
Received June 1, 2020, accepted June 12, 2020, date of publication June 16, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002904

Fuzzy Granular Hyperplane Classifiers
WEI LI 1, ZHONGNAN WEI1, YUMIN CHEN 1, (Member, IEEE), CHAO TANG2,
AND YUPING SONG3
1School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
2School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China
3School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Corresponding author: Wei Li (drweili@hotmail.com)

This work was supported in part by the Science and Technology Planning Guidance Project of Xiamen of China under Grant
3502Z20179038, in part by the National Natural Science Foundation of China under Grant 61976183, in part by the Natural Science
Foundation of Fujian Province of China under Grant 2019J01850, in part by the Key Teaching and Research Project of Hefei University of
China under Grant 2018 hfjyxm09, and in part by the Natural Science Foundation of Anhui Province under Grant 2008085MF202.

ABSTRACT Granular computing has advantage of knowledge discovery for complex data. In the paper,
we present Fuzzy Granular Hyperplane Classifiers (FGHCs) for data classification from a new angle of
Granular Computing. First, we introduce a fuzzy granular hyperplane concept by defining fuzzy granule,
fuzzy granular vector, metrics and operators. Next, for binary classification problem, we present solving
optimal fuzzy granular hyperplane through evolution strategy; the learning algorithm of parameters and
the prediction algorithm of instances are also proposed. Finally, a multi-classification prediction model is
designed by combining a set of Fuzzy Granular Hyperplane Classifiers based on vote strategy. In order to
evaluate performance, we employed 10-fold cross validation to verify on UCI dataset and Alzheimer’s Dis-
ease Voice dataset. Theoretical analysis and experiments demonstrated that FGHCs have good performance.

INDEX TERMS Fuzzy granular hyperplane, machine learning, granular computing.

I. INTRODUCTION
The classification of data is a general task in artificial intel-
ligence. Assuming that some data points belong to one of
two categories respectively, it is a goal for a new data point
to make a correct decision to classify. Although there are
lots of hyperplanes that can classify data points, there must
exist an optimal hyperplane that can divide two categories
at maximum margin. In this paper, we will discuss how to
get such the best hyperplane in granular space based on
fuzzy granulation to implement data classification with high
accuracy.

In machine learning, Support Vector Machines (SVMs,
[1]) is one of supervised learning approaches that can analyze
trained data for classification. It is also a machine learn-
ing approach on the basis of principle of statistical learning
theory. It includes superiority in prediction of small-scale
instance sets, high-dimensional and nonlinear pattern recog-
nition problems, and it can largely avoid the problems of
‘‘dimensional disaster’’ and ‘‘over-fitting’’. Also, it has a
solid theoretical foundation, a simple and straightforward
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mathematical model. Hence in the area of pattern recognition,
time series prediction, function estimation, regression analy-
sis,etc., it has made considerable progress. It is also widely
used in EEG signal analysis [2], [3], software effort estima-
tion [4], disease detection [5], [6], medical image recognition
[7], molecular and materials application [8], quantum com-
puting [9]–[11] and so on.

The standard SVMs learning algorithms may be sum-
marized as solving a quadratic programming (QP) problem
with constraints. For a small-scale quadratic optimization
problem, classical algorithms such as Newton’s method and
interior point approach can get good solutions. However,
when training set is large, the complexity of algorithms will
be so high that the efficiency will be low. At present, some
advanced training algorithms are to decompose a complexQP
problem into a suite of small-scale QP problems. According
to some iterative strategies, these small QP problems can be
solved respectively. Then, the approximate solution of the
original large-scale QP problem can be calculated. Moreover,
it will be gradually converged to the optimal solution.

In recent years, some scholars have also proposed some
new SVMs methods like granular SVMs. The main strategy
of granular SVMs is as follows: first, a series of information
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granules can be obtained by constructing the granular space
by division; then, learning is required in each information
granule; after that, a decision function on SVMs can be
obtained by clustering information (data, rules or attributes
etc.) of granules [12]–[14]. The learning principle can convert
a linearly inseparable problem into a suite of linearly sepa-
rable ones through data granulation to obtain some decision
functions. This also intensifies generalization performance of
model. In other words, it can be obtained a hyperplane with
wider margin in the training processing.

To overcome influences of noise and outliers on the SVMs
[15], [16], Lin and his colleagues [17] proposed a Fuzzy Sup-
port Vector Machines (FSVM) by combining fuzzy mathe-
matics and SVMs, which has good performance in processing
noise data. The primary idea of this approach is to add a
membership degree in the training instance set; the member-
ship degree of support vectors is much larger, but that of non
support vectors and outliers are smaller; thus, impacts from
noise points, outliers and non support vectors to an optimal
hyperplane can be reduced by the membership degree. It is
of importance for FSVM how to determine the membership
value, i.e., the weight of each instance. Some researchers
proposed a membership function determined method based
on class center; they adopted the distance between a instance
point and its cluster as the degree of membership [17]–[19].
In the case, the membership function may depend heavily
on the geometry of instances, so it may reduce the degree
of membership associated with support-vectors. Zhang et
al. [20] presented an approach about membership degrees
determined on the basis of intra class hyperplane distance;
they employed the distance between a instance point and
its inner hyperplane as the membership function. In their
scheme, membership functions rely lightly on geometry of
a instance set and support vectors can obtain a larger degree
of membership.

