21

L
,

. . . ,
DH25

L
;
DH31

L
, . . . ,

DH35

L
)

where the DHij(i = 1, 2, 3; j = 1, 2, . . . , 5) represents the
sequence length, at which the 1st, 25%, 50%, 75%, and 100%
of AAs in three groups are located.

(FV39,FV40,FV41) = (
FH1

L − 1
,
FH2

L − 1
,
FH3

L − 1
)

where (L−1) represents the number of bivalent seeds and the
FHi(i = 1, 2, 3) represents the respective number of bivalent
seeds containing two AAs from different groups.

2) K-SKIP-2-GRAM
400 features are extracted based on the k-skip-2-gram model.
It considers the composition of any 2 amino acids whose
distance is less than k . The distance of two amino acids Ai
and Aj in a SNARE sequence is defined as:

DT
(
Ai,Aj

)
= j− i− 1

Skip(DT = a) of k-skip-2-gram model is defined as:

Skip(DT = a) = {AiAi+a+1|1 ≤ a ≤ k, 1 ≤ i ≤ L − a}

A set TSkipGram is defined as:

TSkipGram =

{
k⋃

a=1

Skip(DT = a)

}
The k-skip-2-gram feature sets can be calculated by the

following formula.

FVSkipGram =
N
(
AiAj

)
N
(
TSkipGram

)
where N (TSkipGram) is the total number of all elements in
the set TSkipGram, and N

(
AiAj

)
is the number of amino acid

subsequence of 2 length appearing in the set TSkipGram.

3) CKSAAP
CKSAAP computes the frequency for a pair of amino acids
separated by k other amino acids (k = 0, 1, . . . , 5). For
instance, in the case of k = 0, two amino acids are successive,
which can be denoted as AiAj. let f (AiAj) be the frequency of
AiAj appearing a protein sequence. As there are 20 kinds of
amino acids, there are 20× 20 = 400 possible combinations
of each two amino acids including the combination of itself.
CKSAAP calculates the frequency of occurrence for each
combination of AAs for a protein sequence, which is given
in the following formula.(

NAA
Ntotal

,
NAC
Ntotal

,
NAD
Ntotal

, . . . ,
NYY
Ntotal

)
400

where numerator denotes the combinations of the consecutive
AACs in the protein sequence, N is the length of the protein
sequence.

Suppose k = 5, the total number of CKSAAP features will
be 400× 6 = 2400.

C. SAMPLING METHODS
As the dataset is imbalanced, which can affect the perfor-
mance of the classification algorithm, we apply two kinds of
methods to balance the dataset namedResample and SMOTE.

1) RESAMPLE
Resample achieves the balance of data set by reducing the
number of majority samples which randomly removes some
majority samples to reduce the size of the majority class or by
increasing the number of samples in the minority class, which
oversamples the data in minority class. In this paper, we use
the latter one.
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2) SMOTE
The Synthetic Minority Oversampling Technique (SMOTE)
is a synthetic oversampling technology for minority class,
which is an improved solution to the random oversampling
algorithm. For each instance x in the minority class, SMOTE
calculates the Euclidean distance between x and all the other
instances in the minority class to determine its k-nearest
neighbors. Based on the imbalance ration, a sampling ration
N is set. Several instances are selected for x from its k-nearest
neighbors xn. Finally, a new instance xnew is constructed
according to x and xn according to the following formula.

xnew = x + rand(0, 1) ∗ |x − xn|

D. KNN ALGORITHM
The K Nearest Neighbor (KNN) classification algorithm,
is one of the most popular methods in data mining classifica-
tion technology. The main idea is that if most of the k nearest
neighbors of an instance to be classified in the feature space
belong to a certain class, then the instance to be classified
also belongs to the class. The KNN made the classification
decision only based on a small number of adjacent instances.
Because the KNN algorithm mainly depends on the limited
neighbor instances around, rather than identifying the class
domain to determine the classification, it is more suitable for
the data set with overlapping among different classes.

