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ABSTRACT In this work, we develop a new method for estimating the mean and standard deviation of
normally distributed populations when errors exist in the sample. The proposed estimators are asymptotically
unbiased if all errors are outlying errors (i.e. all errors lie outside a region defined by the parameters of normal
distribution). However, the proposed method requires having an upper bound for the percentage of errors in
the sample. The proposed method is compared with the already existing and commonly used estimators in
terms of bias, mean square error, and Pitman closeness criterion. The proposedmethod is found to be superior
to the others when the sample size is not too small. A simulation study is designed to test the performance of
proposed estimators whenmost but not all errors are outlying errors. The findings of the simulation study also
indicate the superiority of the proposed method when the sample size is moderately large. As an application,
we use our method in Phase I of designing a control chart to improve its performance. We apply the method
on a dataset where the robustness of our proposed method is tested (and compared with the other estimators)
against the presence of outlying errors in Phase I data. In the findings of the application, we notice that
proposed estimators were the only ones that identified out of control data points in Phase II when Phase I
samples are contaminated with the errors.

INDEX TERMS Normal distribution, parameter estimation, robust estimators, control charts, process
monitoring.

I. INTRODUCTION
The sample mean (x̄) and standard deviation (s) are usually
used as estimators for the population mean (µ) and stan-
dard deviation (σ ), respectively, in various applications of
statistical inference. For instance, these estimators are used
in hypotheses testing, statistical process control, and outlier
detection. However, the sample mean and standard deviation
are very sensitive to outliers, thus the presence of errors in
the sample can significantly and negatively affect the bias
and mean square error of these estimators. Robust estima-
tors are the current tools in modern statistics for estimating
the parameters of a distribution in the presence of errors.
[1], [2], [3], [4], [5], [6] and [7] presented methods
for applying robust estimators in statistical inference and
its applications. In particular, [3] developed a modified
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version of the Z-score method that depends on robust esti-
mators for outlier detection in normally distributed samples.
These estimators are the median and the median absolute
deviation from the median (or as defined by [8] MAD = k ×
median(|xi− x̃|) where x̃ is the sample median, k = 1

8−1
(
3
4

)
and8−1 (.) is the inverse cumulative distribution function of
standard normal distribution). Note that median andMAD are
usually used in robust estimation since they have the highest
breakdown point (50%) and the sharpest influence function’s
bonds. However, they have low Gaussian efficiency (64% for
median and 37% for MAD) as indicated by [8]. In statis-
tical process control, robust estimators are used in deter-
mining the control limits of control charts (i.e. in Phase I).
[9] presented a comparison of robust estimators of standard
deviation in normal distributions within the context of qual-
ity control. References [10] and [11] used the median for
designing control charts to reduce the influence of outliers.
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References [12] and [13] used MAD for designing con-
trol charts when the assumption of normality is violated.
Reference [14] used Tukey’s outlier detector to reduce the
effect of errors in Phase I data on determining the control
limits.

The bias of robust estimators is usually negligible when
the percentage of errors in the sample is relatively small.
However, for a large percentage of errors, robust estimators
can be significantly biased. In this research, we propose new
asymptotically unbiased estimators for the true mean and
standard deviation of normally distributed populations when
outlying errors exist in the sample. In addition, we use our
estimators in determining the control limits of control charts
when errors exist in Phase I data.

We compare our estimators with the already existing and
commonly used estimators in terms of bias, mean square
error, and Pitman closeness criterion. Pitman closeness cri-
terion, presented by [15], is defined as follows: x̂1 is a better
estimator for x than x̂2 if P(|x̂1 − x|< |x̂2 − x|) > 0.5.
The paper is organized as follows:

• Section II explains the notations and provides definitions
related to this work.

• Section III presents the main results and is organized
as follows. In subsection III-A, we derive upper and
lower bounds for the true mean and standard deviation
of normal distribution in the presence of errors. The
formulas we derive in subsection III-A are essential in
the development of most of our later results. In subsec-
tion III-B, we develop our procedure that estimates the
true mean and standard deviation of normal distribution
in the presence of outlying errors. In subsection III-C,
we illustrate our method by a numerical example
where we apply the procedure on a simulated sample.
In subsection III-D, we compare our estimators to
other common estimators by their bias, mean square
error, and Pitman closeness criterion explained in [15],
[16] and [17].