Statistical theory systematically studies machine learning
problems, especially in the case of limited instances. SVMs
and relative algorithms generated under theoretical frame-
work show many superior performances in theory and prac-
tical applications.

Granular computing is a discipline that specializes in think-
ing, problem solutions and theory of information processing
patterns on the basis of granular structure. It is also a new
computing paradigm in the study of intelligent information
handling. From angle of AI, granular computing is a nat-
ural model that simulates human thinking and solves com-
plex large-scale problems. Deriving from practical problems,
it can replace an exact solution with an approximate solu-
tion to achieve the purpose of simplifying the problem and
improving the solving efficiency.

As early as 1979, Zade presented fuzzy set theory and
fuzzy information granulation problem at first [21]. He
thought that human cognitive ability can be summed up
three primary characteristics of granulation, organization and
causality [22]–[25]. In 1997, Zadeh first proposed the concept
of granular computing [23]. Then lots of scholars in the

world studied the problem, and increasingly established a
new direction in artificial intelligence. Pedrycz [26] identified
the principles of Granular Computing and showed how gran-
ules are built and then adopted in giving description of data
relationships. Yao [27] first presented three-way decisions
concept, acceptance, abstain and reject, in 2009. After that,
a summary of three-way decisions theory was built on the
basis of the notions of acceptance, rejection, and noncommit-
ment [28], [29]. The theory is an addition of binary-decision
model. Miao and his colleagues [30] proposed three-level
model of granular spaces (the universe, the basis and the
granular structure) in set-theoretic formulation. They estab-
lished three-level model of granular spaces in Pawlak rough
sets [31] by using the definability defined by the logic lan-
guageWang et al. [32] presented the diagram for relationship
between three basic modes of granular computing. Also,
they analyzed the feasibility of granular computing for big
data processing. Hu and his colleagues [33] measured qual-
ity of features in multi-label learning by introducing fuzzy
mutual information and developed effective approaches to
guide section ofmulti-label feature. The algorithms can select
from streaming features and be used for ordinal multi-label
learning.

In addition, Granular Computing shows many conceptual
developments, such as graphs [34], information tables [35],
knowledge representation [36], clustering [37], rule cluster-
ing [38], classification [39] etc. There are a lot of applications
of Granular Computing. And these applications like forecast-
ing time series [40], [41], manufacturing [42], search encryp-
tion voice [43], prediction tasks [44], concept learning [45],
optimization [46], K-nearest granule classifiers [47], attribute
reduction [48], analysis of microarray data [49] and so on, are
reported in recent studies. It is of worthy of emphasizing that
information granules infiltrate almost all researches.

In this paper, method proposed is composed of two phases,
parameters learning and prediction. When parameters learn-
ing, we convert instances into fuzzy granules. In the fuzzy
granular space, loss function is created and parameters are
solved by evolution strategy. When predicting, instances are
converted into fuzzy granules and predicted by decision func-
tion. The processes are almost handled in the fuzzy granular
space. Overview is as shown in Figure 1.

Contributions of the paper have three aspects. First,
We define concepts of a fuzzy granule, a fuzzy granu-
lar vector, metrics and operators. Moreover, the concept
of a fuzzy granular hyperplane is introduced. Second,
on the basis of these, we present quickly solving opti-
mal fuzzy granular hyperplane parameters through the evo-
lution strategy. According to them, we design algorithms
on parameters’ learning and instances’ prediction, which
can solve a binary classification problem. Third, for a
multi-classification problem, we adopt divide-and-conquer
strategy, i.e., transforming a multi-classification problem
into several binary classification problems, to obtain solu-
tions. Also, we design a multi-class prediction model based
on FGHCs.
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FIGURE 1. Overview of method.

II. FROM GRANULAR COMPUTING TO CLASSIFICATION
In lots of cases, granularity of human thinking and con-
ceptual building are uncertain, rather than exact. Informa-
tion fuzzy granulation is generally achieved by a fuzzy
binary relationship, and fuzzy granulation is executed in
whole fuzzy granular space. In this paper, fuzzy granules
are obtained by fuzzy granulation, and then a fuzzy granu-
lar vector is formed by the granules, and a fuzzy granular
hyperplane is constructed by fuzzy granular vectors. Thus,
a fuzzy granular space is composed of fuzzy hyperplanes.
In a fuzzy granular space, we also define measurements
and operators, discuss Monotonic property and prove it.
Based on these, we transform a classification problem of
instances into hyperplane classification problem in fuzzy
granular space. If the training data is linearly separable,
optimal hyperplane that separate two categories of data can
be selected, so that the distance between them is as large
as possible. By solving the optimal fuzzy granular hyper-
plane with maximum margin, we can categorize unlabeled
data.

