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ABSTRACT The static voltage stability margin (SVSM) of a power system considering the uncertain
fluctuation range of wind farm (WF) output can be described as an interval value called the SVSM interval.
A multi-objective optimal control model for SVS of a power system considering the interval uncertainty of
WF output is proposed. The objective functions of the model are to increase the central value and reduce the
fluctuation range of the SVSM interval, and the decision variables are the active power output and terminal
voltage of generators and the switching capacity of shunt capacitors. Thus, it is a multi-layer optimization
model. A parametric approximation (PA) method is used to obtain the approximate functional relationship
between the optimal objective function values and the decision variables of the inner-layer and mid-layer
optimization models and convert the optimization model into a single-layer bi-objective optimization model.
A method for obtaining the continuous Pareto frontier of the bi-objective optimization model is proposed
based on the normalized normal constraint and PAmethods, and the compromise optimal solution calculated
from the continuous Pareto frontier is used as the optimal control scheme. Two methods for improving the
calculation efficiency of the PAmethod are also proposed. Finally, results from experimentation on the IEEE
39-bus system and an actual provincial power grid demonstrate the effectiveness of the proposed method.

INDEX TERMS Static voltage stability margin, wind power interval uncertainty, multi-objective multi-layer
optimization, parametric approximation, continuous Pareto frontier.

NOMENCLATURE
PARAMETERS
PGi0 active power output of generator i
VGiref reference value of terminal voltage of

generator i
Qci reactive power output of the shunt

capacitors i
PLi0,QLi0 initial active and reactive load power

of bus i
Gij,Bij real and imaginary parts of the i-th line

and the j-th column element of the
node admittance matrix

Ng Number of generators

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

Vimax,Vimin upper and lower bounds of voltage
amplitude of bus i

PGimax, PGimin upper and lower bounds of the i-th
generator’s active power

QGimax, QGimin upper and lower bounds of the i-th
generator’s reactive power

qτ i reactive power output value of the τ -th
gear of the i-th shunt capacitors

bPLi, b
Q
Li active and reactive load growth direction

of i-th bus
bpGi the growth direction of i-th generator

output
M dimension of the implicit function
N total number of the selected basis

functions
Q the integral area
r number of inequality constraints
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e r-dimension vector in which all the elements are 1
d acceptable error

VARIABLES
λ1, λ2 lower and upper bounds of the SVSM

interval
u vector of control variables
ei, fi real and imaginary parts of the voltage of

bus i
Vi voltage amplitude of bus i
σ τ i binary variable reflecting whether the i-th

shunt capacitors operate at the τ -th gear
Vai,Vbi auxiliary variables used to correct the

terminal voltage of generator i when the
reactive output reaches its lower/upper
bound

Pw vector of WF output
Pwmin, Pwmax lower and upper bounds of the Pw interval
x vector of state variables
q vector of parameter variables
xt t-th component of x
x∗t parameterized form of xt
ϕ vector of basis functions
ϕs s-th component of ϕ
cij coefficient of the approximate expression

of x∗i on the basis function ϕj(q)
w abscissa value of the division point on

utopian line
J1, J2 objective functions of bi-objective

optimization
J1min, J2max the J1 and J2 values of the optimal

solution for the single objective
optimization of minimizing J1

J2min, J1max the J2 and J1 values of the optimal
solution for the single objective
optimization of minimizing J2

J̄P a point on the utopian line
J̄1, J̄2 normalized J1 and J2
λo, λ

′
o dependent variables before and after

removing the cross-term
8s required s-th orthogonal basis
ksj, lsj coefficients of 8s to be solved

I. INTRODUCTION
Affected by the uncertain fluctuation of wind speed, the
active-power output of wind farms (WFs) has large uncer-
tainty and volatility, which brings great challenges to the
secure operation of power systems [1], [2]. The static volt-
age stability margin (SVSM) is a common voltage stability
evaluation index in power system operation, representing the
maximum load increase that the system can bear in the current
operating state [3]. Uncertain fluctuation of the WF output
will cause uncertain fluctuation of the SVSM of the power
system. When an interval is used to describe the uncertain
fluctuation of WF output, the SVSM is also correspondingly
within an interval instead of being a fixed value [4]. When the

fluctuation range of WF output is large, the fluctuation range
of SVSM may be resulted large. If the values of the SVSM
range are small, the lower bound of the SVSM range is very
small, and the system is prone to voltage collapse with the
increasing of load. Therefore, when considering the optimal
SVS control of a power system with uncertain fluctuation
of WF output, it is necessary to increase the central value
and reduce the radius of the SVSM interval at the same
time, which is a bi-objective optimization problem. Since
the calculation of the upper and lower bounds of the SVSM
interval is a bi-layer optimization model [5], the optimal SVS
control model of a power system considering the uncertain
fluctuation of WF output is a bi-objective multi-layer opti-
mization model. How to effectively solve this model is a
challenging problem.

Many studies have been published on the analysis and con-
trol of the SVS of power systemswithWFs. The authors of [2]
proposed an SVS analysis method suitable for large-scale
power systemswith highwind-power penetration and verified
that the use of doubly-fed induction generator wind turbines
can improve the SVS. To evaluate the operating status of
large power systems with WFs, the authors of [6] proposed
a method based on the static voltage security region, which
helps to evaluate the SVSM and security status online. In [7]
the authors investigated the feasibility of utilizing the reactive
power of grid-connected variable-speed wind generators to
enhance the steady voltage stability margin of the system.
In [8] data-driven methods were used to evaluate several
approaches to fitting the PV curve of WFs and determine the
best fitting method based on a variety of indicators, which
provided useful information for SVS evaluation. However,
the influence of the uncertain fluctuation of WF output on
the analysis and control of SVS was not considered in any of
these studies [2], [6]–[8]. Methods for considering the influ-
ence of the uncertain WF output fluctuation on the analysis
and control of SVS include theMonte Carlo method [9], [10],
probability method [11]–[13], and interval method
[4], [5], [14]. In [9] the authors combined the Monte Carlo
method and a neural network-based algorithm to propose
a new method to evaluate SVS. Authors of [10] included
unstable states caused by insolvability and voltage control-
lability loss in the SVS probabilistic assessment based on
the Monte Carlo method. However, since the Monte Carlo
method requires numerous repeated sampling calculations,
the calculation time is often long. In [11] authors analyzed the
influence of uncertain injected power of WFs on the SVSM
and used the stochastic response surface method to evaluate
the probability density of SVSM. In [12] a two-stage method
to evaluate the impact of uncertain power injections on the
SVSM was proposed. Based on the stochastic programming
method, a method for evaluating and enhancing the SVS
of power systems with uncertain wind-power output was
proposed in [13]. However, the probability method usually
requires statistical analysis of numerous historical data to
establish an accurate probability model of WF output, which
is difficult to obtain in practical applications. The authors
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of [14] present a novel method based on affine arithmetic
(AA) for SVS assessment of power systems considering
uncertainties of WF output and load power. Authors of [4]
and [5] used continuous power flow and optimal power
flow methods, respectively, to calculate the SVSM interval
of a power system considering the uncertain fluctuation
intervals of WF output. The interval method only requires
the fluctuation range of WF output, which is easy to obtain
from historical data. Thus, the interval method has a great
application value. However, there is still little research on
the optimal SVSM control method considering the uncertain
fluctuation intervals of WF output.