Themost important thing for KNN algorithm is the method
to measure the distance between two instances. Different
distance measurements can result in different set of k near-
est neighbors. In this paper, we use four kinds of distance
measurements, which are the Chebyshev distance, Euclidean
distance, Manhattan distance and Minkowski distance.

The Chebyshev distance is given by Formula 1

DChebyshev (x, y) = max
i

(|xi − yi|) (1)

The Euclidean distance given by Formula 2 is the most
familiar to us.

DEuclidean (x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2)

The Manhattan distance is given by Formula 3

DManhattan (x, y) = ‖x− y‖1 =
n∑
i=1

|xi − yi| (3)

The Minkowski distance is given by Formula 4

DMinkowski (x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

(4)

The x and y from Formula 1 to 4 represent two vec-
tors in the feature space and xi and yi are their coordinates
respectively.

III. EXPERIMENTS
In this section, we do four groups of experiments to test
the classification performance of KNN models combining
different kinds of distance measurements, feature extrac-
tion methods and sampling methods. Three kinds of feature
extraction methods used are the 188D, K-skip-2-gram and
CKSAAP. For each feature extraction method, three kinds
of sampling methods are used, which are the SMOTE and
resampling and no sampling methods. Four kinds of distance
measurements are used by the KNN algorithm to measure the
distance between two instances in the data set, which are the
Chebyshev distance, Euclidean distance, Manhattan distance
and Minkowski distance.

The Sensitivity (SN), Specificity (SP), Accuracy (ACC),
and Matthew’s correlation coefficient (MCC) are used to
evaluate the performance of all combinations of KNN mod-
els. The SN, defined by Formula (5), calculates the proba-
bility of actual positives correctly classified. The specificity,
defined by Formula (6), calculates the probability of actual
negatives correctly classified. The accuracy, defined by For-
mula (7), calculates the proportion of correct predictions to
the total number of predictions. The Matthews correlation
coefficient, defined by Formula (8), is a correlation coef-
ficient between the observed and predicted classifications,
whose range is between −1 and +1. The larger the value of
MCC is, the more match it indicates between the observation
and prediction.

SN =
TP

TP+ FN
(5)

SP =
TN

TN + FP
(6)

ACC =
TN + TP

TN + FP+ TP+ FN
(7)

MCC =
1− ( FN

TP+FN +
FP

TN+FP )√
(1+ FP−FN

TP+FN )(1+
FN−FP
TN+FP )

(8)

where TP represents the True Positive, FP represents False
Positive, TN represents true negative, and FN represents False
Negative.

The 10-fold cross-validation is used to evaluate the per-
formance of the classification results. By dividing the whole
data set into 10 folds, every 9 folds of the data set are used to
train the model and the 1 fold left is used to test the model.
10 classification results can be obtained. The final evaluation
result is calculated from the weighted average accuracy of the
10 results.

As the SMOTE and resampling methods are imposed
on the data set, we need to take some measures to prevent
the test data from being contaminated. In our experiments,
the SMOTE and resampling methods are only imposed on the
training set. After the KNN model is trained by the sampled
data set, the test data is used to test the performance of the
model just learned.
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FIGURE 2. Performance comparison for 188D of different distance measurements.

TABLE 1. Parameters set for the experiments.

Weka, which is a famous machine learning software,
is used to do the experiments. Details of the parameters used
in the experiments are shown in table 1.

A. PERFORMANCE OF 188D FEATURE SET
In this section, the 188Dmethod is used to extract the features
from the SNAREs data set. Then the SMOTE and resampling
methods are applied to balance the instances. After that,
we get two balanced data sets. Together with the data set with
no sampling, we get three data sets. Finally the KNN algo-
rithm is used to classify the three data sets by using different
distance measurements, which are the Chebyshev distance,
Euclidean distance, Manhattan distance and Minkowski dis-
tance. The experimental results are shown in figure 2.