A. DESIGN METHOD AND PRIMARY CHARACTERIZATION
OF GRANULES
1) FROM INSTANCES TO FUZZY GRANULES
Definition 1: Let D = (X ,A,L) be a decision system, where
X = {x1, x2, . . . , xn} are n instances, A = {a1, a2, . . . , am}
are m-demensional features and L = {l} (l ∈ {−1,+1}) is a
label set, respectively.
Definition 2: For ∀xi, xj ∈ X and ∀a ∈ A, a dis-

tance between xi and xj on feature a can be defined
by:

da(xi, xj) = |ha(xi)− ha(xj)| (1)

Here, ha(xi) and ha(xj) denote the normalization values of
instance xi and xj on feature a, respectively. It’s easy to have
da(xi, xj) ∈ [0, 1].
Definition 3: For ∀xi ∈ X , ∀a ∈ A, the fuzzy granule of the

instance xi on feature a is defined as:

Ga(xi) = di1/x1 + di2/x2 + . . .+ din/xn (2)

To simply the representation, dij is distance between xi and xj
on feature a, i.e., dij = da(xi, xj); ‘‘+’’ is union operator and
‘‘/’’ is separator. In that way, a fuzzy granule of instance is
also a set which consists of pairs constructed by distance and
instance.
Definition 4: For ∀x ∈ X and ∀a ∈ A, the cardinality of

fuzzy granule Ga(x) can be quantified by:

|Ga(x)| =
∑
t∈X

da(x, t) (3)

We can easily get 0 ≤ |Ga(x)| ≤ |X | because of da(x, t) ∈
[0, 1], where |X | expresses the number of elements in the set
X .
Definition 5: For ∀s ∈ X and Q ⊆ A, assuming Q =
{a1, a2, . . . , ak}, (k ≤ m), then the fuzzy granular vector of
instance x on feature subset Q can be denoted by:

ĜQ(s) = (Ga1 (x),Ga2 (x), . . . ,Gak (x)) (4)

Definition 6: For ∀x ∈ X and Q ⊆ A, let Q =

{a1, a2, . . . , ak}, (k ≤ m), then we can define the module of
fuzzy granular vector of x on Q as follows:

|ĜQ(x)| =
∑
a∈Q

|Ga(x)| (5)

Definition 7: Let Ga(x) and Ga(t) be fuzzy granules of x
and t on feature a, respectively, then in fuzzy granular space,
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operators ∩,∪,∼,and ⊕ can be defined as follows:

dmin,i = da(xi, x) ∗ da(xi, t) (6)

dmax,i = da(xi, x)+ da(xi, t)− da(xi, x) ∗ da(xi, t)

(7)

Ga(x) ∩ Ga(t) = dmin,1/x1 + dmin,2/x2 + . . .+ dmin,n/xn
(8)

Ga(x) ∪ Ga(t) = dmax,1/x1 + dmax,2/x2 + . . .+ dmax,n/xn
(9)

∼ Ga(x) = (1− di1)/x1 + (1− di2)/x2
+ . . .+ (1− din)/xn (10)

Ga(x)⊕ Ga(t)= (dmax,1 − dmin,1)/x1+ (dmax,2 − dmin,2)/x2
+ . . .+ (dmax,n − dmin,n)/xn (11)

To be simplified, here dij = da(xi, xj); ‘‘+’’ expresses
union operator; ‘‘/’’ denotes separator between distance and
instance.
Theorem 1: Let Ga(x) and Ga(t) be two fuzzy granules

on a, formula (6) and (7), that is dmin,i and dmax,i, have the
following equation established:

0 < dmin,i < dmax,i ≤ 1 (12)

Proof: Because of 0 < da(xi, x) < 1, 0 < da(xi, t) <
1, we have da(xi, x) ∗ da(xi, t) < da(xi, x) and da(xi, x) ∗
da(xi, t) < da(xi, t). So we get 2 ∗ da(xi, x) ∗ da(xi, t) <
da(xi, x)+ da(xi, t). Then, we also have da(xi, x)∗ da(xi, t) <
da(xi, x)+da(xi, t)−da(xi, x)∗da(xi, t). Therefore, according
to Equation (6) and (7), the formal 0 < dmin,i < dmax,i
is established. Meanwhile, da(xi, x) + da(xi, t) − da(xi, x) ∗
da(xi, t) = da(xi, x)(1−da(xi, t))+da(xi, t) < (1−da(xi, t))+
da(xi, t) = 1. That is, the formal dmax,i ≤ 1 is established.
In sum, 0 < dmin,i < dmax,i ≤ 1 is established. �
Definition 8: For ∀x, t ∈ X , let ĜA(x) = (Ga1 (x),Ga2 (x),

. . . ,Gam (x)) and ĜA(t) = (Ga1 (t),Ga2 (t), . . . ,Gam (t)) be
two fuzzy granular vectors on feature set A respectively, then
operators ∩,∪,∼, and ⊕ can be defined as follows:

ĜA(x) ∩ ĜA(t)= (Ga1 (x) ∩ Ga1 (t),Ga2 (x) ∩ Ga2 (t),

. . . ,Gam (x) ∩ Gam (t)) (13)

ĜA(x) ∪ ĜA(t)= (Ga1 (x) ∪ Ga1 (t),Ga2 (x) ∪ Ga2 (t),

. . . ,Gam (x) ∪ Gam (t)) (14)

