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ABSTRACT Bridge dynamic monitoring based on GNSS has become an important means of monitoring
bridge structure. GNSS dynamic monitoring signals are often overwhelmed by strong noises and multipath
errors. Thus the conventional data processing methods such as Fourier transform, wavelet analysis, and
others have poor denoising effect or obtain unconspicuous dynamic characteristics from weak vibration
signals. To solve this problem, the present study proposes a new adaptive stochastic resonance method based
on quantum genetic algorithm with known frequency as optimal parameter. Analyzing the simulation signals
not only verifies the validity and scientificity of the method, but also analyzes its frequency extraction effect
in the approximate error range of target frequency with different noise intensity. A notable bridge vibration
frequency is obtained when the new method is applied to analyze the bridge dynamic monitoring data based
on GNSS.

INDEX TERMS Bridge dynamic characteristic identification, weak signals, adaptive stochastic resonance,
quantum genetic algorithm, GNSS monitoring data.

I. INTRODUCTION
As key structures that connect railways, roads and other
important facilities, bridges are vital to ensure smooth traffic
and social and economic development. Due to accidents,
such as the collapse of the Minnesota Bridge in the United
States [1] and the Morandi Bridge in Italy [2], transporta-
tion safety has attracted close attention from governments
and the public [3]. Normal operations and long-term safety
of bridges are issues that cannot be overemphasized. For
engineers and designers, an important research direction is
continuous health monitoring and condition assessment of
bridges to identify possible damage as soon as possible. Any
maintenance and repair work can be implemented at the initial
damage stage to maximize the life of the bridge by ensuring
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the safety and reliability of the structure [4]–[7]. The material
performance of bridges are degraded due to the long-term
effects of wind and load or even sudden action of earth-
quakes and ship crash. Furthermore, the excitation of load
and other environmental factors might lead to the response of
the bridge [8]–[11], either healthy or with potential damage
factors. Many academic and practical studies focus on mon-
itoring and analyzing vibration frequency, velocity, acceler-
ation, static deformation and dynamic displacement through
the development of advanced sensing technology, sensors and
health diagnosis methods [6], [7], [12].

A structural monitoring system needs to identify static,
dynamic and permanent deformation in real time; thus
researchers and engineers have developed and applied
numerous monitoring tools such as intelligent total station
[13]–[16], ground photogrammetry equipment [17]–[20],
3-D laser scanners [19], [21], global navigation satellite
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systems [22]–[30] and ground-based synthetic aperture
radar [31]–[36] for structural deformation monitoring of
bridges. These instruments, equipment and technologies
have gained good monitoring achievements, but each
has its own advantages and disadvantages. In particular,
the first three technologies are often affected by observa-
tion distance and their monitoring accuracy is poor. Thus,
many researchers have exerted efforts in updating and
improvement, such as differential GNSS [26]–[28], [30],
multi-frequency multi-system GNSS [38]–[42], high sam-
pling rate [43]–[46], multi-path influence weakening [47],
and denoising and filtering [48]–[51], and applied them to
dynamic deformation monitoring of bridges. The advantage
of continuously providing uniform 3D coordinates makes the
GNSS technique increasingly popular, such that in mainland
China GNSS receivers (according to incomplete statistics)
have been installed in more than 30% of bridges to monitor
dynamic deformation [51]. The GNSS dynamic 3D coordi-
nate sequences obtained from the monitoring not only reflect
the real-time dynamic displacement change of bridge struc-
ture but also extract frequency and modal information on
bridge vibration [26]–[28], [30], [52], [53].