The parametric method refers to a method of obtaining
the relationship between certain dependent variables and
independent variables in a power system. The parametric
method is mainly divided into a sampling method and an
approximation method. The sampling method refers to sub-
stituting different values of parameters into the model for
solving and then using these discrete data points for analysis.
A typical application of the sampling method is the Monte
Carlo method in uncertainty analysis. The sampling method
requires a large number of sampling calculations, so the
computational load is large, and the sampling method cannot
directly obtain the analytical expression, which greatly limits
the flexibility of the analysis [15], [16]. The approximation
method is based on the theory of function approximation
and uses explicit analytical expressions for the parameters to
approximate the relationships between variables. To facilitate
calculations, functions with simpler forms are usually used as
basis functions. In the general parametric problems of power
systems, algebraic polynomials are often selected as basis
functions because of their advantages of retaining nonlinear
information and facilitating calculations [17]. At present,
the parametric approximation (PA) method has been widely
used in engineering, computer science, and other fields
[18], [19], and it has also been applied in power systems.
In terms of SVS, the authors of [20] took the saddle-node
bifurcation point condition as the judgement equation of the
SVS region of power systems and used the Galerkin method
in the PA method to obtain the polynomial approximate
expression of the SVS region boundary, which improved the
accuracy of the original method. Based on [20], the bound
of the reactive power output of generators was further con-
sidered in [21], and a more accurate SVS region boundary
was obtained. The PA method has also been applied in other
power system analysis fields [22]–[24]. Because the rela-
tionships between the lower and upper bounds of the SVSM
interval and the control variables are relatively complicated,
obtaining the simplified approximate expression through the
PA method can provide an effective way to solve the multi-
layer optimal SVSM control problem. However, since large-
scale power systems have many parameters, the traditional
PA method involves a large number of calculations and
great computational complexity. Therefore, how to reduce the
computational load of the PA method is crucial in applying
the method to effectively solve the optimal SVSM control

problem of actual large-scale power systems considering the
uncertain fluctuation intervals of WF output.

The main contributions of this study are: (1) A bi-objective
multi-layer optimization model for the optimal SVS control
of a power system considering the uncertain fluctuation inter-
vals of WF output is established. The PA method is used
to obtain the approximate functional relationship between
the optimal objective function values and the decision vari-
ables of the inner-layer and mid-layer optimization mod-
els and convert the optimization model into a single-layer
bi-objective optimization model, which reduces the compu-
tational complexity of solving the problem. (2) Combining
the PA method and the normalized normal constraint (NNC)
method, a method for obtaining the continuous Pareto fron-
tier (PF) of the bi-objective optimization model is proposed,
and it can obtain a better compromise optimal solution from
the continuous PF than from the discrete PF. (3) Twomethods
to reduce the computational load of the PA method using
high-order mixed partial derivatives to remove partial cross
terms and orthogonal basis decoupling are proposed, and they
can effectively improve the computational efficiency.

The rest of this study is organized as follows: Section II
proposes a bi-objective multi-layer optimization model for
SVS control of a power system considering the uncertain
fluctuation intervals of WF output; Section III converts the
multi-layer optimization model into a single-layer optimiza-
tion model by the PA method and proposes a method to solve
the continuous PF of the bi-objective optimization problem;
Section IV introduces two methods for reducing the com-
putational load of the PA method; Section V discusses case
studies carried out on the IEEE 39-bus system and an actual
964-bus provincial power grid; and Section VI presents the
conclusions.

II. PROBLEM FORMULATION
To ensure that the whole SVSM interval of a power system
considering the uncertain fluctuation interval of WF output
can meet the requirements of secure operation, the following
bi-objective multi-layer optimal control model for the SVSM
of a power system is established.

A. OBJECTIVE FUNCTIONS
The objective functions of the optimal SVS control model are
as follows:

1) Increase the central value of the SVSM interval. The
interval central value is (λ1 + λ2)/2. Since the coef-
ficient 1/2 does not affect the optimal control result,
the objective function is written as follows:

max
u
λ1 + λ2. (1)

2) Reduce the radius of the SVSM interval. The interval
radius is (λ2− λ1)/2. Since the coefficient 1/2 does not
affect the optimal control result, the objective function
is written as follows:

min
u
λ2 − λ1. (2)
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B. CONSTRAINS
1) Power flow equation at current operating point:

PGi0 − PLi0 − ei
n∑
j=1

(
Gijej − Bijfj

)
−fi

n∑
j=1

(
Gijfj + Bijej

)
= 0. (3)

QGi + Qdi − QLi0 − fi
n∑
j=1

(
Gijej − Bijfj

)
+ei

n∑
j=1

(
Gijfj + Bijej

)
= 0. (4)

V 2
Giref = e2Gi + f

2
Gi. (5)

2) The upper and lower limits of bus voltage:

Vimin ≤ Vi ≤ Vimax. (6)

3) Generator output limit:

PGimin ≤ PGi0 ≤ PGimax. (7)

QGimin ≤ QGi ≤ QGimax. (8)

4) Power output limit of shunt RPC devices:

Qci =
∑Nci

t=1
qτ iσti, σti ∈ {0, 1},

∑Nci

t=1
σti = 1. (9)

5) Lower and upper bounds of the SVSM interval

Based on the interval optimization method, the lower and
upper bounds of the SVSM interval considering the interval
uncertainty of WF output can be calculated by the following
two bi-level optimization models [5], (10) and (11), as shown
at the bottom of the page, where bpLi = PLi0 and b

Q
Li = QLi0;

and bPGi is calculated as follows:

bPGi =
PGimax − PGi0∑Ng−1

j=1

(
PGjmax − PGj0

) ∑N

k=1
bPLk (12)

The proposed optimal SVSM control model (1)–(11) con-
sidering the uncertain fluctuation interval of WF output is
a bi-objective multi-layer optimization model. The objective
functions of the outer-layer optimization problem are the
sum or difference of the optimal solutions of two bi-layer
optimization models, which is difficult to solve directly using
traditional optimization methods. Therefore, this study uses
the PA method to simplify the optimization model.