∼ ĜA(x) = (∼Ga1 (x),∼Ga2 (x), . . . ,∼Gam (x)) (15)

ĜA(x)⊕ ĜA(t)= (Ga1 (x)⊕ Ga1 (t),Ga2 (x)⊕ Ga2 (t),

. . . ,Gam (x)⊕ Gam (t)) (16)

Definition 9: For ∀x, t ∈ X , let ĜA(x) = (Ga1 (x),Ga2 (x),
. . . ,Gam (x)) and ĜA(t) = (Ga1 (t),Ga2 (t), . . . ,Gam (t)) be
two fuzzy granular vectors on feature set A respectively, then
their distance can be defined as follows:

d̂(ĜA(x), ĜA(t)) =
1

|A| ∗ |X |

∑
a∈A

|Ga(x)⊕ Ga(t)|
|Ga(x) ∪ Ga(t)|

(17)

TABLE 1. A decision system.

Theorem 2: For ∀s, t ∈ X , the distance of fuzzy granular
vector satisfies:

0 < d̂(ĜA(s), ĜA(t)) ≤ 1 (18)

Proof: Assuming that s = xi, t = xj, according defini-
tion 2 and 3, we haveGa(xi) = di1/x1+di2/x2+ . . .+din/xn,
Ga(xj) = dj1/x1 + dj2/x2 + . . .+ djn/xn.
From definition 1, we can get the distance
dij = da(xi, xj) ∈ (0, 1].

Then, we also have that the cardinality |Ga(s)| =∑
t∈X da(s, t) from definition 4. As definition 5 men-

tioned above, we can obtain two fuzzy granular vectors,
ĜA(xi) = (Ga1 (xi),Ga2 (xi), . . . ,Gam (xi)), and ĜA(xj) =
(Ga1 (xj),Ga2 (xj), . . . ,Gam (xj)).
Furthermore, from equation (6)-(13), we can get ∀a ∈ A

0 < |Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ |X |.

Since 0 <
∑

a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ |A| ∗ |X | is estab-

lished, we can have 0 < 1
|A|∗|X |

∑
a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ 1.

According to equation (17), we have d̂(ĜA(s), ĜA(t)) =
1

|A|∗|X |

∑
a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

, that is, 0 < d̂(ĜA(s), ĜA(t)) ≤ 1
�

Theorem 3: (Monotonic) Let D = (X ,A,L) be a decision
system, for ∀x ∈ X and feature subset P ⊆ F ⊆ A, there
exists two fuzzy granular vectors, ĜP(x) and ĜF (x) of x on P
and F . They satisfy:

|ĜP(x)| ≤ |ĜF (x)| (19)

Proof: From definition 5, we have that ĜP(x) =
(Ga1 (x),Ga2 (x), . . . ,Gau (x)), ĜF (x) = (Ga1 (x),Ga2 (x),
. . . ,Gav (x)). For ∀a ∈ P, its fuzzy granule is Ga(x). Because
of P ⊆ F , a ∈ F is established. Its fuzzy granule satisfies
Ga(x) ∈ ĜF (x) and |P| ≤ |F |. Hence,

∑
a∈P |Ga(x)| ≤∑

a∈F |Ga(x)|, that is |ĜP(x)| ≤ |ĜF (x)|. �
The similarity measurement denotes similar degree

between fuzzy granular vectors. We can adopt distance
between fuzzy granular vectors to measure their similarity.
We take an example as follows to explain it.

Example 1: Let D = (X ,A,L) be a decision system,
as demonstrated in Table 1. Here, X = {x1, x2, x3, x4} is a
instance set, A = {a, b, c} represents a feature set and L = {l}
denotes a label set.

A instance set X = {x1, x2, x3, x4} can be fuzzy granu-
lated on the feature a as follows. First, the distances among
instances can be calculated as:
da(x1, x1) = |0.1 − 0.1| = 0, da(x1, x2) = |0.1 − 0.3| =

0.2, da(x1, x3) = |0.1 − 0.4| = 0.3, and da(x1, x4) =
|0.1 − 0.2| = 0.1. On the basis of them, according to
definition 3, because the fuzzy granule of instance x1 on
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feature a is expressed formally as Ga(x1) = da(x1, x1)/x1 +
da(x1, x2)/x2+da(x1, x3)/x3+da(x1, x4)/x4, it can be denoted
actually as Ga(x1) = 0/x1 + 0.2/x2 + 0.3/x3 + 0.1/x4.
Its cardinality is |Ga(x1)| = 0 + 0.2 + 0.3 + 0.1 = 0.6.
Similarly, the fuzzy granule on feature b is Gb(x1) = 0/x1 +
0.1/x2 + 0.2/x3 + 0.1/x4 and its cardinality is |Gb(x1)| =
0 + 0.1 + 0.2 + 0.1 = 0.4; the fuzzy granule on feature
c is Gc(x1) = 0/x1 + 0.1/x2 + 0.2/x3 + 0.3/x4 and its
cardinality is |Gc(x1)| = 0 + 0.1 + 0.2 + 0.3 = 0.6.
Therefore, a fuzzy granular vector of instance x1 on feature
set A is ĜA(x1) = (Ga(x1),Gb(x1),Gc(x1)) and its module
is |ĜA(x1)| = |Ga(x1)| + |Gb(x1)| + |Gc(x1)| = 0.6 + 0.4 +
0.6 = 1.6.

