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ABSTRACT This paper proposes a new privacy-preserving framework to perform rare variant case-control
association tests with information provided by two parties: a Genomic Research Unit (GRU)with sequencing
data from individuals affected by a disease D (cases); a Genomic Research Center (GRC) with sequencing
data from healthy individuals (controls). To identify genes with rare variants involved in D, GRU needs to
compare cases against controls using association tests (genome-wide association study). Themain originality
of our proposal is twofold. First, it positions GRC as a proxy between GRU and the server. Doing so makes
it possible to use classical cryptographic tools to securely conduct association tests with no computation
complexity increase, contrarily to actual state of the art proposals which are of very high complexity being
based on homomorphic encryption, for instance. In particular, we show how sensitive data confidentiality can
be ensured with secret key based cryptographic hashing with no need to modify statistical algorithms. In our
protocol the server simply conducts statistical analyses on partially hashed data. Secondly, we introduce a
novel privacy constraint: GRU’s identity should remain unknown to the server as this knowledge can give
it clues about GRU’s data (e.g., diseases and genes of interest). We exhibit how Pretty Good Privacy (PGP)
can be used to solve this problem. We illustrate our protocol in the case of one rare variant association test,
the Weighted-Sum Statistic (WSS) algorithm, carried out on real genetic data. This secure WSS achieves the
same accuracy as its nonsecure version with no increase of complexity. Furthermore, we establish that our
protocol can be extended to the different rare variant association tests available in the literature.

INDEX TERMS Data confidentiality, data outsourcing, genome-wide association study (GWAS), privacy,
secure GWAS platform, weighted-sum statistic (WSS).

I. INTRODUCTION
Nowadays, genomic data are getting widely collected, stored,
processed and shared for various genomic applications.
Among them, case-control association studies play an impor-
tant role to understand disease etiology [1]. In these studies,
genetic data are compared between cases affected by the
disease of interest and unaffected controls. The genetic data
compared consist on common variants that are tested indi-
vidually or rare variants within a gene that are considered
together. These data can be obtained by genotyping SNP-chip
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(for the common variants) or by genome sequencing (com-
mon and rare variants are assessed). Because of the volume
of genetic data to process and the number of genes to test,
association tests require the use of high computation and stor-
age capacities (e.g., cloud computing). That is particularly
the case of the Weighted-Sum Statistic (WSS) algorithm [2]
which objective is to decide if rare variants located within
a gene are involved in disease susceptibility. Roughly, for
a given gene, the test compares the burden in rare variants
in case and control samples through the computation of
a score for the different individuals. The power to detect
an association if it exists depends on the sample size and
increases with increasing sample sizes.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 112515

https://orcid.org/0000-0002-1131-4115
https://orcid.org/0000-0002-9996-1084
https://orcid.org/0000-0001-9310-9176
https://orcid.org/0000-0003-4117-2813
https://orcid.org/0000-0002-5643-0224
https://orcid.org/0000-0002-2874-1922


R. Bellafqira et al.: Privacy-Preserving GWAS for Rare Mutations

Sequencing cost has considerably decreased over the last
few years but still remain prohibitive on large samples of
individuals as required in association studies. In order to limit
the cost, control data can be shared between different research
groups who work on different diseases.This was for exam-
ple the solution used by the Wellcome Trust Case-Control
Consortium in 2007 where they compared genome-wide data
from 14,000 patients affected by 7 different diseases against
3,000 shared controls (see [3]). In this work, we are interested
by a such scenario where a Genome Research Unit (GRU)
that has collected sequence data on cases wants to com-
pare them against sequence data from controls collected by
a Genomic Research Center (GRC). This will require data
sharing between the GRU and the GRC and this data sharing
is usually done in open environments; data being exchanged
through internet and often processed by a third-party (e.g.,
server). This obviously induces several security problems,
especially in terms of privacy and data confidentiality. These
aspects are reinforced based on the facts that genetic data are
very unique to an individual [4] and that health-care records
are very valuable for hackers. IBM recently reported that their
value on the black market is as much as 60 times higher
than that of stolen credit cards [5]. There is thus an interest
to develop secure methods to allow collaborative association
studies.

A. RELATED WORK
Securing shared or externalized genetic association studies
does not simply mean securing the storage and transmission
of genomic data [25], [26]. Indeed, parties involved in such
studies may not want that the other parties access their data,
the objective and the conclusions of the study, these ones
being highly valuable assets. At the same time, the trust one
can have in a cloud service provider is quite relative. Thus,
it is the data analysis algorithm itself and the way it is shared
between parties that have to be secured. Different methods
have been proposed in order to perform privacy-preserving
association studies, especially for common variants (these
studies are usually referred to as Genome-Wide Association
Studies, GWAS). We propose to distinguish the meth-
ods depending on the cryptographic techniques they rely
on: Differential Privacy (DP), Homomorphic Encryption
(HE), Secure Multiparty Computation (SMC) and Secure
Hardware (SH).

Many privacy-preserving GWAS are based on differential
privacy [27] due to the ineffectiveness of data anonymization
techniques like k-anonymity [28], [29] or l-diversity [30] as
demonstrated in [31]. Basically, DP adds a random noise
to real data in order to ensure individuals’ privacy. In [6],
a solution allows researchers to perform exploratory analysis
in a differentially private way, including the computation of:
i) the number and location of the most significant SNPs to
a disease, ii) the p-values of a statistical test between a SNP
and a disease, iii) any correlation between two SNPs, and iv)
the block structure of correlated SNPs. Uhler et al. [7] pro-
pose a differentially private release of aggregate GWAS data.

They provide DP versions of the χ2-statistic test and of
the minor allele frequencies (MAFs) test. Tramèr et al. [8]
build on the notion of Positive Membership Privacy along
with a weaker adversarial model also known as relaxed DP.
In the common adversarial model: the semi honest adversar-
ial model, where entities follow a given protocol but may
attempt to derive additional information about data of other
entities (e.g., some individuals who participle in the study).
In the weaker adversarial model, the most appropriate adver-
sarial setting is searched for by bounding the adversary’s
knowledge in order to better preserve the utility of data.
Simmons et al. [32] introduce a computational GWAS frame-
work that adapts DP principles to protect private phenotype
information (e.g., disease status), while correcting for pop-
ulation stratification at the same time. The authors of [9]
developed a new statistic tests for private hypothesis testing.
These statistics are designed specifically so that their asymp-
totic distributions, after accounting for the noise added for
privacy concerns, match the distributions of the classical
(nonprivate) χ2 statistic test. Similar methods: RandChi and
RandChiDist, have been proposed in [10]. In a more general
way and as pointed out in [10], it is inherently challenging
to use DP techniques for GWAS. The noise added to the
original data reduces the utility of data and makes accurate
statistical analysis much harder. The level of noise depends
on the dataset and on the study’s objective and also has to be
refined when more data are added.