III. MODEL SOLUTION BASED ON PA METHOD
The PA method refers to the quantitative analysis of the
functional relationships between multiple variables. In this
problem, it refers to the functional relationships between the
upper and lower bounds of the SVSM interval and the control
variables. If these functional relationships can be obtained,
the entire multi-layer optimization model can be transformed

λ1 =



min
Pw

max
x
λ

s.t.



PGi −
(
PLi0 + λbPLi

)
− ei

n∑
j=1

(
Gijej − Bijfj

)
− fi

n∑
j=1

(
Gijfj + Bijej

)
= 0

QGi + Qci −
(
QLi0 + λb

Q
Li

)
− fi

n∑
j=1

(
Gijej − Bijfj

)
+ ei

n∑
j=1

(
Gijfj + Bijej

)
= 0

PGi = PGi0 + λbPGi
QGimin ≤ QGi ≤ QGimax, (QGi − QGimin)Vai = 0, (QGi − QGimax)Vbi = 0
VGi = VGiref + Vai − Vbi,Vai ≥ 0,Vbi ≥ 0
V 2
Gi = e2Gi + f

2
Gi

Pwmin ≤ Pw ≤ Pwmax

(10)

λ2 =



max
Pw

max
x
λ

s.t.



PGi −
(
PLi0 + λbPLi

)
− ei

n∑
j=1

(
Gijej − Bijfj

)
− fi

n∑
j=1

(
Gijfj + Bijej

)
= 0

QGi + Qci −
(
QLi0 + λb

Q
Li

)
− fi

n∑
j=1

(
Gijej − Bijfj

)
+ ei

n∑
j=1

(
Gijfj + Bijej

)
= 0

PGi = PGi0 + λbPGi
QGimin ≤ QGi ≤ QGimax, (QGi − QGimin)Vai = 0, (QGi − QGimax)Vbi = 0
VGi = VGiref + Vai − Vbi,Vai ≥ 0,Vbi ≥ 0
V 2
Gi = e2Gi + f

2
Gi

Pwmin ≤ Pw ≤ Pwmax,

(11)
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into a single-layer optimization model and solved directly.
The PA method can obtain an explicit approximate analyt-
ical expression between multiple variables by the theory of
function approximation, such as the Galerkin method [23].

A. PRINCIPLE OF THE GALERKIN METHOD
The Galerkin method essentially projects the system equa-
tions on the normed space and minimizes the residual error
to obtain the optimal approximation of the target expression.
The principle is described as follows:

Assume that the function to be approximated is xt = xt (q).
This function is determined by the implicit function
F(q, x) = 0, where q is the vector of parameter variables,
x is the vector of state variables, and xt is the t-th component
of x. Assume that the basis functions used for approximation
are ϕ(q), and the approximation of the target expression is as
follows:

x∗t = x∗t (q) =
∑N

s=1
ctsϕs(q), s = 1, 2, . . . ,M , (13)

The inner product of two functions h1(·) and h2(·) on the
function space is defined as follows:

< h1(•), h2(•) >=
∫
Q
h1(q)h2(q)dQ, (14)

Substitute the target expression (13) into the implicit func-
tion F(q, x) = 0 and use the inner product defined by (14) to
project it onto each selected basis function. The projection of
implicit function F(q, x) = 0 on each basis can be obtained
as follows: ∫

Q
ϕs(q)F(q, x∗(q))dQ. (15)

By letting this projection equal zero, a series of projec-
tion equations can be obtained. It can be seen that the total
number of equations determined by (15) is M ∗ N , and the
total number of variables cts to be sought is also M ∗ N .
Therefore, the approximate expression coefficient cts of the
target expression (13) to be sought can be obtained by solving
these equations.

In this paper, the polynomial function is taken as the basis
function. In the Galerkin method, all of the control variables
are continuous variables. Thus, for the discrete control vari-
ables in the optimal SVSM control model, they can be first
considered as continuous variables to find an approximate
functional relationship between them and the state variables.
Then, when solving the optimal control model, the values of
these control variables can be constrained to the correspond-
ing discrete gears.

B. APPLYING GALERKIN METHOD TO SOLVE THE MODEL
For simplicity, in this section, when discussing the proposed
multi-layer optimization model in Section II, only the objec-
tive function is preserved, and the constraints are omitted.
At this time, the proposed optimization model in Section II

can be written as follows:
min

PG0,UGref,Qc
(max
Pw

max
x
λ−min

Pw
max
x
λ)

max
PG0,UGref,Qc

(min
Pw

max
x
λ+max

Pw
max
x
λ).

(16)

1) PA OF THE INNER-LAYER OPTIMIZATION PROBLEM
The inner-layer optimization problem refers to the problem
max
x
λ in (16), which is the SVSM calculation problem in

the current operating state of a power system. For each value
of (PG0, UGref, Qc, Pw), the solution λmax = max

x
λ of the

inner-layer optimization problem is a certain value. To find
the approximate parametric expression λmax(PG0, UGref, Qc,
Pw) of the max

x
λ problem, the equality and inequality con-

straints of the inner-layer optimization problem are written
as E(q, x,λ) and H(q, x,λ), and the inner-layer optimization
problem is as follows:

max
x,q

λ

s. t. E(x, q, λ) = 0

Hmin ≤ H(x, q, λ) ≤ Hmax,

(17)

By the KKT condition, the optimal solution to the inner-
layer optimization problem (17) can be transformed into
solving the following nonlinear equations:

∇x,λλ−∇x,λE(x, q, λ) y− ∇x,λH(x, q, λ)(z+ w) = 0
E(x, q, λ) = 0
H(x, q, λ)− l(q)− Umin = 0
H(x, q, λ)+ u(q)− Umax = 0
LZe = 0,UWe = 0

ui(q) ≤ 0, li(q) ≤ 0,
(18)

where L = diag(l1,. . . , lr), U = diag(u1,. . . ,ur), Z =
diag(z1,. . . ,zr),W = diag(w1,. . . ,wr).
In (18), there are two inequalities that cannot be solved

directly as equations. Therefore, the following equations can
be added to replace the original inequalities:{

ui(q) = t2i (q)
li(q) = r2i (q).

(19)

At this time, the equations in (18) become:

∇x,λλ−∇x,λE(x, q, λ)y−∇x,λH(x, q, λ)(z+ w) = 0
E(x, q, λ) = 0
H(x,q, λ)− l(q)− Umin = 0
H(x, q, λ)+ u(q)− Umax = 0
LZe = 0,UWe = 0
ui(q) = t2i (q), li(q) = r2i (q).