B. FUZZY GRANULAR HYPERPLANE CLASSIFICATION
1) PROBLEM PROPOSED
Let’s review the problem first and give a solution. Assuming
there are n linearly separable instances, there are numerous
decision hyperplanes with zero error in the fuzzy granular
space to separate them. Which decision hyperplane is opti-
mal? For the decision hyperplanewith zero error, wemake the
separable margin as large as possible. To this end, we trans-
form the problem into a fuzzy granular space to solve. In a
decision system, data is fuzzy granulated and converted into
fuzzy granules divided by different atom features. And then,
these fuzzy granules can form a fuzzy granular vector. Fur-
thermore, we combine instances’ labels with their fuzzy gran-
ular vectors as pairs, which are rules. Then the rules may
form a rule library. Therefore, in the rule library, the classified
problem may be converted into the problem of searching the
optimal fuzzy granular vector Ŵ and B̂ in equation (22). The
details are as follows: first, data is granulated by definition
2-5; next, we convert the classification problem into solving
parameters Ŵ and B̂ in equation (20); finally, for the purpose,
a loss function is designed, as equation (22) exhibited, and we
can get the optimal solution by minimizing the loss function.

Before solving, we also need to give some assumptions as
follows:

(1) Errors from the predicted values and the true values are
consistent with the Gaussian distribution.

(2) There are linearly separable solutions in the problem.
In other words, we can find Ŵ and B̂ to get the fuzzy gran-
ular hyperplane with the maximum margin between positive
instances and negative ones.

We adopt evolution method to obtain the solution. Specif-
ically, error returned from a loss function is distributed ran-
domly to Ŵ and B̂ to reduce the loss function value in next
computing. After sever iterations, the loss function value
will be reduced repeatedly until convergence and the optimal
solution is obtained. Some definitions can be given on the
problem as follows.
Definition 10: Let D = (X ,A,L) be a decision system,

where X = {x1, x2, . . . , xn} expresses a instance set, A =
{a1, a2, . . . , am} denotes feature set, and L = {+1,−1}
represents a label set. For ∀x ∈ X , lx ∈ L, there exists a pair or

a rule, lbA(x) =< ĜA(x), lx >, composed of a fuzzy granular
vector and a label on A. According to these pairs, a rule
library, LBA = {lbA(x)|∀x ∈ X}, is built. A m-dimensional
fuzzy granular hyperplane in fuzzy granular space is defined
by:

Ŷ = Ŵ ∩ ĜA(x) ∪ B̂ (20)

Here, the operators, ‘‘∩’’ and ‘‘∪’’, are defined by Equation
(13) and (14). We define a decision function J : G →
(−∞,+∞) as follows, whereG represents all fuzzy granular
vector sets.

J (ĜA(x)) = ln|Ŵ ∩ ĜA(x) ∪ B̂| + α (21)

Here Ŵ , B̂ and Ŷ are fuzzy granular vectors and α is a positive
number. To classify, we define a loss function as:

LOSS(Ŵ , B̂) =
∑
x∈X

|J (ĜA(x))− lx | + λ ∗ |Ŵ | (22)

where λ ∗ |Ŵ | is a regularization item to avoid overfitting, λ
is a small positive number and lx ∈ {−1,+1} is a label of
instance x.

2) PRINCIPLE OF SOLVING PARAMETERS
Input: instance set X , test instance t and maximum iteration
times MaxIters
Output: the optimal fuzzy granular vectors, W ∗ and B∗

1. Delete the instances of missing some feature values.
2. Normalize the instance to values in [0, 1] by Equation

(23):

∀xi ∈ X ,∀a ∈ A,

ha(xi)←
ha(xi)− minxj∈X {ha(xj)}

maxxj∈X {ha(xj)} − minxj∈X {ha(xj)}
(23)

3. For each instance x ∈ X , runs step 4-6.
4. instance x is granulated on atom feature ai ∈ A, we can

get Gai (x).
5. Form a fuzzy granular vector ĜA(x) = (Ga1 (x),Ga2 (x),

. . . ,Gam (x)) of x.
6. Get the label lx of x from the decision system.
7. Build a rule library lbA(x) =< ĜA(x), lx > for training

instances; For a test instance t , it satisfies lt = null, where
null denotes uncertainty.