Homomorphic encryption (HE) is another mechanism used
to protect genomic data. HE allows performing linear opera-
tions, such as additions and multiplications over encrypted
data while ensuring that the decrypted results are equal
to the ones carried out on clear data [33], [34]. Recently,
many methods to conduct privacy-preserving computation of
GWAS using homomorphic encryption have been proposed
[17]–[19]. In [17], authors developed a method that allows
secure computation of basic statistics which are commonly
used in genetic association studies such as χ2-statistic and
Cochran-Armitage Test for Trend (CATT). However, this
method is no practical due do its storage and computation
complexities.Wang et al. [16] adopted homomorphic encryp-
tion on rare variants to perform exact logistic regression.
Kim and Lauter [18] proposed a scheme that allows secure
computation of MAFs, and the χ2-statistic using homomor-
phic encryption. Even though they use a specific encoding
technique to improve the work presented in [17], they only
homomorphically compute the allele counts, and execute
other operations on decrypted data. Another work was pro-
posed by Zhang et al. [19]. This method allows the computa-
tion of χ2-statistic in the homomorphic domain. To compute
the division, a nonlinear operator, authors construct a lookup
table linking the division result to the nominator and denom-
inator of the corresponding simplified fraction. This table is
encrypted and only known by an authorized party.This one
receives the encrypted versions of the fraction numbers and
decrypts the results of the division based on the table without
the knowledge of the decryption secret key. Even though the
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proposed strategy performs well, it does not scale enough to
treat large-scale data. In [20], Lu et al. perform GWAS on
homomorphically encrypted genotype and phenotype data.
In this method, they use a packing technique for the frequency
table to improve the efficiency of their method in terms
of communication complexity compared to previous ones.
Nevertheless, this method is still limited to a small number
of variants.

Recently, Bonte et al. [21] proposed two solutions to
perform secure GWAS: (1) a somewhat homomorphic
encryption (HE) approach, and (2) a secure multiparty com-
putation (SMC) approach. These approaches aim at prevent-
ing data breaches when calculating the χ2-statistic with the
idea of not revealing any information other than whether
the statistics is significant or not (binary response). Their
approach perform better than previous ones taking advan-
tage of a data masking technique so as to perform secure
comparison of data between two parties. Unfortunately, while
being secure, these methods are most suited for GWAS based
on frequencies. Indeed, HE is limited when it comes to
statistical analysis processes that are already of great com-
plexity when applied over unencrypted data. Indeed, some
algorithms take several days to yield results [2] comparing
for instance users’ datasets element by element. To better
understand the extremely high computation and storage com-
plexity of HE cryptosystems, let us consider the optimized
FV cryptosystem [35]. As shown in [36], 707.07 MB of
clear data is encrypted into 5.82 GB that is to say a storage
overhead 8 times greater. A multiplication of two integers
in the clear leads to a multiplication in the cipher domain
with a cost of 116 ms on a computer with a processor
of 4.2 Ghz. HE also only secures linear operations. Nonlinear
functions can be approximated with a reduction of the analy-
sis accuracy as a consequence [37], or shared between parties
or with a trusted party at the price of a high increase of
communications. To sum up, today, homomorphic encryp-
tion based privacy-preserving GWAS are limited in terms of
practical use.

Several other SMC secure GWAS methods have been
proposed [11]–[15]. Kamm et al. [11] present a data col-
lection and computation system where genomic data are
distributed among several parties based on additive secret
sharing. SS allows several parties to jointly compute the
value of a target function f without compromising the pri-
vacy of its input data, its output being known to all parties.
Constable et al. [12] present a privacy-preserving GWAS
framework on federated genomic datasets. They secure the
χ2-statistic test on top of SMC systems based on garbled cir-
cuit. This latter allows any function to be computed between
multiple parties, hiding both their inputs from each other
and the outside world. However, this scheme cannot be gen-
eralized to more than two participants. Zhang et al. [13]
propose a secret sharing based SMC approach to secure the
χ2-statistic test, MAF and Hamming distance (HD) compu-
tations. Contrarily to [12], this one can be scaled to more
than two parties. Cho et al. [14] describe a protocol for

large-scale genome-wide analysis using multiparty compu-
tation techniques. The GWAS method they focus on is a
method that enables the identification and the correction
for population stratification biases before computing CATT
statistics. Bloom [15] proposed a distributed algorithm based
on secure multiparty computation in order to secure a linear
regression. The works in [11]–[15] show better performance
than those based on Homomorphic Encryption. However,
they still have an important overhead in terms of commu-
nication complexity compared to the same computation in
a centralized nonencrypted environment. Thus, this higher
complexity hinders practical adoption of SMC solutions over
the large-scale genomic data.

To overcome these problems, a few numbers of solutions
based on the combination of encryption and hardware-based
technologies have been suggested. The basic idea is to
isolate sensitive data in a protected enclave that allows
secure computation. For instance, Chen et al. [22] present
a method based on AES encryption and Intel’s Software
Guard Extensions (SGX). Data are encrypted with AES
before being sent to SGX, where data are decrypted before
being securely processed. In [24], authors propose a hybrid
framework where several algorithms used in GWAS such as
Linkage Disequilibrium (LD) computation, Hardy-Weinberg
Equilibrium (HWE) test, CATT and Fisher’s Exact
Test (FET) can be securely performed on federated genomic
datasets. They exploit homomorphic encryption and SGX
due to the fact that HE allows to compute linear operation
over encrypted data in a secure way, especially, the sum
of all entities frequencies tables in secure way. Moreover,
HE allows to achieve randomness in encrypted data thanks
to its probabilistic properties. It is important to know that
[38]–[40] recently demonstrate that SGX is sensitive to
side-channel attacks. The consequence of these attacks and
their possible remedies is an open research problem.

Table 1 sums-up all the above methods accordingly the
GWAS algorithm they have been applied to. Most HE
cryptosystems that have been used are fully homomorphic
(they allow the computation of both addition and multipli-
cation), like BGV, YASHE and FV. Due to their complexity,
some other work have been proposed to exploit the Paillier
cryptosystem. This one is additive only. Other encryption
algorithms that have been used are AES and Lightweight
computational footprints (cryptosystems with low computa-
tion complexity). As wewill see in the following, our solution
simply uses SHA256 (Secure Hash Algorithm) and AES
(Advanced Encryption Standard), two well-known and fast
cryptographic mechanisms. It is also important to notice that
all these proposals do not consider mutualizing genotypes.
At the least, parties share frequency tables, after having
computed them locally on their respective data, that is to say
without sharing these data into a unique server for instance.
Moreover, all the methods developed so far considered single
marker tests where each marker (SNP) is tested individually.
These tests are not useful with rare variants as they will lack
power. Only in [16] is the case of rare variants considered
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TABLE 1. Previous research works in secure and privacy-preserving GWAS.

but the solution proposed is to still test for association at
the single locus but use exact logistic regression to deal with
parse data. None of the methods proposed solution to perform
rare variant burden test at the gene level.