(20)

As long as a group of basis functions ϕs(q) are selected,
the equations in (20) can be projected onto each basis function
by using (15) to obtain the projection equations, and the
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coefficients of the approximate target expression λmax(PG0,
UGref, Qc, Pw) can be solved and obtained.

2) PA OF THE MID-LEVEL OPTIMIZATION PROBLEMS
After PA of the inner-layer optimization problem, λmax(PG0,
UGref, Qc, Pw) can be obtained, and then the entire opti-
mization problem (16) can be transformed into two bi-layer
optimization problems as in (21), shown at the bottom of the
page.

Two mid-level optimization problems are as follows:

λ1 =


min
PW

λ

s.t. λ = λmax
(
PG0,UGref ,Qc,Pw

)
PW min ≤ PW ≤ PW max,

(22)

λ2 =


max
PW

λ

s.t. λ = λmax
(
PG0,UGref ,Qc,Pw

)
PW min ≤ PW ≤ PW max.

(23)

Similarly, KKT conditions can be used to transform the
mid-layer optimization problems (22) and (23) into nonlinear
equations, and then the nonlinear equations can be projected
onto each basis function. By solving the projection equations,
the approximate target expressions λ1(PG0, UGref, Qc) and
λ2(PG0, UGref, Qc) can be obtained.

3) PA OF THE OUTER-LAYER OPTIMIZATION PROBLEM AND
OBTAINING THE CONTINUOUS PARETO FRONTIER
After PA of the middle-layer optimization problems, λ1(PG0,
UGref, Qc) and λ2(PG0, UGref, Qc) are obtained. The
entire optimization problem (16) can be transformed into a

bi-objective programming problem as follows:
min

PG0,UGref,QC

(
λ2
(
PG0,UGref,Qc

)
− λ1

(
PG0,UGref,Qc

))
min

PG0,UGref,Qc
−
(
λ1
(
PG0,UGref,Qc

)
+ λ2

(
PG0,UGref,Qc

))
.

(24)

Since the NNC method can obtain the uniformly dis-
tributed points on the Pareto front and supply relatively
complete information for multi-objective optimization deci-
sion, the NNC method is selected in this paper. However,
methods, such as NNC, can only obtain discrete PF, so some
information for further decisionmay be lost. Therefore, based
on NNC and PA methods, this paper proposes a method to
obtain the approximate continuous PF of the bi-objective
optimization problem.

As shown in Figure. 1, according to the NNC method, a
discrete point A on the PF of the bi-objective optimization
problem (24) can be obtained by solving the single-objective
optimization problem shown in (25), as shown at the bottom
of the page, [25], [26].

Each w corresponds to a point on the utopian line Jp (w,
1-w), and each point Jp corresponds to a point (J1, J2) on the
PF. By evenly taking the value of w in the interval (0, 1) to
obtain a series of evenly distributed points on the utopian
line, the evenly distributed discrete PF can be obtained by
solving the optimization problem in (25). Therefore, as long
as w is selected as a parameter, KKT conditions can be
used to convert the optimization problem (25) into nonlinear
equations, and these equations can be projected onto the
polynomial basis functions. Then the parametric equations
J̄1 =

∑s
i=1 k1 iw

i and J̄2 =
∑s

i=1 k2 iw
i between points


min

PG0,UGref,Qc

(
max
Pw

λmax
(
PG0,UGref,Qc,Pw

)
−min

Pw
λmax

(
PG0,UGref,Qc,Pw

))
max

PG0,UGref,Qc

(
min
Pw

λmax
(
PG0,UGref,Qc,Pw

)
+max

Pw
λmax

(
PG0,UGref,Qc,Pw

)) (21)



min
PG0,UGref,Qc

−
(
λ1
(
PG0,UG ref,Qc

)
+ λ2

(
PG0,UGref,Qc

))

s. t.



PGi0 − PLi0 − ei
n∑
j=1

(
Gijej − Bijfj

)
− fi

n∑
j=1

(
Gijfj + Bijej

)
= 0

QGi + Qci − QLi0 − fi
n∑
j=1

(
Gijej − Bijfj

)
+ ei

n∑
j=1

(
Gijfj + Bijej

)
= 0

V 2
Giref = e2Gi + f

2
Gi

Vimin ≤ Vi ≤ Vimax

PGimin ≤ PGi0 ≤ PGimax

QGimin ≤ QGi ≤ QGimax

QCimin ≤ QCi ≤ QCimax

λ1 = λ1
(
PG0,UGref,Qc

)
λ2 = λ2

(
PG0,UGref,Qc

)
J1 − J1min

J1max − J1min
− (1− w) ≤

J2 − J2min

J2max − J2min
− w

(25)
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FIGURE 1. Schematic of the NNC method.

(J̄1, J̄2) on the PF and variable w can be obtained. If the
direct functional relationship between J1 and J2 is needed,
expand w in J̄1 =

∑No1
i=1 k1 iw

i with J̄1 as the variable and

obtain w =
∑Np1

i=1 liJ̄
i
1. Similarly, w =

∑Np2
i=1 riJ̄

i
2 can also

be obtained. Furthermore, the relationship between J̄1 and J̄2
can be obtained:∑Np1

i=1
liJ̄ i1 =

∑Np2

i=1
riJ̄ i2. (26)

Equation (26) is the approximate analytical expression of
the continuous PF of the bi-objective optimization problem
in (24).

4) DETERMINATION OF COMPROMISE OPTIMAL SOLUTION
After obtaining the continuous PF, a COS is determined
from the continuous PF as the final optimal control scheme.
Combined with (26), the approximate analytical expression
of the continuous PF, the point that is closest to the origin is
selected as the COS, as shown in Figure. 2. The COS can be
determined by solving the following optimization problem:

min J̄21 + J̄
2
2

s.t.


∑Np1

i=1
liJ̄ i1 =

∑Np2

i=1
riJ̄ i2

0 ≤ J̄1 ≤ 1
0 ≤ J̄2 ≤ 1.

(27)

FIGURE 2. Determination of the COS.

The continuous PF is obviously more complete than the
discrete PF, and it provides more complete information about
the coordinated optimization of the two objectives. Therefore,

compared with the traditional method for determining the
COS based on the discrete PF, the proposed method for
determining the COS from the continuous PF can obtain a
better COS.

IV. WAYS TO REDUCE COMPUTING SCALE
If the Galerkin method mentioned in Section III is applied to
an actual large-scale power system, the following two prob-
lems will be encountered, resulting in complex calculations
that are very difficult to solve:

1) Too many variables are required to solve. If poly-
nomials are used as the basis function, with the
increase of system parameters, the number of polyno-
mial cross-terms will increase significantly, resulting
in a large increase of the variables and equations to be
solved.