The comparison results for the SN among different com-
binations of distance measurements and sampling methods
based on the 188D feature set are shown in figure 2a. It shows
that the performance of Chebyshev is the worst among all
distance measurements, while the performance of Manhat-
tan distance is the best. When Manhattan distance is used,
the resampled data set achieves the best performance, which
is 89%.

The comparison results for the SP among different com-
binations based on 188D are shown in figure 2b. It shows
that the performance of Chebyshev is the worst, while the
performance of Minkowski is the best. When Minkowski
distance is used, the data set with no sampling achieves the
best performance, which is 88.9%. The experimental results
show that the SP values computed based on the 188D feature
set with no sampling is the best among the three sampling
methods.

Figure 2c shows the comparison results of the ACC for
different distance measurements and filtering methods based
on 188D feature set. It shows that the Minkowski distance
achieves the highest accuracy based on the 188D feature
set with no sampling, which is 88.1%. The performance of
Chebyshev distance is the worst among the four distance
measurements. The experimental results also show that the

112926 VOLUME 8, 2020



X. Gao, G. Li: KNN Model Based on Manhattan Distance to Identify the SNARE Proteins

FIGURE 3. Performance comparison for K-skip-2-gram of different distance measurements.

ACC values computed based on the 188D feature set with no
sampling is best among the three kinds of sampling methods.
The SMOTE sampling method is in the second place and the
resampling method is the worst.

Figure 2d shows the comparison results of the MCC for
different distancemeasurements and samplingmethods based
on 188D feature set. It shows that the Minkowski distance
achieves the best MCC among the four distance measure-
ments. The highest MCC value is 69.3% in the case of 188D
feature set with no sampling. For Manhattan and Euclidean
distance, the values of MCC computed is much better than
that computed by the Chebyshev distance.

From the experimental results above, we can conclude that
for the 188D feature set, the performance of no sampling
method is the best among the three kinds of sampling meth-
ods. The Minkowski distance achieves the best performance
among the four kinds of distances for the KNN algorithm.
So theMinkowski distancewith no sampling is the bestmodel
among all combinations for the 188D feature set.

B. PERFORMANCE OF K-SKIP-2-GRAM FEATURE SET
In this section, the K-skip-2-gram method is used to extract
the features from the SNAREs data set. After the SMOTE
and resampling are applied to balance the instances, the KNN
algorithm is used to classify the two kinds of data sets and the

data set without sampling by using the four distance measure-
ments. The experimental results are shown in figure 3.

The comparison results for the SN among different com-
binations of distance measurements and sampling methods
based on theK-skip-2-gram feature set are shown in figure 3a.
It shows that the performance of Chebyshev is the worst
among all distance measurements, while the performance of
Manhattan distance is the best. When Manhattan distance is
used, the SMOTE data set achieves the best performance,
which is 87.4%.

The comparison results for the SP among different combi-
nations for K-skip-2-gram are shown in figure 3b. It shows
that the performance of Chebyshev is the worst, while the
performance of Minkowski is the best. When Minkowski
distance is used, the data set with no sampling achieves the
best performance, which is 89.3%. The experimental results
also show that the SP values computed based on the K-skip-2-
gram feature set with no sampling is the best among the three
sampling methods.

Figure 3c shows the comparison results of the ACC
for different distance measurements and filtering meth-
ods based on K-skip-2-gram feature set. It shows that the
Minkowski distance achieves the highest accuracy based
on the K-skip-2-gram feature set with no sampling, which
is 88.5%. The performance of Chebyshev distance is the
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FIGURE 4. Performance comparison for CKSAAP of different distance measurements.

worst among the four distance measurements. For K-skip-2-
gram feature set, the data set with no sampling achieves the
best ACC among the three kinds of sampling methods. The
SMOTE method is in the second place and the resampling
method is the worst.

Figure 3d shows the comparison results of the MCC for
different distancemeasurements and samplingmethods based
on for K-skip-2-gram feature set. It shows that theMinkowski
distance achieves the best MCC among the four distance
measurements. The highest MCC value is 70.1% in the case
of data set with no sampling. The performance of Chebyshev
distance is the worst.