B. CONTRIBUTIONS
In this paper, we present a new secure GWAS protocol
adapted to various GWAS statistical analysis, especially itera-
tive ones based on large sets of genotypes provided and shared
by different parties in open and nonsecure environments.
We were particularly interested by the analysis of sequence
data and testing association with rare variants since sequenc-
ing data are more informative than genotyping data used to
test for association with common variants and considered in
all the previous studies. Rare variants that can even be private
to a single individual more easily allow individual identifica-
tion than common variants. To test for association with rare
variants, they need to be considered in group within a gene
and a score is computed to measure the rare variant burden in
each individual and scores are then compared between cases
and controls. TheWeighted Sum Statistics (WSS) is an exam-
ple of method commonly used to test for association between

rare variants and disease. Like in common GWAS studies,
this protocol considers three distinct entities: a Genomic
Research Unit (GRU)with genomes of individuals presenting
a phenotype (case) who wants to conduct association studies
in collaboration with a Genomic Research Center (GRC)
who possesses genomes of healthy people (used as control),
using the large computation and storage capacities of a cloud
service provider (Server).

In our framework, in addition to the common security
constraints (all entities are considered as honest but curious
(HBC); none of the parties want to disclose their confidential
data), we introduce a new constraint: GRU does not want to
be identified by the Server. This constraint takes into account
the fact that most genomic research units are known for
the diseases they are studying. Under the HBC model, this
information can for example give clues to an attacker about
the name of a gene and its expression for the individuals
considered in a study.

The protocol we propose responds to these constraints and
more. One originality stands on the fact that GRC serves
as an intermediary, similarly to a proxy, in communica-
tions between all entities. By doing so, and as we will see,
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it becomes possible to come back to classical cryptographic
tools in order to secure the WSS algorithm, or any algorithm
working in a similar way. In particular, our solution takes
advantage of the combination of Pretty Good Privacy (PGP)
encryption with secure cryptographic hash Functions. Our
main idea is that GRC and GRU ensure data confidentiality
with the help of secure hash functions salted with a secret key.
By using the same hashed data values, GRC and GRU allow
the cloud server to conduct WSS counting operations on their
data without accessing to their clear text values. More clearly,
Server will run WSS on partially hashed data. On its side,
PGP is used to secure communications while considering
GRC as proxy. As we will see, GRC will never access GRU
data while Server will never know GRU’s identity nor his
confidential data. Compared to actual solutions, our protocol
preserves data and WSS result confidentiality with no WSS
computation complexity increase. It can be extended to any
statistical analysis equivalent to WSS, being iterative or not.

To go further, we extend our proposal under the malicious
security model. It is important to notice that all papers listed
in Table 1 as well as the vast majority of privacy-preserving
GWAS solutions, only consider the semi-honest security
model where it is assumed that parties will not alter data.
This model is less constraint-full than the malicious model,
and leads to computation and communication complexities
of lower orders of magnitude. We suggest considering the
case where Server is a malicious adversary, that is to say,
it can deviate from the protocol and fails the correctness of
the output or the input. To overcome this issue, we propose a
practical countermeasure based on the zero-knowledge pro-
tocol, capable for instance to detect if a malicious server
modifies the result of a GWAS study.

The rest of this paper is organized as follows: Section II
gives background information about secure cryptographic
hash functions, Pretty Good Privacy encryption and
Weighted-Sum Statistic algorithm. The details of the pro-
posed protocol are presented in Section III. Experimental
results and discussion are given in Section IV. Section VI
concludes this paper.

II. PRELIMINARIES
A. SECURE CRYPTOGRAPHIC HASH FUNCTION
A secure cryptographic hash function takes a set of characters
and maps it to a fixed length value (called a hash value).
An important property of such functions is that they are one
way: it is not possible to get an idea of the input of the
function from its output. The hash calculation can also be
made secret key dependent. For instance, to do so, a user just
has to compute the hash value of a piece of data concatenated
with a secret hash key Khash. In the following, the secret hash
value aH of a message a is given by

aH = hash(a||Khash) = SHA256(a||Khash) (1)

where || is the concatenation operator, and SHA256 is the
well-known secure hash algorithm standardized by National
Institute of Standards and Technology (NIST) [41]. For any
data of maximum 264 bits, SHA256 provides hash value
encoded on 256 bits. It has three properties: preimage resis-
tance, second preimage resistance, and collision resistance.
More clearly, from a given hash, it is extremely difficult to
retrieve the input message. In addition, for a given message,
it is extremely difficult to find another message with the same
hash as well as to find two different messages with same
hashes. Notice that the probability two messages lead to the
same hash value is 1

2128
≈ 2.9× 10−39.

B. PRETTY GOOD PRIVACY ENCRYPTION
Pretty Good Privacy (PGP) is a well-known secure protocol
adapted to the exchange of a large volume of data between
two parties. It relies on the combination of a public key
encryption (PKE) with a symmetric encryption cryptosystem
(see Fig. 1). As given in Fig. 1a, to send a message with PGP,
the emitter first symmetrically encrypts it with a secret key.
The same key will be used during the decryption process (see
Fig. 1b). Then, it asymmetrically encrypts this secret key by
the recipient public key and sends both pieces of information
(i.e., the symmetrically encrypted message and the asym-
metrically encrypted secret key). On its side, the recipient
first accesses the secret key by asymmetrically decrypting it

FIGURE 1. PGP protocol from the sender to the receiver.