2) The variables to be solved are tightly coupled. The pro-
jection equation to be solved is determined by (15). The
expansion coefficients of the approximate polynomial
of all system variables are tightly coupled together,
so all the equations need to be solved simultaneously,
which requires much RAM occupation and calculation
time.

Therefore, in view of the above two problems, this paper
proposes two methods (discussed in Sections IV A and B)
to reduce the computing scale of the Galerkin method so
that the method can be applied to practical large-scale power
systems.

A. REMOVAL OF POLYNOMIAL CROSS-TERMS BY HIGHER
ORDER MIXED PARTIAL DERIVATIVES
In the approximate polynomial, the non-cross terms represent
the effect of an independent variable on a dependent variable,
and the cross-terms represent the joint effect of multiple
independent variables on a dependent variable. In the optimal
SVS control problem, the joint effect of the output of two
generators that are far away from each other on the SVSM
may be very small, and it can be ignored. Hence, the cor-
responding cross-term can be deleted from the approximate
target expression. Therefore, if all of the variables in a certain
cross-term have a very small joint effect on the SVSM, this
cross-term can be removed.

The effect of the independent variable y on the dependent
variable λo can be described by the first-order partial deriva-
tive ∂λ/∂y, and the joint effect of the independent variables y1
and y2 on λo can be described by the second-order mixed par-
tial derivative ∂2λo/∂y1∂y2. If the second-order mixed partial
derivative is zero, it can be concluded that the independent
variables y1 and y2 have independent effects on the depen-
dent variable λo, and the coefficient of the cross-term y1y2
in the approximate polynomial is zero. The same approach
can be applied to higher order situations. Assume that the
dependent variables before and after removing the cross-term
are λo and λ′o, and the set of removed cross-terms is S.
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Then there is:∣∣λo − λ′o∣∣ =
∣∣∣∣∣∑
S

aijyiyj

∣∣∣∣∣ ≈
∣∣∣∣∣∑
S

∂2λ

∂yi∂yj
yiyj

∣∣∣∣∣
≤

∑
S

∣∣∣∣ ∂2λ∂yi∂yj
yiyj

∣∣∣∣ ≤∑
S

∣∣∣∣ ∂2λ∂yi∂yj
yimaxyjmax

∣∣∣∣.
(28)

From (28), as long as the minimum acceptable error d =∣∣λo − λ′o∣∣ is selected, the values
∣∣∣ ∂2λo∂yi∂yj

yimaxyjmax

∣∣∣ corre-
sponding to each cross-term are ranked from small to large
and summed in turn until the sum is equal to d . At that time,
the remaining items are preserved. The total contribution
of the cross-terms being summed is less than the minimum
error d , so it can be ignored.

B. ORTHOGONAL BASIS DECOUPLING
1) PRINCIPLE OF ORTHOGONAL BASIS DECOUPLING
It can be seen from the projection equations (15) that each
equation is equivalent to the integral of the product of the
implicit function equations (20) and each basis function.
When the rectangular form of the power flow equation is
selected, the system of equations (20) represents the quadratic
equations of system variables. That is, in the equations
F (q, x∗(q)) = 0, there are only first-order and second-order
terms about x. Suppose there is:

x1 =
∑N

j=1
ajϕj(q)

x2 =
∑N

j=1
bjϕj(q).

(29)

The projection equations of the first-order and quadratic-
order terms on a basis are expressed as shown in (30) and (31),
respectively. Whether it is the first-order term or the
second-order term, its projection on a basis is related to
the coefficients of all bases in its approximate expression.
The coefficients of all bases are tightly coupled, resulting
in the large scale of the equations to be solved. The orthogonal
basis can be used to decouple the coefficients of all bases:∫

ϕs(q)x1(q)dQ

=

∫
ϕs(q)

∑N

j=1
ajϕj(q)dQ

=

∑N

j=1
aj

∫
ϕs(q)ϕj(q)dQ (30)∫

ϕs(q)x1(q)x2(q)dQ

=

∫
ϕs(q)(

∑N

j=1
ajϕj(q))(

∑N

k=1
bkϕk (q))dQ

=

∑N

j=1

∑N

k=1
ajbk

∫
ϕs(q)ϕj(q)ϕk (q)dQ. (31)

For the first-order term, if the selected bases satisfy the
orthogonal relation, then∫

ϕs(q)ϕj(q)dQ =

{
0, s 6= j
cs, s = j, cs 6= 0.

(32)

At this time, the projection of the first-order term on
the orthogonal basis is as shown in (33). It is only related
to the coefficient of this basis in the approximate expression,
and the coefficients of other bases all equal zero due to the
orthogonal relation:∫

ϕs(q)x1(q)dQ = as

∫
ϕ2s (q)dQ (33)

For the quadratic-order term, the selected bases are
required to satisfy the following conditions:∫
ϕs(q)ϕj(q)ϕk (q)dQ =

{
0, s 6= j, or j 6= k, or s 6= k
cs, s = j = k, cs 6= 0.

(34)

At this time, the projection of the quadratic-order term
on these bases is as shown in (35). It is only related to the
coefficient of this basis in the approximate expression:∫

ϕs(q)x1(q)x2(q)dQ = asbs

∫
ϕ3s (q)dQ. (35)

In summary, as long as the selected orthogonal bases sat-
isfy (32) and (34), the projection of the equation system
F (q, x∗(q)) = 0 on the i-th basis is only related to the
coefficients of the i-th basis in the approximate expressions
of state variables. Thus, the (M ∗ N )-dimension nonlinear
equation system in which the coefficients of all the bases
are completely coupled are decoupled into NM -dimension
small-scale equation systems, that is, each basis corresponds
to a small-scale equation system. Each small-scale equation
system can be solved independently, and all of the coeffi-
cients can be obtained. The size of each small-scale equation
system is much smaller than the original equation system.
Hence, the decoupling process can greatly reduce the compu-
tational complexity and reduce the solution time. Since each
small-scale equation system can be solved independently, the
computational efficiency can be further improved by parallel
computation.

2) SOLVING THE ORTHOGONAL BASIS
If the linear combination of the original polynomial basis is
selected as the orthogonal basis, its degree of freedom cannot
satisfy the requirements of (32) and (34). For equation (32),
the number of constraints to be satisfied is C2

n = n(n− 1)
/
2,

and for equation (34), the number of constraints to be satisfied
is 2C2

n+(n−2)/3 = n2+(n−2)/3. The degree of freedom the
original polynomial basis can provide is only n2. Therefore,
linear combinations of the original bases and their squares
are used as the orthogonal bases. First, this can increase the
degree of freedom enough to make the selected bases satisfy
all requirements; second, it adds square terms, which can also
improve the accuracy of PA.