• In section IV we compare our estimators to other esti-
mators in determining the control limits of control charts
before and after contaminating Phase I data by errors.

II. DEFINITIONS AND NOTATIONS
A. TRUE PARAMETERS
When a sample is selected from multiple populations in
which one of them is the population of interest, then the true
parameter is the value of the parameter computed only from
the population of interest. For example, if we are interested
in men heights but we have a sample of heights were 95% of
the sample is from men while the rest is from women, then
the true mean is the mean of men heights (i.e. the mean of the
population of interest).

B. OUTLYING ERRORS
An outlying error in a sample is an error that exists outside
a region defined by the true parameters of the population’s

assumed distribution. For example, one can define outlying
errors to be the errors that lie outside the region [µ−3σ ,
µ+ 3σ ] where µ and σ are true parameters of the normal
distribution.

C. NOTATIONS
The following table provides explanations of the main nota-
tions used in this research.

We follow the following general rules in our notations:
• Any statistic computed in the presence of errors will
be superscripted by ‘‘∗’’. For example, M∗ denotes the
median of the entire sample (including errors).

• We use the subscript ‘‘U’’ to denote the upper bound for
a variable or an unknown parameter. For example, αU
denotes an upper bound for the percentage of errors in
the data.

• We use the subscript ‘‘L’’ to denote the lower bound for
a variable or an unknown parameter. For example, UL
denotes a lower bound for the upper bound of the region
that defines the outlying errors.

III. MAIN RESULTS
A. UPPER AND LOWER BOUNDS FOR THE TRUE MEAN
AND STANDARD DEVIATION
In this subsection, we derive upper and lower bounds for the
true mean and standard deviation of normal distribution in
the presence of errors. i.e. we find µU , µL , σU , σL such that
µL ≤ µ ≤ µU and σL ≤ σ ≤ σU given that 0 ≤ α ≤

αU < 0.5. These bounds will be used extensively in the
following sections of this paper.

Let X be a random variable such that:

X ∼ (1− α)× N
(
µ, σ 2

)
+ α × D

(
θ̄
)

where N (µ, σ 2) is the normal distribution and D
(
θ̄
)
is

an unknown distribution (the distribution of errors) and
0 ≤ α ≤ αU < 0.5.
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Deriving µL and µU for X with known σ and unknown µ:
From the definition of the median we obtain:∫ M∗

−∞

(1− α)× N
(
µ, σ 2

)
+ α × D

(
θ̄
)
dx = 0.5

Let y =
∫ M∗
−∞

D
(
θ̄
)
dx, 0 ≤ y ≤ 1 then:∫ M∗

−∞

N
(
µ, σ 2

)
dx =

0.5−αy
1− α

Using the CDF of the normal distribution, we get:

0.5+ 0.5× erf
(
M∗ − µ
√
2σ

)
=

0.5−αy
1− α

µ = M∗ −
√
2σ × erf−1

(
α − 2αy
1− α

)
(1)

By maximizing and minimizing µ under the constrains 0 ≤
y ≤ 1 and 0 ≤ α ≤ αU < 0.5 we get:

µU = M∗ +
√
2σ × erf−1

(
αU

1−αU

)
(2)

µL = M∗ −
√
2σ × erf−1

(
αU

1−αU

)
(3)

Deriving σL and σU for X with unknown σ and µ:
Let the absolute divination from M∗(AD) of the errors

follow the unknown distribution D2(θ ). Then: AD (X) ∼
(1− α)×

(
N
(
µ−M∗, σ 2

)
+ N

(
M∗ − µ, σ 2

))
+α×D2

(
θ̄
)

Therefore:∫ MADM∗

0
(1− α)×

(
N
(
µ−M∗, σ 2

)
+N

(
M∗ − µ, σ 2

))
+α × D2

(
θ̄
)
dx = 0.5

Let w =
∫ MADM∗
0 D2

(
θ̄
)
dx, 0 ≤ w ≤ 1 then:∫ MADM∗

0
N
(
µ−M∗, σ 2

)
+N

(
M∗ − µ, σ 2

)
dx=

0.5−αw
1− α

Using the CDF of the normal distribution, we get:(
0.5+ 0.5× erf

(
MADM∗ +M∗ − µ

√
2σ

))
+

(
0.5+ 0.5× erf

(
MADM∗ −M∗ + µ

√
2σ

))
−

(
0.5+ 0.5× erf

(
µ−M∗
√
2σ

))
−

(
0.5+ 0.5× erf

(
M∗ − µ
√
2σ

))
=

0.5−αw
1− α

Which simplifies to:

erf
(
MADM∗ +M∗ − µ

√
2σ

)
+ erf

(
MADM∗ −M∗ + µ

√
2σ

)
=

1− 2αw
1− α

When replacing µ by its value in equation (1) we get:

erf
(
MADM∗
√
2σ

− erf−1
(
α − 2αy
1− α

))
+erf

(
MADM∗
√
2σ

+ erf−1
(
α − 2αy
1− α

))
=

1− 2αw
1− α

By using the KKT conditions we can maximize and minimize
the function f(σ , y, w, α) = σ under the constrains
0 ≤ y ≤ 1, 0 ≤ w ≤ 1, 0 ≤ α ≤ αU < 0.5, and

g(σ, y,w, α) = erf
(
MADM∗
√
2σ

− erf−1
(
α − 2αy
1− α

))
+erf

(
MADM∗
√
2σ

+ erf−1
(
α − 2αy
1− α

))
−
1− 2αw
1− α

= 0 (4)

We find the minimum at |y− 0.5| = 0.5, w = 0, α = αU and
the maximum at y = 0.5, w = 1, α = αU . Therefore, σL is
the solution of g(σL , 0, 0, αU ) = 0 or g(σL , 1, 0, αU ) = 0 and
σU is the solution of g(σU , 0.5, 1, αU ) = 0. By solving the
equation g(σU , 0.5, 1, αU ) = 0 we get:

σU =
MADM∗
√
2
÷ erf−1

(
0.5− αU
1− αU

)
(5)

However, solving the equation g(σL , 0, 0, αU ) = 0 requires
using numerical methods. In our analysis we solve the equa-
tion g(σU , 0, 0, αU ) = 0 by Newton’s method with an initial
guess:

σL0 =
MADM∗
√
2
×

erf−1
(
0.5−αU
1−αU

)
(
erf−1 (0.5)

)2 (6)

Deriving µL and µU for X with unknown σ and µ:
In equations (2) and (3), if we consider both µU and µL as

functions of σ , maximizing σ will result in an upper bound
as well as a lower bound for µ (i.e. µU and µL). Therefore:

µU = M∗ +
√
2σU × erf−1

(
αU

1−αU

)
(7)

µL = M∗ −
√
2σU × erf−1

(
αU

1−αU

)
(8)

Note: the new values of µL and µU that we derived are not
the maximum and minimum of µ. However, they do satisfy
the condition µL ≤ µ ≤ µU .

B. ESTIMATION PROCEDURE
In this subsection, we develop a procedure that estimates the
true mean and standard deviation of normal distribution in
the presence of outlying errors. The asymptotic unbiasedness
of our estimators requires the following conditions to be
satisfied in the given sample:
• (1− α) × 100% of the sample follows a normal distri-
bution. Where 0 ≤ α ≤ αU < 0.5 and αU is known.
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TABLE 1. Comparison of the bias and mean square error for several estimators of µ using set A of samples.

TABLE 2. Comparison of the bias and mean square error for several estimators of σ using set A of samples.

• The α × 100% of the sample that doesn’t follow
the distribution of the rest of the sample lies out-
side the region [L, U ] where L = µ+ Zl × σ ,
U = µ+ Zu × σ , Zu > Zl and Zl, Zu are
known.

• The size of the sample is not too small. The accept-
able size required depends on the values of αU, Zl, Zu.
The simulation provided in the Appendix presents
the amount of bias for various sizes under different
values of αU.
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TABLE 3. Comparison of the bias and mean square error for several estimators of µ using set B of samples.

TABLE 4. Comparison of the bias and mean square error for several estimators of σ using set B of samples.

When a sample satisfies the conditions presented above,
we can conclude that no errors exist in the region [L, U ].
Therefore, any subset of the sample that lies inside the

region [L, U ] will follow a truncated normal distribution.
Hence, after finding any region that lies inside the region
[L, U ], all that remains is to find asymptotically unbiased
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estimators for the parameters µ and σ in a truncated normal
distribution.