8. Generate n pairs of solutions randomly as initialization
solution on ith iteration, namely {( ˆW1(i), ˆB1(i)), ( ˆW2(i), ˆB2(i)),
. . . , ( ˆWn(i), ˆBn(i)}.
9. According to step 8, we can calculate the values of

function LOSS corresponding to each candidate solution,
and they are sorted in ascending order of the value of
function LOSS; the results are assigned to variable T , i.e.,
T ← AscendSort(LOSS)

10. Take the first half solutions of the T to the variable O,
i.e., O← Select(T , 0.5)
11. Each element of these new solutions is probably

corrected with errors. According to the assuming condition
mentioned above, the error satisfies e ∼ N (µ, σ 2). Here,
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TABLE 2. Algorithm of solving parameters.

e represents the error of each element of a fuzzy granular vec-
tor, µ denotes the mean and σ expresses standard deviation.
First, we choose plus operation or minus one with probability
P. Second, the error e is from a pseudo-random number,
which satisfies e ∈ [µ − 3σ 2, µ + 3σ 2], so we generate the
error e in the range [µ−3σ 2, µ+3σ 2] randomly and correct
the candidate solutions. Thus, we can get some new ones.

12. Compare the new solutions with old ones according to
equation (22) and take the better parts as the initial solutions
for the next iteration.

13. Determine whether the number of iterations meets the
request, if not, return to step 8; otherwise, return to step 14.

14. Return Ŵ ∗ and B̂∗ that minimize the function LOSS(·).

3) ALGORITHM OF SOLVING PARAMETERS
According to the principle of solving the binary classification
problem, we design an algorithm of solving parameters (see
Table 2). For a multi classification problem, we need to divide
it into a set of binary classification problems. By solving
every binary classification problem, multi classification one
can get solved.

4) PRINCIPLE OF BINARY CLASSIFICATION PREDICTION
In prediction stage, given a instance x ∈ X , we have a
fuzzy granular vector ĜA(x) by fuzzy information granu-
lation. After solving parameters, we also get the optimal
solution Ŵ ∗ and B̂∗. The prediction value of instance x can

be calculated by Equation (24).

lx =

{
−1, if J (ĜA(x), Ŵ , B̂) < 0
+1, if J (ĜA(x), Ŵ , B̂) ≥ 0

(24)

5) PRINCIPLE OF MULTI-CLASSIFICATION PREDICTION
We have introduced how to solve two-category problem
as mentioned above. For a multi-classification problem,
we can divide the multi-classification problem into a series
of binary classification ones in advance. Then, we can
solve each binary classification problem and employ voting
approach to give final decision. For any binary classification
instances, we design a fuzzy granular hyperplane classifiers
(FGHCs). Then, given N -classification instance set, to solve
the multi-classification prediction problem, we need to train
N (N−1)

2 FGHCs. When predicting a test instance, we adopt
each FGHCs to have a prediction result and count the votes.
The category with most votes is the final prediction value
of the test instance. We take an example to explain as fol-
lows: considering a classification task with three categories
C1,C2,C3, we choose the fuzzy granular vectors associ-
ated with (C1,C2), (C1,C3), (C2,C3) respectively as three
training sets. After training, we have three pairs optimal
parameters. Given a test instance, we employ the three pairs
parameters to predict the label and get three results. More-
over, we count these results and give the final decision by
voting. In other words, the category with most votes will
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TABLE 3. Algorithm of prediction on binary classification.

TABLE 4. Algorithm of prediction on multi-classification.

TABLE 5. Data set.

be the final decision. The processes are as follows: First,
initialize counter Vote(C1) = Vote(C2) = Vote(C3) = 0
of categories; Second, use FGHCs associated with (C1,C2)
to predict, if the result is C1, then Vote(C1) = Vote(C1) +
1, otherwise, Vote(C2) = Vote(C2) + 1; similarly, employ
FGHCs of (C1,C3) to determine, if label predicted isC1, then
Vote(C1) = Vote(C1) + 1; if not, Vote(C3) = Vote(C3) + 1;
adopt FGHC of (C2,C3) to give the prediction result, if it
is C2, then Vote(C2) = Vote(C2) + 1, or else Vote(C3) =
Vote(C3)+1; Finally, the category with most votes will be the
final result, that is, Argmax(Vote(C1),Vote(C2),Vote(C3)).

6) ALGORITHM OF PREDICTION
After the parameter solution is executed, the fuzzy granular
vector of test instances and optimal parameters of FGHCs
can be obtained. We also design algorithms of prediction on
binary classification and multi-classification based on them
(see Table 3 and Table 4).

III. EXPERIMENTAL ANALYSIS
To measure how well FGHCs performed at classification
problem, we evaluated the performance of the classifier using
four datasets in UCI and one Alzheimer’s Disease voice

dataset, as shown in Table 5. 10-fold cross validation was
adopted in the experimental results. The values of the dataset
are various, so these values need to be normalized. The
equation (23) was employed to ensure that all values can
be normalized in [0, 1]. The data is fuzzy granulated on
every atomic feature to build a fuzzy granule. Then, a fuzzy
granular vector consists of these fuzzy granules. To verify the
performance, we compared Back Propagation (BP), SVMs
and FGHCs on evaluation indexes. We adopted True Pos-
itive (TP) rate, False Positive (FP) rate, Precision, Recall,
F-score and ROC Area to evaluate the performance. In the
evaluation, we exhibited the parameters of each category of
instance and compare them with three algorithms as men-
tioned above. In running FGHCs, the max iteration times
are 1000. Parameters of SVMs include penalty coefficient
C and γ which can be regarded as the inverse of the radius
of influence of instances selected by the model as support
vectors. Parameters of BP involve the number of hidden layer
Nh, the number of unit of input layer In, the number of unit of
hidden layer Hn, and the number of output layer On, learning
rate η, and maximum iterations Mn. Parameters of FGHCs
involve maximum iterations MI , the number of initialization
solution k , adjust factor α, and penalization factor λ.
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TABLE 6. Data set bank.