Let the orthogonal basis to be solved be as follows:

8s = ϕs + ϕ
2
s +

∑N

j=1.j6=s
(ksjϕj + lsjϕ2j ). (36)
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From (32) and (34), the equations that need to be satisfied
are as follows:

< 8s,8j > = 0, i 6= j, (37)

< 8s,8
2
j > = 0, i 6= j, (38)∫

8s8j8kdQ = 0, s 6= j 6= k. (39)

Since (39) corresponds to a large number of equations,
the following method is used to satisfy this constraint. If the
sum of some bases is equal to a constant (not zero), that is,∑

s∈Sc
8s = c, c 6= 0, (40)

where Sc is a set of certain subscripts, then∫
8a8b8sdQ

=

∫
8a8b(c−

∑
j∈Sc,j6=s

8j)dQ

= c
∫
8a8bdQ−

∫
8a8b

∑
j∈Sc,j6=s,a,b

8jdQ

= −

∫
8a8b

∑
j∈Sc,j6=s,a,b

8jdQ

⇒

∫
8a8b8sdQ+

∫
8a8b

∑
j∈Sc,j6=s,a,b

8jdQ = 0.

(41)

For each equation represented by (40), a linear equation of
the form in (41) can be written for each pair (a, b). The linear
equation (41) is the sum of a series of

∫
8s8j8kdQ. As long

as the number of independent equations (40) is greater than
the number of variables, all

∫
8s8j8kdQ(s 6= j 6= k) terms

can be set to zero.
The number of all

∫
8s8j8kdQ(s 6= j 6= k) terms is C3

n ,
and each equation represented by (38) corresponds to C2

n
equations expressed as shown in (39). Assuming that the
number of equations (38) to be supplemented is k , then k
needs to satisfy the following conditions:

kC2
n ≥ C

3
n ⇒ k ≥ (n− 2)/3 (42)

At this time, the coefficients of all the selected orthogonal
bases can be solved and obtained.

V. CASE STUDIES
The proposed method is verified by testing on the IEEE-39
bus system and an actual provincial power grid. The computer
used for the calculation is a DELLOptiPlex 3010 workstation
with a 3.60 GHz Intel Xeon processor E3-1270 and 32 GB
RAM.

A. IEEE-39 BUS SYSTEM
The IEEE-39 bus system with 10 generators is shown in
Figure. 3. It is assumed that a WF is connected to Bus-14,
and its power output fluctuation interval is [300, 500] MW.
Five shunt capacitors are installed at Buses 21–25, and their

FIGURE 3. IEEE-39 bus system wiring diagram.

control parameters are shown in Table 1. Control parameters
of the active power output and terminal voltage of all gener-
ators, except the swing bus generator, are shown in Table 2.

TABLE 1. Control parameters of shunt capacitors.

TABLE 2. Control parameters of generators.

1) PERFORMANCE OF THE REDUCING COMPUTING SCALE
METHOD
First, according to the method in Section IV A, the high-order
derivatives of λ to control variables are calculated at the
current operating point to remove some of the cross-terms.
According to (28), the given error d is set to be 10−4, and
the

∣∣∣ ∂2λo∂yi∂yj
yimaxyjmax

∣∣∣ items are calculated. These items are
ranked from small to large and then summed one by one
starting from the first term until the sum is greater than
the given error. It can be seen from the calculation results
that when the selected polynomial order is three, the system
has 253 quadratic cross-terms and 1771 tertiary cross-terms,
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and the total number of cross-terms is 2024. The sum of
the first 1825 cross-items with smaller values is less than
10−4, and these cross-items can be ignored in the PA. Thus,
the proposed downscaling method can effectively reduce the
number of bases by 90.16% and greatly reduce the number of
subsequent calculations.

Then, the remaining cross-terms and all the first-order
and constant terms are used as the bases ϕ in the PA. With
these bases and the orthogonal basis decoupling method
proposed in Section IV B, the orthogonal bases8 that satisfy
(37)–(39) are determined. There are a total of 199 remaining
bases. According to Equation (42), the number of equations to
be supplemented is calculated to be 67. Table 3 demonstrates
the verification of the effect of the orthogonal basis. It can be
seen that in the calculated orthogonal bases, the terms need to
equal zero are close to zero, and the terms need to be reserved
are obviously not zero. Therefore, it is shown that the method
for solving the orthogonal basis proposed in Section IV B is
effective, and the obtained orthogonal basis can satisfy the
requirements of subsequent calculations.

TABLE 3. Verification of the orthogonal basis.

2) PA RESULTS OF INNER-LAYER OPTIMIZATION PROBLEM
In the PA of the inner -layer optimization problem, the
third-order polynomial is selected as the basis function, and
its approximate expression is as follows:

λ =
∑N

s=1
ks8s(PG0,UGref,Qc,Pw), (43)

where 8s(PG0,UGref,Qc,Pw) is the orthogonal basis
obtained above.

One thousand points of (PG0,UGref,Qc,Pw) are randomly
selected to verify the accuracy of the PA equation (43).
For each point, the SVSM is calculated by the determinis-
tic inner-layer optimization model. The errors between the
SVSM calculated by the PA equation and the SVSM calcu-
lated by the inner-layer optimization model are calculated.
The PA results of the inner-layer optimization problem when
selecting the orthogonal and non-orthogonal bases are shown
in Table 4. It can be seen that the PA results using orthogonal
basis or non-orthogonal basis have a relatively high accuracy
when the polynomial basis order is two or three. As the
polynomial basis order increases, the calculation accuracy
becomes higher. Although the errors of using orthogonal
bases are a little higher than those of using non-orthogonal
basis, the CPU times of using orthogonal bases are much
shorter than those of using non-orthogonal bases. Hence,

TABLE 4. Calculation result and time of inner-layer PA.

the orthogonal decoupling method can effectively improve
the calculation efficiency.

The relationship between SVSM and WF output with a
certain value of (PG0, Qc, UGref) is shown in Figure. 4,
where the value of the original model is used to calculate the
SVSM corresponding to the given WF output value by the
deterministic inner-layer optimization model. It can be seen
that the result obtained using third-order polynomial basis
functions for the PA calculation is very close to the result
obtained by the deterministic optimization model, and it has
high accuracy.

FIGURE 4. Relationship between SVSM and WF output.