VOLUME 8, 2020 112519



R. Bellafqira et al.: Privacy-Preserving GWAS for Rare Mutations

using his private key. It just has to use this key to finally get
access to the message. In this work, PGP is implemented with
RSA [42] and AES [43] algorithms, two well-known PKE
and symmetric encryption cryptosystems, respectively. RSA
is parameterized by a pair of keys (Kp,Ks) where Kp is the
public key and Ks the private key while the secret key of AES
is noted by KAES . For a given message m and a recipient A,
the PGP encryption is such as

(me,K e) = PGP(m,KA
p ,KAES ) (2)

where me is the AES encryption version of m and K e is the
RSA encryption of KAES . m is retrieved from me as follows:

m = PGP−1(me,K e,KA
s ) (3)

C. WEIGHTED-SUM STATISTIC ALGORITHM (WSS)
WSS is one commonly used rare variant association test that
was designed to identify the association between a pheno-
type and rare variants located in a region of the genome
(e.g., gene) using sequence data on cases and controls [2].
WSS tests whether there exists an enrichment in rare variant
in a gene of interest in cases compared to controls. The
input data are two WSS tables. One contains case data,
extracted from the database of the Genomic Research Unit
(case table:GRU .WSS), and the second table contains control
data provided by the Genomic Research Center (GRC .WSS).
As shown in Fig. 2, both tables hold the information about
genetic variants for one or more individuals. One line corre-
sponds to one variant uniquely indexed or identified by: the
chromosome (CHR) where it is located; its position in this
chromosome (POS); the reference allele (REF); the alternate
alleles (ALT ); and, the name of the gene (GENE). Following
these five columns is the list of genotypes for the sample of
individuals (see Pi and P′j in Fig. 2). The genotype of a patient
at a given position is given by a positive integer indicating
the number of alternate alleles the patient has. ‘‘0’’ indicates
that both chromosomes of this patient contain the reference
allele at this position, ‘‘1’’ indicates that the individual is
heterozygous with one REF and one ALT and ‘‘2’’ indicates
that the individual is homozygous with 2 ALT alleles. If data
is missing then the value is ‘‘−1’’.

FIGURE 2. Aggregation of cases and controls tables, i.e., of GRU .WSS and
GRC .WSS respectively, in order to produce the WSS table that servers will
use as input of the WSS algorithm.

The WSS algorithm requires first to select genomic posi-
tions within the gene where there are variants of interest
(based on their predicted effect on the gene protein product

and on their frequencies) and then to construct a genetic score
for each individual based on their genotypes at these differ-
ent genomic positions and to contrast these genetic scores
between cases and controls. To better explain how the WSS
algorithm works and its complexity, let us consider one gene
that contains v genomic positions where there are variants
of interest. The first step consists in merging GRU .WSS and
GRC .WSS tables in a singleWSS table. To do so, and as illus-
trated in Fig. 2, individual information on the same variants
are grouped together. Genetic scores are then computed as a
linear combination of the number of rare alleles carried by
the individual at each of the v variants weighted by the minor
allele frequency at this position in the control group. The idea
is to give more weight to the least frequent variants since
these variants are expected to be more often deleterious and
thus more likely involved in disease. All individuals affected
and unaffected are ranked according to this genetic score and
the sum of ranks Sobs for affected individuals is calculated.
To test the null hypothesis H0 that the gene is not associated
to the disease, a permutation procedure is then used where
the case/control status are permuted between individuals N
times and the sum of ranks Srep is recomputed each time to
obtain the distribution of S under H0. A p-value which is
the probability to reject H0 given H0 is true is estimated by
determining how many time the Srep value obtained on the
permuted data exceeds Sobs. The null hypothesis is rejected
if this p-value is less than a fixed threshold value α. Since
many different tests are performed, it is necessary to account
for multiple testing and fix a very small α value, typically
in the range [10−5, 10−8]. The WSS algorithm works in four
iterative steps. We herein describe them in details in order to
give an idea about WSS complexity.

1) For each variant i ∈ {1, 2, · · · , v}, we calculate a
weight wi that depends on the allele frequencies

wi =
√
niqi(1− qi) (4)

where: ni is the number of individuals genotyped for
the ith variant (cases and controls), qi =

mi+1
2di+2

where
di is the number of control individuals genotyped for
the ith variant, and mi is the number of minor alleles
observed at the ith variant in the control individuals.

2) A genetic score is computed for each individual j:

sj =
v∑
j=1

gij
wi

(5)

where gij is the genotype of individual j for the variant i
(it takes values 0, 1 or 2 depending on the number of
minor alleles).

3) Individuals are ranked accordingly to their genetic
scores (sj) and the rank sum x for affected individuals
(cases) is calculated

x =
∑

j∈Cases

rank(sj) (6)
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4) A standard permutation test [44] is used to compute an
empirical p-value. The statuses (case/control) are per-
muted for all individuals and steps 1 to 3 are repeated
k times to obtain k rank sums x1, x2, · · · , xk . These
values are compared to the observe rank sum x and
the number of permutations k0 where it exceeds x are
determined to obtain the p-value:

p− value =
k0 + 1
k + 1

(7)

where k0 is the number of permutations that give a rank
sum xl at least as extreme as x, and k is total number of
permutations (this is a number that will determine the
maximum level of significance that can be reached).

III. PROPOSED PRIVACY-PRESERVING WSS ALGORITHM
A. GENERAL GWAS FRAMEWORK AND THREAT MODEL
The scenario considered in order to conduct an outsourced
GWAS study is described in Fig. 3 where both GRUs and
GRC send their data to a server. Once Server has performed
the computation and obtained the p-value results, it sends
them to the GRUs. In such a framework, and as seen in
Section I, different threats have to be considered. Beyond
common security needs such as data confidentiality, integrity
and availability [45], data privacy is of major concern.

FIGURE 3. General framework of outsourced GWAS-WSS.

The GRU .WSS, GRC .WSS and WSS tables contain pieces
of information that can be used to identify individuals [46].
Indeed, they provide the genotypes of several individuals
for a set of variants, identified by their position (POS) on a
specific chromosome (CHR) (see Section II-B and Fig. 2).
Moreover, information is provided on the gene that contains
the variants. As a consequence, CHR, POS as well as GENE
are very sensitive pieces of information from a privacy point
of view. They constitute a potential leak of information with
important consequences for an individual and his/her relatives
and penalties for institutions [4]. Nevertheless, it is important
to notice that knowing genotypes with no information about
the gene, the chromosome or the variants they belong to, it is
not possible to infer information about individuals. The result
of a WSS test along with the knowledge of the gene GRU
is interested in, also leak important information [45]. Unfor-
tunately, in the classic framework depicted in Fig. 3, Server
knows the identity of GRU, by definition. As a consequence,

it has clues about the disease the GRU study focuses on, and
so knows the p-values that measure the degree of association
between all genes and this disease. This can both lead to
patient re-identification (if data were taken from a database
related to this disease) and to an intellectual property breach
about the association of the gene X with the disease Y . As we
will see in the next Section III-B, we propose a novel architec-
ture to overcome this problem. It is important to notice that,
in a WSS study, even if the server has some knowledge about
the study results (i.e., p-values) and about unlocalized WSS
genotypes, it can not infer significant information without
knowing details about the variant and the gene name.