Since Adams et al. [54] proposed the concept of detect-
ing structural damage through changes in structural natural
frequencies and conducted experimental verification with his
partners [55], the vibration frequencies of structures have
been regarded as important modal parameters, and achieve-
ments have been made in bridge structural condition moni-
toring [56]–[63]. Accelerometers are often used to measure
the natural frequency although scholars have different views
on whether the change of bridge vibration frequency, with or
without traffic load, indeed reflects the dynamic characteris-
tic of bridge structures in a state of damage [59], [60]. The
reason is that the accelerometer has some shortcomings, such
as integral accumulation error, insensitivity to low-frequency
vibration, and others [61]. Therefore, growing number of
studies have focused on corresponding data processing meth-
ods, such as linear analysis-basedmethods [64], [65], wavelet
transform [66]–[72], principal component analysis [73], [74],
empirical mode decomposition (EMD) and its derivative
method [72], [75]–[83], to extract the vibration features of
bridges. Compared with difficulties in simulating and esti-
mating the displacement error in accelerometer monitoring,
a certain rule exists to address for the noise in 3D coor-
dinate time series of bridge monitoring deformation from
GNSS [84]–[87]. A growing number of researchers have
adopted time series analysis methods to extract the dynamic
deformation feature information on bridges through GNSS
monitoring [23], [24], [30], [72], [88]–[94]. The existing
methods show excellent performance in the vibration feature
extraction of bridge monitoring data, but the weak vibration
feature signal is seriously polluted by noise in coordinate time
series. Thus, the noisy signal is denoised so blindly that it
reduces the noise to a certain extent, and the characteristic
signal is weakened, thereby leading to ‘‘an internecine situa-
tion’’. Importantly, the gradual changes in deformation and

frequency of the bridge may be so feeble for a long time
with the cumulative loading and silent material aging before
failure or accident that changes of deformation or frequencies
are so weak that submerged in noise of GNSS measurement.
For the non-stationary time series with a large noise compo-
nent or those submerged by noise, extracting the frequency
significantly is difficult using conventional methods.

On another hand, stochastic resonance (SR), which was
proposed by Benzi et al. [95] to explain the paleo-
meteorological problems of glacier cycle, is different from the
denoising methods mentioned, because it is a new approach
to transfer noise energy to signal energy using a nonlinear
system. On this basis, adaptive stochastic resonance (ASR)
method developed byMitaim andKosko [96] can find the best
balance among signal, noise and driving force, thereby gener-
ating a stochastic resonance phenomenon that can effectively
detect or highlight useful signals and achieve denoising with
low signal-to-noise ratio (SNR). In recent years, applications
of stochastic resonance in mechanical vibration and signal
noise processing have developed rapidly [97]–[103], and the
effect is encouraging. However, the application to dynamic
characteristic analysis of deformation coordinate time-series
from GNSS monitoring on bridges is rarely reported. Thus,
this study intends to analyze the time series of GNSS mon-
itoring bridge dynamic deformation using a new adaptive
stochastic resonancemethod to obtain more prominent bridge
frequency information, which is convenient for bridge state
evaluation.

II. ADAPTIVE STOCHASTIC RESONANCE BASED ON
QUANTUM GENETIC ALGORITHM
A. STOCHASTIC RESONANCE THEORY
Stochastic resonance system generally consists of three fac-
tors: nonlinear system, periodic signal and noise. When the
best matching relationship is achieved, the amplification
effect of stochastic resonance on the signal is the most obvi-
ous [96]. The most commonly used model in the stochas-
tic resonance study is the bistable system, which can be
expressed in the nonlinear Langevin equation [95], [96]:

dx
dt
= ax − bx3 + S(t)+ ξ (t), (1)

where a, b represents non-zero system parameters, S(t) is
a weak periodic signal with amplitude A � 1 and
ξ (t) represents Gaussian white noise with zero mean, which
meets the following criteria

E[ξ (t)ξ (t + τ )] = 2Dδ(t − τ ). (2)

The potential function of the above bistable system [96] is

V (x) = −
a
2
x2 +

b
4
x4. (3)

As shown in FIGURE 1, the bistable potential function [98]

has two steady states x± = ±
√
a
/
b, one non-steady state

x = 0, and potential barrier height 1U = a2
/
4b. When no

external input exists, the system is at x±, the lowest point of
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FIGURE 1. Schematic of bistable stochastic resonance system.

the potential well, where the potential energy is the smallest
and the system is most stable [96]. When a weak signal S(t)
is added to the system, the signal energy cannot overcome
the potential barrier, and the output state of the system can
move in a potential well only. If the noise ξ (t) is added
to the system with the weak signal, the input changes into
S(t)+ ξ (t), and then the noise energy is partially transferred
to the signal, resulting in an interaction to overcome the
potential barrier and a transition between the two steady states
in the form of signal frequency [98]. When the potential
difference between bistability is much larger than the ampli-
tude of the input signal, the input signal is amplified, that is,
stochastic resonance occurs.

In the stochastic resonance system, one of the main factors
that hinder the signal transition is the potential barrier height
1U , and the system parameters a and b together determine
the value of the barrier height [96]. Therefore, the parameters
a and b play a decisive role in the occurrence of stochastic
resonance.