3) PA RESULTS OF MID-LEVEL OPTIMIZATION PROBLEMS
In the PA of the two mid -layer optimization problems,
third-order polynomials are selected as the basis functions,
and their approximate expressions are as follows:

λ1 =
∑Ni

s=1
l1s8s(PG0,UGref,Qc)

λ2 =
∑Ni

s=1
l2s8s(PG0,UGref,Qc).

(44)

One thousand points of (PG0, UGref, Qc) are randomly
selected to verify the accuracy of the PA equations (44). The
PA results of the lower bound λ1 and upper bound λ2 of
two mid-layer optimization models are respectively shown
in Tables 5 and 6. It can be seen that, whether it is the
PA of λ1 or λ2, after using orthogonal basis decoupling,
the CPU time is significantly reduced compared with using
the non-orthogonal basis. The approximate accuracy of each
basis is relatively high when the polynomial basis order is
two or three, indicating the feasibility of the method. The
relationship between λ1/λ2 and the generator terminal voltage
of Bus-32 with a certain value of (PG0, Qc) is shown in
Figure. 5. It can also be seen that the results obtained by using
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TABLE 5. Calculation result and time of the mid-layer PA of 31.

TABLE 6. Calculation result and time of the mid-layer PA of λ2.

FIGURE 5. Relationship between lower/upper bound of SVSM interval
and UGref.

third-order polynomial basis functions for the PA calculation
of twomid-layer optimization problems have high calculation
accuracy.

4) PA RESULTS OF OUTER-LAYER OPTIMIZATION PROBLEM
After PA of the inner-layer and mid-layer optimization prob-
lems, the entire problem is transformed into a single-layer
bi-objective optimization problem, which can be solved by
conventional optimization methods. Verification of the accu-
racy of using the PA models to obtain the optimal control
scheme is executed. By solving two single-objective opti-
mizationmodels with objective functions (1) and (2) after PA,
the optimal control schemes (PG0, UGref, Qc) and the lower
and upper bounds of the SVSM interval corresponding to the
optimal solutions are obtained. Then the two optimal control
schemes (PG0, Qc, UGref) are substituted into the original
models (10) and (11) for calculating the lower and upper
bounds of the SVSM interval. A comparison of the calcula-
tion results is shown in Table 7. It can be seen that for two
single-objective optimization problems after PA, the obtained
SVSM interval value corresponding to the optimal solution is
close to the SVSM interval value obtained after substituting
the optimal control scheme into the original model. The errors

TABLE 7. Comparison of results of pa and original models.

of the lower and upper bounds of the SVSM interval are all in
the level of 10−4. Therefore, using the PA models to replace
the original model to obtain the optimal control scheme has
high accuracy.

To solve the PF, the utopian line is equally divided into
20 segments (i.e., w = {0, 0.05, 0.1. . . 1}), and the discrete
PF is obtained by repeatedly solving the formula of the
NNC method (25) with the w value of each division point.
Meanwhile, the proposed PA method is used to calculate
the continuous PF, and the comparative results are shown in
Figure. 6. It can be seen that the continuous PF obtained by
the proposed PA method is close to the discrete PF obtained
by the traditional NNCmethod, which verifies the correctness
of the proposed PA method. Furthermore, the continuous PF
obtained by the proposed PA method can provide more com-
plete information for determining the COS than the discrete
PF, which is beneficial to obtain a better COS.

FIGURE 6. Pareto frontier results comparison.

The method mentioned in Section III is used to deter-
mine a COS from the continuous PF as the final optimal
control scheme. A comparison of the COS and the two
single-objective optimal solutions and the results before opti-
mal control is shown in Table 8. It can be seen that the
distance between the COS obtained from the continuous PF
and the origin is 0.1385, which is smaller than the distance
0.1438 between the COS obtained from the discrete PF and
the origin. TheCOS obtained from the continuous PF is closer
to the origin. This shows that the proposed method can obtain
a better COS for bi-objective optimization problems from the
continuous PF, and it has good value for practical application.

It can also be observed that the distance between the
COS and the origin is much smaller than that between the
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TABLE 8. Comparison of SVSM intervals at some decision points.

optimal solutions of the two single-objective optimization
problems and the origin. For the single-objective optimal
solution of maximizing λ1+λ2, the value of λ1+λ2 increases
from 1.6956 before optimal control to 1.7838, but the value
of λ2 − λ1 is 0.0892, which is relatively large. At this
time, although the overall SVSM level of the system is
relatively high, the fluctuation range of SVSM is larger as
the WF output fluctuates, which brings many difficulties
to the operational dispatch and security monitoring of the
system. Similarly, for the single-objective optimal solution
of minimizing λ2 − λ1, the value of λ2 − λ1 reduces from
0.1312 before optimal control to 0.0425, but the value of
λ1 + λ2 is 1.7521, which is relatively small. At this time,
although the fluctuation range of SVSM is small as the WF
output fluctuates, the overall SVSM level of the system is
relatively low, which makes it easy for voltage collapse to
occur. Therefore, the optimal solutions obtained by the two
single-objective optimization problems have not achieved
comprehensive optimization for the optimal SVSM interval
control. On the contrary, the COS obtained by the proposed
bi-objective optimization problem can optimize both objec-
tives simultaneously: the value of λ1 + λ2 increases from
1.6956 to 1.7804, and the value of λ2 − λ1 reduces from
0.1312 to 0.0466. At this time, the overall SVSM level of
the system is high, and the fluctuation range of SVSM is
small as the WF output fluctuates, which is desirable since
these are more suitable conditions for the actual operating
point of the power system. Therefore, the COS obtained by
solving the proposed multi-objective optimal control model
for SVS considering the interval uncertainty of WF output
can effectively increase the center value and reduce the radius
of the SVSM interval. This approach can achieve a better
optimal control scheme than single-objective optimization,
offering good value for practical application.

5) ANALYSIS OF THE OPTIMAL CONTROL SCHEME
The optimal control scheme corresponding to the COS is
shown in Tables 9 and 10. Compared with the operation state
before control, the reactive power output of shunt capacitors
and the terminal voltage of most generators in the optimal
control scheme have increased. These control regulations
can effectively supply more reactive power injection into the
system and increase the overall value of the SVSM interval.
In addition, the active power outputs of the generators at

TABLE 9. Reactive power output of shunt capacitors.

TABLE 10. Active power output and terminal voltage of generators.

Buses 32 and 34, which are close to the WF, are signifi-
cantly reduced in the optimal control scheme, whereas the
active power outputs of generators far away from the WF are
increased. The active power outputs of generators close to the
WF are reduced to supply more spinning reserves to balance
the uncertain fluctuations of theWF output, which effectively
reduces the fluctuation range of the SVSM interval.