TABLE 7. Data set Iris.

As shown in Table 6, in the Bank dataset, parameters of
BP were as follows: Nh = 1, In = 4, Hn = 6, On = 2, η
= 0.016, and Mn = 10000. Parameters of SVMs satisfied
to C = 1 and γ = 0.1. Parameters of FGHCs were as
follows: MI = 10000, k = 400, α = 0.217, and λ = 0.026.
FGHCs and BP achieved ROC Area of 1 in both categories,
while SVMs got 0.982 (i.e., 0.81% improvement). F-score
improved by 0.91% and 0.71% in two categories respectively
compared with BP; it increased by 2.04% and 1.63% respec-
tively compared with SVMs, exhibiting the quality of the
positive predictions. FGHCs outperform BP in Recall metric
over this dataset. Recall increased by 3.32% compared with
SVMs in category −1, while decreased by 0.2% in category
1. Large improvements (i.e., 4.07%) in the Precision in class
−1 compared with SVMs; meanwhile, Precision decreased
by 0.2%. The Precisions of FGHCs are superior to those
obtained by BP. Overall, FGHCs performs slightly better
SVMs and BP in the Bank dataset.

In Iris dataset, there are three categories, as exhibited in
Table 7. Parameters of BP were as follows: Nh = 1, In = 4,
Hn = 200, On = 3, η = 0.028, and Mn = 1000. Parameters
of SVMs satisfied to C = 10 and γ = 0.01. Parameters
of FGHCs were as follows: MI = 1000, k = 100, α =
0.128, and λ = 0.015. ROC Area improved by 2.47% in
category 2 and 3 compared with BP. It increased by 3.21%
and 2.68% in two categories compared with SVMs. Inter-
estingly, in category 1, all perform metrics of three methods
are the same. F-score made an improvement by 2.24% and
2.02% in category 2 and 3, respectively, compared with BP.
It decreased by 1.91% and 2.35% in the two categories com-
pared with SVMs. Recall increased by 4.35% in class 2 com-
pared with BP. Meanwhile, it improved by 6.67% in class 3,
while it decreased by 2.08% in class 2; therefore, average

increased by 1.39%, compared with SVMs. From the average
of precision to evaluate, FGHCs was 0.9733, BP was 0.9603,
and SVMswas 0.9617. The average of precision improved by
1.35% and 1.21%, respectively.

The number of dataset Seeds is between Bank’s and Iris’.
Parameters of BP were as follows: Nh = 1, In = 7, Hn = 230,
On = 3, η = 0.015, and Mn = 1000. Parameters of SVMs
satisfied to C = 12 and γ = 0.021. Parameters of FGHCs
were as follows: MI = 1000, k = 120, α = 0.113, and
λ = 0.019. Table 8 compared the performance metrics with
the three approaches. The details are as follows. ROC Area
of FGHCs was superior to those obtained by BP and SVMs.
In particular, FGHCs achieved average ROC Area of more
than 0.996, while BPwas 0.980 and SVMs just got 0.964 (i.e.,
1.63% and 3.32% improvement respectively). In F-score, the
average was 0.952 from FGHCs, which improved by 1.49%
compared with SVMs; it was the same as BP’s. Recall of
FGHCs in average was 0.953, BP’s was 0.952 and SVMs’
was 0.938. It increased by 0.11% and 1.60% respectively.
The precision of FGHCs was also better than that of SVMs.
It made an improvement by 1.6% in average and had almost
not changed compared with BP’s.
In dataset Nomao, it includes 2 categories, 120 attributes

and 34465 instances. Parameters of BP were as follows:
Nh = 2, In = 120, Hn1 = 200, Hn2 = 230 On = 2, η = 0.022,
and Mn = 200000. Parameters of SVMs satisfied to C = 7
and γ = 0.015. Parameters of FGHCs were as follows:
MI = 500000, k = 10000, α = 0.287, and λ = 0.025.
As shown in Figure 2, the performance of FGHCs are superior
to BP and SVMs. In particular, FGHCs achieved recall of
0.975 in category −1, while BP and SVMs just got 0.928
and 0.967 (i.e., 4.91% and 0.83% improvement respectively).
Accuracy improved by 3.64% and 0.73% respectively. Recall
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TABLE 8. Data set seeds.