Beyond the sensitivity of WSS data, in our framework,
we further assume that first GRC and Server are honest but
curious and that they do not collude. More clearly, both of
them may try to infer information about confidential data but
they will not exchange information they have to keep secret.

To sum up the above discussion, to outsource a WSS com-
putation in such an open environment, the following security
constraints have to be considered:

1) Confidential data of GRU (resp. GRC) that can help
to identify individuals should not be disclosed to GRC
(resp. GRU) and Server.

2) Server should have no idea about the gene GRU is
working on, nor on the GRU identity.

3) GRC should not know the results of the WSS (p-values
of a set of genes) due to the fact it knows the GRU iden-
tity and thus the disease the GRUmight be interested in.

In the next section, we propose a new framework that satisfies
these constraints while securing the WSS algorithm. As we
will discuss in Section III-B, the following framework can
be extended to any other statistical analysis processes close
to WSS, these ones being also concerned by the above con-
straints and using the same type of inputs.

B. PROPOSED SECURED WSS ALGORITHM
The implementation of our framework will guarantee that
all point-to-point communications in-between parties are
secured with common security mechanisms (e.g., user
authentication, access control policy, firewalls, SSH protocol
and so on). Furthermore, in order to escape a man-in-the-
middle attack, we assume that the key setup works correctly
and that all entities obtain the correct encryption key which
can be enforced with appropriate use of Certificate Authori-
ties and/or a Public Key Infrastructure.

As stated above, the framework we propose takes into
account a new constraint: Server should not be able to identify
GRU, as this knowledge can give clues about the possible
disease of the genotyped individuals. To achieve this goal,
and as depicted in Fig. 4, we suggest that GRC plays the
role of a ‘‘proxy’’ between GRU and Server. More clearly,
all communications from GRU to Server and from Server to
GRU go through GRC. Server thus has no idea about the
GRU. In this situation, we take advantage of PGP in order
to ensure the confidentiality of GRC’s data. To do so and
as explained in Section II, GRU first AES encrypts his data
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FIGURE 4. Our secure GWAS-WSS framework.

based on an AES secret key it generates and, then sends these
data along with the AES secret key asymmetrically encrypted
with the Server RSA public key. Only Server will be able
to access the AES key and consequently decrypt the data.
Server can conduct this task without knowing the identity
of GRU. As GRC has no knowledge of the AES key nor
Server’s Private Key, it is unable to decrypt GRU data while
transmitting them to Server. The second important point to
manage is to make it possible for Server to compute the WSS
algorithm without being able to identify the variants of GRU
and GRC. To ensure the confidentiality of GRC and GRU
variants, the confidential attributes CHR, POS, REF , ALT
and GENE values in GRC .WSS and GRU .WSS tables are
substituted by secret hashed values, computed with a crypto-
graphic hash function based on a secret hash key Khash GRU

and GRC previously agreed on through the use of a secure
channel of communication. This step allows the creation of
secured WSS tables without compromising GRU and GRC
data security. Notice that genotype data in GRC .WSS and
GRU .WSS are not modified. As seen in Section I, this does
not endanger individual privacy as Server does not know the
real variant’s genomic location and alleles.

In the following, we give more details about this protocol
when only one GRU collaborates with GRC to conduct a
WSS study, but it can easily be extended to support several
GRUs. If GRC provides several data sets, it is of course essen-
tial that GRU selects the one most suited to its analysis and
especially that cases and controls are matched on ethnicity
to limit population stratification bias. Thus, let us consider
that one GRU wants to perform a WSS study with GRC for
a specific gene so as to see if this latter is associated to a
phenotype. Prior to any security consideration, we assume
that GRU and GRC have followed common guidelines to
produce their data, and that similar quality controls have been
applied on the data. Let us also assume that Server has a RSA
pair of key (K S

p ,K
S
s ). The main steps of our protocol which

are depicted in Fig. 5 works as follows:

1) Secret hash key management: GRC and GRU first
have to agree on a unique secret hash key Khash using
a secure key exchange protocol like the SFTP proto-
col [47].

2) Data confidentiality: GRU and GRC substitute the
confidential attribute values in their WSS tables (i.e.,
GRU .WSS and GRC .WSS, respectively), by secure

FIGURE 5. Different steps of our secured WSS protocol in the case of one gene.
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hash values using the secret hash key Khash. More
clearly, taking GRU .WSS as example, GRU computes:

hash(CHRi||POS i||REF i||ALT i||Khash)

||hash(GENE||Khash)

= vHi ||hash(GENE||Khash) = hi (8)

where the confidential attributes CHRi, POS i, REF i,
ALT i and GENE constitute what we name in the fol-
lowing the variant vi. It can be noticed that in (8),
we concatenate the secret hashes of the variant con-
fidential attributes with the one of the gene (i.e.,
‘‘GENE ′′). This is due to the fact WSS computes one
p-value per gene and not per variant (see Section II-B).
Server has thus to be able to discriminate the variants
located on the same gene. In the case GRU just wants
to study one gene, then hi can be refined in

hash(CHRi||POS i||REF i||ALT i||Khash) = vHi
= hi

The resulting hash tables are referred to asGRU .WSSH

and GRC .WSSH . An example of this process is
given in Fig. 6. Finally, GRC sends its hashed table
GRC .WSS to Server

FIGURE 6. Creation of the secure WSS table from the hashed versions of
GRU .WSS and GRC .WSS. hi and h′

i represent the hash values of
vi and v ′

i , respectively.

3) Data transmission-
a) GRC to Server: GRC sends GRC .WSSH to

Server. Due to the fact that the communication
betweenGRC and Server is point-to-point, and by
definition secured (see above), there is no need to
use PGP.

b) GRU to Server: GRU securely sends its secured
table GRU .WSSH to Server using PGP. To do so,
it generates the PGP symmetric key KGRU

AES . Then
it entirely PGP encrypts them, that is to say (see
Section II-B).

(GRU .WSSH ,e,K e)

= PGP(GRU .WSSH ,K S
p ,K

GRU
AES )

where K S
p is the Server RSA public key. Next,

GRU sends (GRU .WSSH ,e,K e) to Server through
GRC so as to preserve its privacy.

4) WSS computation- When Server receives (GRU .
WSSH ,e,K e), it first decrypts the AES key KGRU

AES from
K e using its RSA secret keyK S

s . Then, it AES deciphers
GRU .WSSH ,e to get access toGRU .WSSH . Server also
gets the data fromGRC. As shown in Fig. 6, Server cre-
ates the WSS hashed table (WSSH ) from GRU .WSSH

andGRC .WSSH (see Section II-C). Due to the fact that
genotype data are not encrypted, Server can directly
apply WSS on WSSH . Indeed, the WSS algorithm is
not modified. It will simply work with hashed values
instead of real values, by comparing hashed values of
genes to group variants and hashed values of variants
to group genotypes.