From the experimental results above, we can conclude
that for the K-skip-2-gram feature set, the performance of
no sampling method is the best among the three kinds of
sampling methods. TheMinkowski distance achieves the best
performance among the four kinds of distances for the KNN
algorithm. So the Minkowski distance with no sampling is
the best model among all combinations for the K-skip-2-gram
feature set.

C. PERFORMANCE FOR CKSAAP FEATURE SET
In this section, the CKSAAP method is used to extract the
features from the SNAREs data set. After the SMOTE and
resampling methods are applied to balance the instances,

the KNN algorithm is used to classify the two kinds of data
sets by using different distance measurements. The experi-
mental results are shown in figure 4.

The comparison results for the SN among different com-
binations of distance measurements and sampling methods
based on the CKSAAP feature set are shown in figure 4a.
The results show that the SMOTE method achieves the best
performance. The Resampling method is in the second place.
For the kind of distance measurements, the Manhattan dis-
tance achieves the based performance while the Chebyshev
is the worst among all distances. The best SN is achieved by
the SMOTE method combined with the Manhattan distance,
which is 84.3%.

Figure 4b shows the comparison results of the SP for
different distancemeasurements and samplingmethods based
on CKSAAP feature set. It shows that the performance of no
sampling is the best. The resampling method is in the second
place and the SMOTE method is the worst. For no sampling
method, the SP computed by Minkowski distance is the best,
which is 96.3%.

Figure 4c shows the comparison results of the ACC for
different distancemeasurements and samplingmethods based
on CKSAAP feature set. It shows that theManhattan distance
achieves the highest accuracy based on the CKSAAP feature
set with no sampling, which is 92.8%. The performance of
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FIGURE 5. Comparison between the KNN models with the SNARE-CNN.

Chebyshev distance is the worst among the four distance
measurements. The experimental results also show that the
ACC values computed based on the CKSAAP feature set with
resampling method is better than that computed based on the
SMOTE method.

Figure 4d shows the comparison results of the MCC
for different distance measurements and sampling methods
based on CKSAAP feature set. It shows that the Manhat-
tan distance achieves the best MCC among the four dis-
tance measurements. The highest MCC value is 79% in the
case of CKSAAP feature set with no sampling. The results
also show that the ACC values computed based on the
resample method is better than that computed based on the
SMOTE method.

The Manhattan distance achieves the best performance
among the four kinds of distances for the KNN algorithm.
So theManhattan distance with no sampling is the best model
among all combinations for the CKSAAP feature set.

D. COMPARISON WITH THE OTHER ALGORITHM
Based on the three groups of experiments above, we can
conclude that, the data set with no sampling is the best among
all sampling method. And we have found three best models
for the 188D, K-skip-2-gram and CKSAAP feature sets. The
first model is based on the Minkowski distance for 188D
feature set. The second model is also based on theMinkowski

distance for K-skip-2-gram feature set. The third model is
based on the Manhattan distance.

In this section, we compare the performance of the three
models with a deep learning method (CNN) proposed by
[31], which is based on the PSSA feature extraction method.
A CNN network is trained based on the PSSA feature set
extracted from the SNARE sequences.

The comparison results for SN, SP, ACC and MCC are
show in figure 5. Figure 5 shows that only the model con-
structed based on the CKSAAP feature and Manhattan dis-
tance achieves better performance than the CNN model in all
of the four aspects. The performance of data set balancing
methods is affected by the feature set. Our experimental
results show that the performance of SMOTE filter is better
than that of Resample filter in the case of 188D and K-skip-2-
gram feature sets, but is worse in the case of CKSAAP feature
set. But in this paper, the performance of no sampling method
is the best.

IV. CONCLUSION
In this paper, we try different kinds of combinations of dis-
tance measurements for KNN algorithm, feature extraction
methods and filter methods to classify the SNARE proteins.
We find that the model constructed based on the CKSAAP
feature with no sampling andManhattan distance achieves the
best performance, which is better than a deep learning based
model SNARE-CNN.
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