of category +1 increased by 4.55% and 0.31% respectively.
To verify further performance, we adopted voice dataset from
University of Pittsburgh on Alzheimer’s disease. The dataset
is composed of voices and transcripts from participants. The
corpus includes 1264 instances divided into two categories.
To extend scale of the dataset, we splitted these voices into
100,000 fragments as a new dataset. Aswell known,Mel Cep-
stral Coefficients (MFCC) and Gammatone Cepstral Coeffi-
cients (GFCC) are both good features for classification. Here
we extracted the two types of features of voice for classi-
fication. For MFCC, the first 20 dimensions, its first-order
difference, and its second-order difference were selected
and connected to obtain 57-dimensional features. Similarly,
we extracted 57-dimensional features of GFCC. Thus we can
get 114-dimensional features of Alzheimer’s disease voice.
The classification includes two classes. We compared long
short-term memory (LSTM) with FGHCs on ROC as shown
in Figure 3. Parameters of LSTM included 2 hidden lay-
ers with 200 hidden units at each layer. The learning rate
belonged to [0.0001, 0.01] and the maximum iterations was
1,000,000. Adam optimizer was used to do gradient opti-
mization. Parameters of BP were as follows: Nh = 2, In =
114, Hn1 = 100, Hn2 = 110 On = 2, η ∈ [0.01, 0.001],
and Mn = 1, 000, 000. Parameters of SVMs satisfied to
C ∈ [18, 25] and γ ∈ [0.001, 0.01]. Parameters of FGHCs
were as follows: MI = 1, 000, 000, k = 12, 000, α ∈
[0.001, 0.5], and λ ∈ [0.0001, 0.05]. Figure 3(a) and (b)
compares ROC Area got by FGHCs, LSTM, SVMs, and BP
using MFCC and GFCC feature. As demonstrated in Figure
3(a) and Figure 3(b), the ROC curve of FGHCs are closer
to the upper left corner than other classifiers. Hence FGHCs
had better performance than other models using MFCC and
GFCC on the dataset. As shown in Figure 3(a), FGHCs
got ROC Area of 0.92, and LSTM achieved ROC Area of
0.90 (i.e., improvement 2.22%). ROC Area of SVMs was
0.82 and ROC Area of BP was 0.85. FGHCs increased by
12.20% and 8.24% respectively. As shown in Figure 3(b),
FGHCs improved by 2.76%, 13.02%, and 8.98% compared
with LSTM, SVMs, and BP respectively.

In addition, we also employed sampling raw data as fea-
tures to train these classifiers and compared ROC Area
obtained by the classifiers (see Figure 3(c) and (d)). Parame-
ters of LSTM involved 2 hidden layers with 210 hidden units

FIGURE 2. Comparison of accuracy and recall on data set Nomao.

at each layer. The learning rate belonged to [0.0001, 0.01] and
the maximum iterations was 1,000,000. Adam optimizer was
also adopted to do gradient optimization. Parameters of BP
were as follows: Nh = 2, In = 180,Hn1 = 230,Hn2 = 240,On
= 2, η ∈ [0.001, 0.0015], and Mn = 1, 000, 000. Parameters
of SVMs satisfied to C ∈ [15, 30] and γ ∈ [0.001, 0.015].
Parameters of FGHCs were as follows: MI = 1, 000, 000,
k = 12, 050, α ∈ [0.001, 0.6], and λ ∈ [0.0001, 0.09].

As shown in Figure 3(c), FGHCs got ROC Area of 0.912,
LSTM achieved ROC Area of 0.903. FGHCs increased by
1.00%. Compared with SVMs and BP, FGHCs improved
by 12.18% and 9.75% (SVMs was ROC Area of 0.813
and BP was ROC Area of 0.831). As demonstrated in
Figure 3(d), SVMs got ROC Area of 0.823 and BP
achieved ROC Area of 0.834. FGHCs obtained ROC Area
of 0.887 and LSTM got ROC Area of 0.881. FGHCs
increased by 7.78% and 6.35% compared with SVMs and
BP respectively. FGHCs improved by 0.68% compared
with LSTM.

Overall, FGHCs is superior to LSTM, SVMs, and BP.
We also found that MFCC and GFCC features can lead to
the improvement of performance.

In sum, FGHCs is superior to BP and SVMs as whole.
FGHCs performs slightly better than LSTM. The main rea-
sons are as follows. a) Fuzzy granulation is considered before
classification and it embodies the angle of the collective struc-
tures of instances. b)While solving these optimal parameters,
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FIGURE 3. Comparison of ROC on data set of Alzheimer’s disease voice.

we take into account the evolution principle that can find the
global optimal solution. In contrast, BP and LSTM some-
times get the optimal solution that may be localized rather
than global one; SVMs can obtain global optimal solution
according to solving principle, but it just classifies the raw
data instead of granules.

IV. CONCLUSION
In this paper, we propose Fuzzy Granular Hyperplane Clas-
sifiers from granular computing view. The scheme is as fol-
lows. First, we introduce a fuzzy granular hyperplane concept
by some new definitions on fuzzy granules, operators and
metrics. Then, we present parameters learning and instances
predicted algorithms of binary classification based on evolu-
tion computing. To find multi-classification solution, we pro-
pose a predicted model by voting on the basis of a series of
Fuzzy Granular Hyperplane Classifiers of binary classifica-
tion. That is, we transform a multi-classification problem into
a set of binary classification problems and employ counting
votes to achieve the final decision. Experimental results show
the performance of FGHCs outperforms those of BP, SVMs
and LSTM under special parameters. In future work, we plan
to add localized information granulation, parallel and dis-
tributed thoughts into algorithms to apply widely in big data
research.
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