Finding a region that lies inside [L, U ]:
We find a region [LU ,UL] such that it lies inside the region

[L, U ] (i.e. LU > L and UL ≤ U ). By definition, L = µ
+Zl × σ , U = µ + Zu × σ . We can easily find an upper
bound for L and a lower bound for U as follows:

LU = µU + Zl × σU ,Zl ≥ 0 (9)

LU = µU + Zl × σL ,Zl < 0 (10)

UL = µL + Zu × σL ,Zu ≥ 0 (11)

UL = µL + Zu × σU ,Zu < 0 (12)

where the values of µU , µL , σU , and σL can be found using
the equations (4), (5), (6), (7), and (8) in subsection III-A.
Note: the equations in subsection III-A require the values of
M∗ andMADM∗ of the population. We use the median of the
sample (M̂∗) as an estimator forM∗ and the median absolute
deviation from the median of the sample (M̂ADM∗) as an
estimator for MADM∗. Both estimators are asymptotically
unbiased.

Estimating µ and σ in the truncated normal distribution:
[18] derived the maximum likelihood estimators for µ and σ
of the truncated normal distribution and proved their consis-
tency. Therefore, the first estimators we propose in this paper
are the truncatedmaximum likelihood estimators (TMLEs) of
the normal distribution. However, we will also derive robust
estimators for µ and σ of the truncated normal distribution to
obtain good estimators when the region [L, U ] is not entirely
free of errors. Let Y be a random variable that follows a
truncated normal distribution with parameters µ, σ , LU , UL
where µ and σ are unknown and LU and UL are known then:

Y ∼
2× N (µ, σ 2)× I(LU ,UL )(y)

erf
(
UL−µ√

2σ

)
− erf

(
LU−µ√

2σ

)
Let LU = µ +Z1 × σ and UL = µ + Z2 × σ then:

Y ∼
2× N (µ, σ 2)× I(LU ,UL )(y)

erf
(
Z2√
2

)
− erf

(
Z1√
2

)
First, we find the first and third quartiles of Y (i.e. QT

1 and QT
3

respectively):
From the definition of the first quartile we obtain:∫ QT1

µ+Z1×σ

2× N (µ, σ 2)

erf
(
Z2√
2

)
− erf

(
Z1√
2

) = 1
4

Using CDF of the normal distribution, we get:

erf
(
QT1−µ√

2σ

)
− erf

(
Z1√
2

)
erf
(
Z2√
2

)
− erf

(
Z1√
2

) =
1
4

By solving for QT
1 we get:

QT1 = µ+
√
2σ × erf−1

(
1
4
erf
(
Z2
√
2

)
+
3
4
erf
(
Z1
√
2

))
(13)

Using the same approach we find QT
3 :

QT3 = µ+
√
2σ×erf−1

(
3
4
erf
(
Z2
√
2

)
+
1
4
erf
(
Z1
√
2

))
(14)

We observe that we can find Z1 and Z2 by solving the follow-
ing system of equations:

QT3 − Q
T
1

UL − LU

=

√
2× erf−1

(
3
4erf

(
Z2√
2

)
+

1
4erf

(
Z1√
2

))
Z2 − Z1

−

√
2× erf−1

(
1
4erf

(
Z2√
2

)
+

3
4erf

(
Z1√
2

))
Z2 − Z1

(15a)

UL + LU − QT3 − Q
T
1

UL − LU

=
Z2 + Z1
Z2 − Z1

−

√
2× erf−1

(
3
4erf

(
Z2√
2

)
+

1
4erf

(
Z1√
2

))
Z2 − Z1

−

√
2× erf−1

(
1
4erf

(
Z2√
2

)
+

3
4erf

(
Z1√
2

))
Z2 − Z1

(15b)

However, since QT
1 and QT

3 are unknown, we use the first
and third quartiles of the sample (Q̂T1 and Q̂T3 respec-

tively) as asymptotically unbiased estimators for QT
1 and QT

3 .
We use Newton’s method to solve for Ẑ1 and Ẑ2 with initial
guess Z10 = Zl and Z20 = Zu. After solving for Ẑ1 and Ẑ2
we use the definitions of UL and LU to solve for µ̂ and σ̂ and
we get:

σ̂ =
UL − LU
Ẑ2 − Ẑ1

, µ̂ = LU − Ẑ1 × σ̂ (16)

C. NUMERICAL EXAMPLE
In this subsection, our method is applied to a simulated
sample (provided in appendix B), where 80% of the sample
(240 values) is randomly generated from a normal distribu-
tion with (µ = 20, σ = 2). The remaining 20% (60 val-
ues) is randomly generated from a normal distribution with
(µe = 40, σe = 4). Note that the expected percentage of errors
in the region [µ− 2σ ,µ+ 2σ ] is almost zero. Therefore, our
method should result in good estimates if we use Zl = −2,
Zu = 2, and αU = 0.2.
• We compute the median and the median absolute devia-
tion from the median of the sample: M̂∗ = 20.5640 and
M̂ADM∗ = 1.8836.