5) Transmission of WSS result- Once Server obtains the
WSS results, that is to say the Gene’s WSS p-value
(see Section II-C), it AES encrypts it using the GRU
AES key (KGRU

AES ) and sends it to GRU through GRC.
Finally, GRU just has to decrypt this piece of data using
the same AES Key to get access to the results of its
WSS study. By doing so, its identity is never revealed
to Server.

Notice that, in the case GRU wants to analyze several genes,
it will receive as many p-values from Server. In order to
generalize this approach to more than one GRU willing to
pool their data for more powerful statistical studies, all GRUs
will follow the same steps as above:

i) They hash their sensitive data (variants) by using GRC
secret key Khash. Since all of them have access to the public
key of Server, they encrypt their WSS table with PGP param-
eterized with their respective AES key and the public key of
Server.

ii) The encrypted data are sent to Server through GRC.
iii) As shown in Fig. 4, Server decrypts the PGP encrypted

WSS.GRU tables and merges them with theWSS.GRC table.
iv) Finally, Server runs the WSS algorithm, encrypts the

results using the AES Key of each GRUs before sending it
through GRC. The results received by each GRU contains
only the p-values associated to the genes that particular GRU
provided.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed secure GWAS framework was tested on
real genetic data: exome data were compared between (1)
100 healthy individuals from the FrEx project [48] that served
as GRC control data and (2) 59 individuals affected by a
rare disease sequenced independently to the FrEx data (GRU
cases). Cases and controls were sequenced on the same
platform (CNRGH, Evry, France) at different times and using
the Agilent SureSelect Human all exon V5 capture kit for the
cases and the Agilent SureSelect Human all exon V5+UTR
capture kit for the controls. Sequence data were processed
using the exome analysis platform developed at CNG, which
follows GATK best practices. Coverage/depth statistics were
as follow: for each sample a minimum of 20X coverage for
80% of the targets was obtained and the average sequencing
depth was of at least 70 to 80X. Polymorphism detection for
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each sample was performed using read mapping procedure
onto the reference genome (hg19) followed by ‘‘SNP calling’’
algorithm implemented in GATK/samtools software.
Stringent quality controls were performed after variant and
genotype calling. Only genotypes with min GQ ≥ 20 and
min DP ≥ 10 were kept and the other genotypes were set to
missing. Variants failing any of the following thresholds in
any of the two datasets were discarded from both GRC and
GRU datasets: min callrate ≥ 0.9, HQ variants (as define in
ExAC: 80% of genotype with DP > 10 & GQ > 20, at least
one variant genotypewith DP> 10&GQ> 20), minQD≥ 2,
min inbreeding coef≥−0.8, ABhet in the range [0.25; 0.75],
min MQRanSum ≥ −12.5, max FS ≤ 60 for SNV or ≤200
for INDEL, max SOR ≤ 3 for SNV or ≤10 for INDEL,
min MQ ≥ 40 for SNV or ≥10 for INDEL, min ReadPos-
RankSum≥−8 for SNV or≥−20 for INDEL. Note that each
party is expected to perform this same QC on its own dataset
and send to the other party the list of variant sites excluded
(only chromosome, position, reference and alternative alleles
and no individual data).

In our example, a total of 11196 genes contained at
least two qualifying variants and were tested for association.
Qualifying variants kept in the analysis were those with an
expected effect on the encoded protein (i.e., variants that were
annotated as transcript ablation, splice acceptor or donor,
stop gained or lost, start lost, frameshift, inframe insertion
or deletion and missense) and variants with a Minor Allele
Frequency below 0.05.

To compute the genetic score, missing genotypes were
replaced by the most frequent genotype in the sample at the
variant position. The WSS algorithm was run on each gene
with a maximum of 109 permutations, and the overall runtime
was 10 hours and 18minutes on a server with 56 processors at
2.40 GHz and 512 GB RAM running on Ubuntu 16.04 LTS.
Since in our implementation no encrypted data are used in the
actual computation, runtime is the same as in the classical
implementation of the algorithm. The only difference is an
overhead of a few seconds to hash, encrypt and decrypt the
input tables. Furthermore, the WSS p-values obtained for
each gene are similar to the ones obtained from doing the
same test on non-distributed data.

To determine if batch effects could be a concern linked to
the fact that cases and controls were not sequenced together,
we produced the corresponding QQ-plot as suggested in dif-
ferent works [49]–[51] and we computed an inflation fac-
tor [52]. This inflation factor was obtained by transforming
the observed p-values into one degree-of-freedomχ2-statistic
and computing the median of these values divided by the
expectedmedian of the corresponding one degree-of-freedom
χ2 distribution.

Visual inspection of the QQ-plot (see Fig. 7) suggests that
the stringent QC performed was efficient at correcting for
batch effects and it even leads to conservative results with
an inflation factor below 1 (λ = 0.75). This was however a
favorable situation as cases and controls were sequenced on

FIGURE 7. Quantile-Quantile plot of the WSS test p-values obtained
when comparing exomes from 59 cases coming from one project against
100 controls coming from another project. Cases and controls were
sequenced on the same sequencing platform but at different times and
using different capture kits. The same variant calling pipeline was used
and stringent QC were performed. Results are presented for each of the
11196 genes that contain at least two qualifying variant for the
association test. The genomic inflation factor is λ = 0.75..

the same platform with capture kits that were only slightly
different.

A. COMPUTATION AND COMMUNICATION COMPLEXITY
On the GRU andGRC sides, the computation complexity cor-
responds to the WSS table hashing and encryption processes.
Notice that SHA256 and AES computation complexities are
low and increase linearly with the size of the WSS table.
To give an idea, it takes about 0.53s to both hash and to
AES encrypt the WSS table of 406 gene and 733 patients.
Regarding Server, this one has to: 1) decrypt the GRU .WSS
table, 2) merge GRU .WSS and GRC .WSS into the com-
plete WSS table and 3) perform the WSS algorithm before
AES encrypting the WSS results. Here, the complexity of
step 2) and 3) are the same as working with data in their clear
form. The complexity overhead stands on the AES decryption
of WSS tables; complexity which is quite close to the AES
encryption process.

One can also notice in this Table 2 that ourWSS implemen-
tation was parallelized in order to increase its speed. As seen
in Section II-C after computing the rank sum x at the step 2,
the status (case/control) is permuted k times so as to compute
the p-value.