From the above analysis, we observe that the proposed
PA method can effectively solve the proposed bi-objective
multi-layer optimization problem. Regarding the calculation
accuracy, the results of the optimization problems of each
layer after PA are close to the results of the original opti-
mization problems. The error can be basically controlled
in the level of 10−4, which shows that the PA method has
high calculation accuracy. Moreover, as the polynomial basis
order increases, the accuracy of the PA also increases. Hence,
the error of the PA can be controlled by selecting a suitable
order for the polynomial basis. Regarding the calculation
speed, after removing polynomial cross-terms by high-order
mixed partial derivatives and orthogonal basis decoupling,
the overall calculation time for obtaining an optimal control
scheme of COS is 4090 s, and it can be applied to actual power
systems. For some large-scale problems, a parallel comput-
ing method can be used to solve the projection functions
after orthogonal basis decoupling independently to further
improve the calculation speed. Therefore, the PA method can
effectively solve the proposed bi-objective multi-layer opti-
mal SVS control problem, and it has good value for practical
application.

B. ACTUAL 964-BUS PROVINCIAL POWER GRID
The actual provincial power grid contains 964 buses,
1026 branches, and 139 generators. There are three WFs
with access to the MMZ21 bus, ZJC21 bus, and YJZ21 bus;
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TABLE 11. Calculation time and calculation error of an actual provincial power grid parameterized approximation.

their active output fluctuation intervals are [252, 378],
[600, 900], and [560, 840] MW. The locations of the three
WFs are shown in Figure. 7. The active output and terminal
voltage of all generators except the swing bus generator and
the reactive power output of 30 shunt capacitors in the system
are set as control variables.

FIGURE 7. Locations of WFs in an actual provincial power grid.

Since the approximate accuracy of the first-order polyno-
mial is poor, only the quadratic- and third-order polynomial
approximations are used for the PA, and only the orthogonal
basis decoupling with high calculation efficiency is used.
For the PA of the inner-layer and mid-layer optimization
problems, 5000 points are randomly selected to verify the
accuracy. Table 11 shows the calculation time and calculation
errors between the results of the PA models and the results
of the original models. In Table 11, the parallel computation
was conducted using a blade cluster composed of eight DELL
PowerEdge M620 computing blades, where each computing
blade was composed of two 2.60 GHz Intel Xeon proces-
sors E5-2650 v2 (8 cores) and 8 GB of RAM. It can be
seen that in actual large-scale power systems, the calculation
accuracy of PA models is similar to that of the IEEE-39 Bus
system, and the maximum errors and the average errors are
also in the level of 10−4. This shows that the calculation
accuracy of the proposed PA method has little relation with
the scale of the power system, and it is mainly affected by
the order of the selected polynomial basis. For the calculation
time, when the selected polynomial basis order is three, after
the introduction of the parameterization method and the use
of two downscaling methods, the overall calculation time
to obtain the COS is about 13.6 h. Since the projection
functions of the inner-layer, upper bound of mid-layer,

TABLE 12. Parametric model test results.

and upper bound of mid-layer optimization problems after
orthogonal basis decoupling are respectively 2641 5959-
dimension, 2493 2268-dimension and 2377 2268-dimension
small-scale equations, after using multiple threads parallel
computing, 241, 250, and 238 threads are respectively used
to simultaneously solve the corresponding functions, and the
overall calculation time is reduced to 343.45 s. The relatively
long calculation time of serial computing introduces great dif-
ficulty into practical applications. After using parallel com-
puting, the overall computing time decreases significantly,
making this method feasible to be practically applied in large-
scale power grids.

The PA models of the inner-layer and mid-layer optimiza-
tion problems are used to solve two single-objective optimiza-
tion models with objective functions (1) and (2), respectively,
and the optimal control schemes (PG0, UGref, Qc) and the
lower and upper bounds of the SVSM interval corresponding
to the optimal solutions are obtained. Two obtained optimal
control schemes (PG0,UGref,Qc) are respectively substituted
into the original models (10) and (11) to calculate the lower
and upper bounds of the SVSM interval. A comparison of the
calculation results is shown in Table 12. It can be seen that for
the actual large-scale power grid, the SVSM intervals of the
optimal solutions obtained by the PA models are very close
to the SVSM intervals obtained by substituting the optimal
control scheme into the original model. The errors are in the
level of 10−4. Therefore, the proposed PA method is still
feasible for application in actual large-scale power grids, and
the PA model can replace the original model for optimal
control calculation of SVSM interval.

Figure 8 shows the comparison of continuous PF and dis-
crete PF. Table 13 shows the comparison of SVSM intervals
at some decision points. The following two conclusions can
be drawn from the calculation results. First, the proposed
method can effectively obtain an optimal control scheme
in the actual large-scale power grid. In the optimal control
scheme of COS, the value of λ1+λ2 increases from 1.0443 to
1.0700, and the value of λ2 − λ1 decreases from 0.0963 to
0.0795. This shows that after optimization, the overall SVSM
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FIGURE 8. Pareto frontier results comparison.

TABLE 13. Comparison of SVSM intervals at some decision points.

level of the large-scale power grid rises, and the fluctuation
range of SVSMdecreases as theWF output fluctuates. Hence,
the system operates in a more secure state. Second, the COS
obtained by the continuous PF is closer to the origin than the
COS obtained by the discrete PF. Hence, the proposedmethod
can obtain a better optimal control scheme in a large-scale
power grid, and it has good value in practical application.

VI. CONCLUSION
In this study, a bi-objective multi-layer optimization model
for SVS control of a power system considering interval uncer-
tainty of WF output is proposed. A PA method is used to first
obtain the approximate functional relationship between the
optimal objective function values and decision variables of
the inner-layer and mid-layer optimization models, and then
convert the original optimization model into a single-layer
bi-objective optimization model that can be directly solved.
A method to obtain the continuous PF of the bi-objective
optimization model is proposed, combining the traditional
NNC method and the PA method, and the obtained con-
tinuous PF can supply more complete information for the
optimal control decision and obtain a better COS to be used
as the optimal control scheme. To reduce the computational
load and improve the calculation efficiency, two methods for
reducing the scale of the PA method are proposed, which can
effectively reduce the calculation time andmake the proposed
method more suitable for practical application.

The calculation results of case studies show that the
obtained optimal control scheme can effectively increase the

overall SVSM level and reduce the fluctuation range of the
SVSM of the power system as the WF output fluctuates.
Hence, the power system can operate in a more secure state.
The obtained approximate expression of the proposed PA
method has good accuracy. Furthermore, a better COS can
be obtained from the continuous PF, and the two methods
for reducing the calculation scale of the PA method can
effectively improve the calculation efficiency of the proposed
method.
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