• Using equation (5) we find σU = 3.8537.
• When solving the equation g(σU , 0, 0, αU ) = 0 in (4)
by the Newton’s method with the initial guess in (6) we
find that σL = 2.0195.

• Using equations (7) and (8) we find that µL =
19.3361 and µU = 21.7919.

• Using Zl = −2, Zu = 2 in the equations (10) and (11)
we find that UL = 23.3751 and LU = 17.7529.
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FIGURE 1. Output chart of Phase II data using uncontaminated Phase I
data.

FIGURE 2. Output chart of Phase II data using contaminated Phase I data.

• We exclude the values less than LU or greater than UL
from the sample. The new truncated sample contains
195 values.

• By applying the maximum likelihood method, we esti-
mate the parameters of the truncated normal distribution
using the new truncated sample. We find that µ̂1 =

19.8793 and σ̂1 = 2.1411, which are the first estimators
proposed in this paper.

• We compute the first and third quartiles in the new
truncated sample: Q̂T1 = 19.1115 and Q̂T3 = 21.3558.

• By solving the system of equations in (15) we find
Ẑ1 = −1.0052 and Ẑ2 = 1.6123.

• Using the equations in (16) we find that µ̂2 = 19.9120
and σ̂2 = 2.1479.

D. SIMULATION
In this subsection, we test our estimators and compare them
with other common estimators by simulation. We used 2 sets
of samples. Set A contains 105 simulated samples such that

(1− α)× 100% of the values were generated from a standard
normal distribution and the remaining α× 100% of the val-
ues were generated from a normal distribution with µ = 7,
σ = 1. Set B contains 105 simulated samples such that
(1 −α)× 100% of the values were generated from a standard
normal distribution and the remaining α× 100% of the val-
ues were generated from a normal distribution with µ = 4,
σ = 1.
We compare the estimators based on three measures which

are: bias, mean square error, and Pitman closeness criterion
in Pitman (1937). The ten estimators that we compare are
explained in the following table:

In the first four tables of Appendix A, we compare the bias
and mean square error for the estimators using two sets of
samples. Set A is used for the first two tables while set B
is used for the third and fourth tables. From the results we
observe the following:
• In both sets (A and B), the absolute mean bias of the
proposed four estimators (µ3, σ3,µ4, σ4) is significantly
less than the absolute mean bias of (µ1, σ1) and (µ2, σ2)
for all selected sizes and percentages of errors.

• In both sets (A and B), the MSE of the proposed four
estimators (µ3, σ3, µ4, σ4) is less than the MSE of
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TABLE 5. Breakdown of the probability that our estimator µ3 is closer to
µ than the other estimators (in set A).

TABLE 6. Breakdown of the probability that our estimator σ3 is closer to
σ than the other estimators (in set A).

(µ1, σ1) and (µ2, σ2) for all selected sizes and percent-
ages of errors.

∗ In set A, the absolute mean bias of our four esti-
mators (µ3, σ3, µ4, σ4) is close to the absolute
mean bias of (µ0, σ0) for all selected sizes and
percentages of errors. This indicates that our esti-
mators are almost unbiased even for a sample size
as small as 100 and a percentage of errors as
high as 15%.

∗ In set A, the MSE of the proposed TMLEs
(µ4, σ4) is less than the MSE of the proposed
robust estimators (µ3, σ3) for all selected sizes
and percentages of errors. This indicates that the

TABLE 7. Breakdown of the probability that our estimator µ3 is closer to
µ than the other estimators (in set B).

TABLE 8. Breakdown of the probability that our estimator σ3 is closer to
σ than the other estimators (in set B).

TMLEs (µ4, σ4) are more appropriate when all the
conditions of asymptotic unbiasedness are met.