To take advantage of a server with multiple process-
ing units (e.g., PU1,. . . ,PUn), this permutation test can
be separated into k/n parts of n permutations, namely
{x1,j, . . . , xn,j}j=1..k/n where xi,j is the jth rank-sum permu-
tation computed at processing unit PUi (see Section II-C).
As the processing units PU1,. . . ,PUn can run in parallel,
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the p-value computation at step 4 (see Section II-C) becomes
as follows:

p− value =

k/n∑
j=1

n∑
i=1

(x > xi,j)+ 1

k + 1
(9)

where k is the number of permutations. Therefore, the use of
parallel computation significantly increases the WSS algo-
rithm speed, as experimentally shown in Table 2.

TABLE 2. Computational costs of the WSS algorithm with and without
parallelism.

The communication complexity of our secure WSS algo-
rithm for GRU or GRC is bounded by O(n) bits where n is
the size in bits of theWSS table. Compared to the nonsecured
WSS algorithm, the communication overhead corresponds to
the size of the hash key Khash and to the RSA encryption of
the AES key. This overhead does not depend on the size of
the WSS table and is very small. Therefore, it is negligible
compared to the rest of the WSS data to transmit.

B. DISCUSSION AND SECURITY ANALYSIS
The following analysis considers the semi-honest adversary
model where it is assumed that parties involved in the protocol
do not collude but try to infer information about sensitive
data; that is to say GRU and GRC data. In our scheme,
the confidentiality ofWSS tables during their communication
is ensured by the AES cryptosystem, the security of which
has been demonstrated in [43]. GRC will never have any
clues about the GRU data, these being PGP exchanged with
Server. Once decrypted on the Server side, the confidentiality
of the sensitive attributes of these tables (e.g., CHR, POS,
GENE and so on, see Section III-B) stands on the secure
hash function SHA256, the security level of which has been
investigated in [53]. It is not possible for Server to retrieve
the original sensitive attribute values from their hash values
without the knowledge of the hash Key. This key is only
known from GRC and GRU. Notice that, the fact GRC sends
several times its data to Server for different studies is not a
problem at the condition a new secret hash key is used. Doing
so makes the computation of SHA256 values semantically
secure (i.e., the same variant has different hashes values for
distinct studies). Notice that, as GRC has no knowledge about
GRU AES key (KGRU

AES ), it can not access to the hashed GRU
table nor to the results provided by Server.

Beyond data confidentiality, one must also consider
statistical inference techniques that can be used for the

re-identification of genomic data donors. These attacks have
been extensively investigated [31]. They depend on the
a priori knowledge one can have of the frequencies of
genotypes for given variants or a gene. Homer et al. [46]
showed that inference techniques could be used to identify
the presence/absence of an individual in a genomic dataset
from aggregate statistics (e.g., allele frequencies). In [4],
authors presented an attack for genomic data sharing beacons
(publicly available genomic databases). This attack aims at
seeing if an individual is in a beacon or not. To do so,
they assume that the attacker has the genomic profile of an
individual and a VCF file [54] listing all the variants for this
individual. From the variants, and more specifically from the
heterozygous alternate alleles of the victim, the attacker gen-
erates some queries he next addresses to the beacons. Based
on the responses, he conducts a statistical hypothesis test so
as to decide if the victim is present in a particular beacon.

In our framework because GRU and GRC hash their confi-
dential variants’ values, Server is not able to conduct such
an attack. In fact, Server has no idea about the variants
and the genes being evaluated. This statement is valid at
the condition GRU or GRC do not collude with Server. For
instance, if Server and GRC collude, they have access to the
AES and hash keys and can consequently breach GRU data
confidentiality. Nevertheless, it is hard to believe that GRC
or Server would collude, as their reputations are invaluable
assets.

Although Genomic Research Units (GRUs) are known for
the diseases they are working on, that is to say the genes
that they more frequently focus on, Server cannot deduce
any clues from GRU identity due to the fact Server only
communicates with GRC; GRC which acts as a proxy.

To go further, one can notice that all papers listed
in Table 3, as well as the vast majority of genome privacy
solutions, only consider the semi-honest security model. This
one assumes that all entities involved follow the protocol and
will not try to alter data or the result of a process. At the same
time, under this model, solutions are significantly easier to
instantiate with computation and communication of smaller
complexities than under the malicious model. Under this
latter model, there is no guaranty that the association test or
patient information are not going to be altered. For instance,
Server could modify theWSS algorithm or change the correct
value of the p-value. To overcome this issue and to extend
our framework under such a malicious model, we propose a
zero-knowledge protocol. In this one, GRC sometimes plays
the role of GRU andGRC at the same time. By doing so, GRU
sends to Server both the GRU .WSS and GRC .WSS tables for
which GRC has already the knowledge of the result (i.e.,
the p-value). If GRC finds that the p-values computed by
Server did not match the pre-computed p-values, it can then
deduce that Server is malicious.

It is important to notice that our framework is not limited to
secure WSS association tests, it can easily be extended to any
other GWAS statistic algorithms that rely on the same kind
of data. CAST, SKAT [55] and SKAT-O [56] are association
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TABLE 3. Comparison of the most representative genomics privacy methodologies. Columns correspond performance criteria. Meaning of the acronyms:
(Security) - Sh - semi-honest model - NC noncollude model; (overhead) L.S.O: low storage overhead, H.S.O: high storage overhead, L.T.O: low time
overhead, H.T.O: high time overhead, L.T.O: low communication overhead, H.T.O: high communication overhead.

tests that can be implemented in our framework. Another
useful method that could be implemented is Principle Com-
ponent Analysis (PCA). This statistical method, run before
theGWAS algorithm itself, can ensure that themerged dataset
can be used to perform such an analysis. Indeed, a PCA
where GRU and GRC data are separated indicates that any
signal obtained through GWAS is unreliable and results from
divergent quality of the data or population stratification.

The pieces of data they rely on andwhich are sensitive from
a confidentiality/privacy point of view can also be replaced by
secure hash values.

V. COMPARISON TO THE EXISTING SOLUTIONS
Comparing in terms of performance our framework with
other proposals from the literature is a nontrivial task because
each work in the genome privacy does not necessarily secure
the same process. For this reason, we compare whenever is
possible the secure versions to the nonsecure versions of the
same functionality. Inspired by [57], we choose different cri-
teria aiming at capturing different aspects related to security,
efficiency, and data utility. They correspond to:

A. PERFORMANCE CRITERIA
• Privacy Overhead. It quantifies the overhead intro-
duced by the security mechanisms used to secure an
association test. All solutions given in Table 3 have
been analyzed in order to assess their efficiency in terms
of communication, time and storage overhead in com-
parison with their nonsecured counterpart. We quan-
tify these performances by means of three values:
Communication - L.C.O: Low Communication Over-
head vs. H.C.O: High Communication Overhead;
Storage - L.S.O: Low Storage Overhead, H.S.O: High
Storage Overhead; Time - L.T.O: Low Time Overhead,
H.T.O: High Time Overhead.

• Utility Loss. This criterion evaluates the impact of
privacy tools on the utility of the association test.
This measurement also includes the overall flexibility of
the proposed solution with the intended task. We quan-
tify the utility loss on two levels: High or Low.

• Security model. It indicates which security model has
been considered by the authors: semi-honest model or
malicious model.

As shown in table 3, all methods based on differential
privacy (DP) induce a utility loss compared to the same
process over clear data. This is due to the fact these schemes
add a noise to the data. Homomorphic encryption (HE) can
help to solve this problem but at the price of significant
computational and storage overheads. Most of the time,
they are impractical for real life applications [58]. Secure
multiparty computation (SMC) constitutes a nice alternative
due to its lower computational overhead. However, garbled
circuit-based need complex and optimized circuit design lim-
iting its flexibility and usability, greatly. On its side, secret
sharing involves huge communication overhead and is not
suitable for client server architecture. Secure hardware-based
approaches, like SGX based techniques, isolate sensitive data
into a protected enclave for secure computation. However,
they remain sensitive to side-channel attacks [40]. Notice that
the full extent of SGX security has yet to be explored.

Compared to the previous solutions, our framework is
based on PGP and SHA256, two cryptographic mechanisms
of very low complexity, contrarily to HE. Furthermore,
we do not intrinsically modify the association test algorithm.
Sensitive data in terms of confidentiality are substituted by
secret hash values. Thus, and as shown in Section III, our
framework preserves the accuracy of the association test. That
is not the case of DP [7], [8], [32]. Server can also conduct
the WSS algorithm without the need of additional communi-
cation as required in approaches based on SMC [11]–[15],
[21] or to encrypt homomorphically the genotypes as pro-
posed in [18]–[21], [24] which leads to high computation and
storage complexity. Thus, our solution has no loss of accuracy
and insignificant overheads (in memory, computation and
communication) compared to the original WSS algorithm.

B. STATISTICAL POWER CRITERIA
Implementations of secured association tests proposed in
the literature have considered single variant association tests
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that are mostly performed on genotyping data. In our work,
we have considered rare variant association tests where,
rather than testing each variant individually, we grouped them
within a unit of analysis, here the gene. Rare variant associ-
ation tests explore alternative genetic architectures for com-
mon diseases than the classical� common disease-common
variant� model that was considered before. Indeed, differ-
ent real examples and simulation studies have shown that
rare variants might contribute more than common variants
to common diseases [59]. To study the impact of these rare
variants on disease susceptibility, it is necessary to sequence
the genome of individuals and the sharing of sequence data
is even more problematic than the sharing of genotyping
data since sequence data contain information on all the
genetic variants present in an individual genome including
deleterious variants possibly involved in monogenic diseases
that the individual could develop in the future and could
transmit to offspring. It is therefore important to specifically
address the problem of rare variant association tests as we
have done here in a general framework that could also inte-
grate common variant tests. This is the case in our proposed
framework that could easily be extended to include other
statistical tests and measures considered in previous works
such as χ2-statistic, Fisher’s Exact Test, Logistic regression,
MAF test, Cochran-Armitage Test for Trend, Goodness of
Fit, Hardy-Weinberg Equilibrium. In the same way, we have
only implemented one rare variant association test here but
our framework is general enough to allow the easy imple-
mentation of other rare variant association tests including
variance component tests that are widely used in rare variant
association studies [60].

Contrary to the WSS test we have implemented here, some
of the tests can be adjusted on covariates such as age or
gender. Information on these covariates for each individual
could be transmitted by the GRU to the GRC and to the GRC
to the Server together with the WSS tables. Some particu-
lar covariates on which adjustment could also be required
to avoid false positives due to population stratification are
leading principal components (PCs) from the principal com-
ponent analysis performed on genotypes data of both cases
and controls. To obtain these leading PCs, a possibility will be
to add ancestry informative SNPs and exchange information
on individual genotypes at these SNPs to perform principal
component analysis on the Server. This will however involve
the sharing of genetic data. Another possibility could be to use
spectral graphs in a manner similar to the approach suggested
by Bodea et al. [61] or the singular value decomposition
suggested by Artomov et al. [62]. This will however require
some further developments that are beyond the scope of this
paper. Another concern when comparing sequence data of
cases and controls that were not generated together is the
possibility of systematic bias due to batch effects. The prob-
lem is even more drastic when different platforms are used to
sequence cases and controls. Different studies have evaluated
these biases and proposed some solutions to reduce them
[49]–[51]. Strict quality control is key in this process and it

is also important to visualize QQ-plot in order to diagnose
any inflation of the statistics. We have illustrated this in the
example provided and shown that with the strict QC parame-
ters we used the QQ-plot was not inflated. In this example
however, cases and controls were sequenced on the same
platform and only the capture kits were slightly different.
In less favorable conditions, it might be necessary to test
different QC parameters to determine the best combinations.
This would require some extra-computations and a lighter
version of the test where cases and controls statuses are not
permuted should perhaps then be considered to fix the QC
parameters. It might also be necessary to pre-select some
different sets of parameters with different levels of QC and
evaluate the level of inflation by computing a statistics similar
to the genomic inflation factor [52].

VI. CONCLUSIONS
In this paper, we have proposed a new privacy-preserving
GWAS framework that allows performing in a secure way
association tests similar to the WSS algorithm. Its main
originality relies (1) on a Genomic Research Center which
acts as proxy in order to preserve the privacy of Genomic
Research Units, (2) on Pretty Good Privacy to secure com-
munications and (3) on cryptographic hash function to ensure
the confidentiality of sensitive data in WSS input tables. The
security analysis of our solution demonstrates that it is secure
under the honest but curious adversarial model and robust
to statistical inference attacks. We also have extended our
framework under the malicious security model by means of
zero-knowledge protocol. Experimental results conducted on
real genomic data demonstrate that the proposed solution
achieves the same performances and accuracy as the nonse-
cured WSS algorithm. Consequently, it can be used in real
world environments contrarily to other proposed solutions
based on Homomorphic encryption. Furthermore, this solu-
tion can be extended to any other GWAS algorithms similar
to the WSS algorithm. Future works will focus on adapting
our protocol considering that parties can collude.
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