∗ In set B, the MSE of the proposed TMLEs
(µ4, σ4) is more than the MSE of the proposed
robust estimators (µ3, σ3) for large and moder-
ate sample sizes and percentages of errors. This
indicates that the proposed robust estimators (µ3,
σ3) are more appropriate when the sample contains
non-outlying errors.

We also used the Pitman closeness criterion in [15] to
compare our estimator by the others. The remaining tables
of Appendix A show the probability that the proposed robust
estimators (µ3, σ3) are closer to the true parameters than
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TABLE 9. A sample of size 300 where 80% of the sample (240 values) were randomly generated from a normal distribution with (µ = 20, σ = 2). The
renaming 20% (60 values) were randomly generated from a normal distribution with (µe = 40, σe = 4).

each of the other estimators. From the tables we observe the
following:
• In both sets (A and B) the proposed four estimators
(µ3, σ3, µ4, σ4) are better than (µ1, σ1) and (µ2, σ2)
for all selected sizes and percentages of errors.
– The proposed TMLEs (µ4, σ4) are better than the

proposed robust estimators (µ3, σ3) in set A of sam-
ples but worse in set B of samples. This indicates
that the proposed robust estimators (µ3, σ3) per-
form better when the sample contains non-outlying
errors.

IV. APPLICATION
In this section, we apply our method on a data set from [19].
We aim to develop statistical control charts for the flow width
of the resist in a hard-bake process used in semiconductor
manufacturing (cf. [20] for more details on the control chart
implementation). We compare the performance of three pairs
of estimators in identifying out of control subgroups of data
before and after the corruption of Phase I data. The three pairs
of estimators are (µ1, σ1), (µ2, σ2), and (µ3, σ3) as defined
in subsection III-D.

Designing control charts before the corruption of Phase I
data:
• We compute the values of all estimators. µ1 = 1.5056,
σ1 = 0.13995, µ2 = 1.5064, σ2 = 0.13151, and
µ3 = 1.501, σ3 = 0.14437 (using αU = 0.2 and
−Zl = Zu = 3)

• We compute the control limits based on each pair
of estimators. LCL1 = 1.3178, UCL1 = 1.6934,
LCL2 = 1.33, UCL2 = 1.6828, and LCL3 = 1.3073,
UCL3 = 1.6947.

• We plot the means of phase 2 subgroups with the control
limits.

Note that all estimators perform equally likely and detect
two out of control subgroups (cf. Figure 1).
Designing control charts after corruption of Phase I data:

We randomly corrupted 19 data points (15.2%) of Phase I
sample by adding the random variable 2χ2

1 .
• Wecompute the values of all estimators.µ1= 2.0073, σ1
= 1.0768, µ2 = 1.5519, σ2 = 0.1831, and µ3 = 1.5094,
σ3 = 0.1528 (using αU = 0.2 and −Zl = Zu = 3)

• We compute the control limits based on each pair
of estimators. LCL1 = 0.56257, UCL1 = 3.452,
LCL2 = 1.3062, UCL2 = 1.7976, and LCL3 = 1.3044,
UCL3 = 1.7144.

• We plot the means of phase 2 subgroups with the control
limits.

Note that our estimators perform better than the others and
detect one out of control subgroup while the others did not
(cf. Figure 2).

V. CONCLUSION
This study proposes new robust estimators for the mean
and standard deviation of normally distributed populations
when errors exist in the sample. The proposed estimators
are asymptotically unbiased if all errors are outlying errors.
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A simulation study is used to test and compare the per-
formance of our estimators with the already existing and
commonly used robust estimators by three criteria: bias, mean
square error, and Pitman closeness criterion. The proposed
method is found to be superior to the others for moderate and
large sample sizes. The findings of the simulation study also
indicate the superiority of the proposed method even when
most but not all errors are outlying errors. As an application,
our method is used in Phase I of designing a control chart
to improve its performance. A real-life dataset is used to
test the robustness of our proposed method, in comparison
to other estimators, against the presence of outlying errors
in Phase I data. In the findings, it is noted that the proposed
estimators outperformed the others in terms of identifying out
of control data points in Phase II when Phase I samples are
contaminated with outliers.
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APPENDIX
A. SIMULATION RESULTS
See Tables 1–8.

B. SIMULATED SAMPLE
See Table 9.
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