Stochastic resonance may not occur obviously when the
barrier height is extremely low, and producing stochastic
resonance is impossible when the barrier height is extremely
large [97]. A pair of optimal parameters a and bmust exist for
different input signals, which can generate the best potential
barrier height, and ensure occurrence of a good stochastic
resonance phenomenon.

B. QUANTUM GENETIC ALGORITHM
Quantum genetic algorithm (QGA), an algorithm devel-
oped by Han and Kim [105] based on quantum basic
theory and genetic algorithm thought [105], is one of the
most mature quantum derivative algorithms. Subsequently,
Wang et al. [106] introduced the concept of quantum rotating
gate into the algorithm, which further improved the QGA.
For quantum algorithms that exploit quantum mechanical
features such as coherent superposition, quantum parallelism,
entanglement, and measure collapse, QGA, as a global opti-
mization algorithm, has stronger parallel computing abil-
ity than traditional algorithms [107]. QGA, with a small
and fixed number of parameters, does not need adjustment
according to specific practical problems, so it can be used in
the self-adaptive analysis of an inversion model [108].

A bit can only express 0 or 1 in the conventional infor-
mation, whereas in the quantum information, the qubit can
express the superposition states of 0 and 1 at the same
time, that is, any intermediate state of 0 and 1 state [105].
Therefore, the quantum may express a larger solution space
with a small number of individuals, and the superposition
state |ϕ〉 can be described as:

|ϕ〉 = m |0〉 + n |1〉 , (4)

wherem, n are the probability amplitude of the corresponding
qubit state, which satisfies the condition |a|2 + |b|2 = 1.
The probability amplitude of qubits |b|2 and |a|2 tend to
0 or 1 after many iterations, that is, the quantum collapses
to a definite state with the disappearance of the quantum
uncertainty [105]. The expression of f-th chromosome in the
chromosome population of the c-th generation is as follows:

X cf =
[
ac1 ac2 · · · ace
bc1 bc2 · · · bce

]
, (f = 1, 2, . . . ,F), (5)

where e is the number of qubits per chromosome and F is the
number of chromosomes (chromosome population).

In QGA calculation, the variation of chromosomes in each
generation is conducted by the action of the quantum gate.
The probability amplitude of all qubits are rotated according
to the current optimal chromosome information to improve
the quantum’s tendency toward the optimal solution [106].
At present, the most popularly used quantum gate is the
quantum rotating gate, which has a rotation matrix ofU (1θ ).
The rotation angle 1θ controls the convergence speed of
the algorithm, and the size and direction of 1θ should be
determined according to the adjustment strategy table [107].
The quantum rotation gate operates as follows:[
ac+1

bc+1

]
= U (1θ )

[
ac

bc

]
=

[
cos(1θ ) − sin(1θ )
sin(1θ ) cos(1θ )

][
ac

bc

]
(6)

The quantum coding measurement is converted to binary
coding through observation. The process of measuring col-
lapse is as follows: a random number rand is generated
randomly for each quantum bit. The qubit value is 1 if
rand < |a|2; otherwise it is 0. Then, the binary code is trans-
formed into a decimal system according to the variation range
of independent variables of specific problems to calculate the
fitness of chromosomes [107]. The flow chart of the QGA
algorithm is shown in FIGURE 2.

C. ADAPTIVE STOCHASTIC RESONANCE BASED ON
QUANTUM GENETIC ALGORITHM
Developing and perfecting the analytical method of adap-
tive stochastic resonance is necessary to extract accurate
and significant bridge dynamic characteristic signals for
GNSS monitoring data affected by noise. From the analysis
of Section 2.1, we can find that the selection of parame-
ters a and b of the stochastic resonance system plays an
important role in its performance. However, the existing adap-
tive stochastic resonance methods are often optimized using
genetic algorithm with two parameters as the optimization

113996 VOLUME 8, 2020



X. Wang et al.: ASR Method Based on QGA and Its Application in Dynamic Characteristic Identification

FIGURE 2. Flowchart of QGA algorithm.

object. Genetic algorithm often falls into a local optimal
solutionwithout change of other parameters when seeking the
best match of stochastic resonance parameters [107]. In this
study, the adaptive stochastic resonance based on quantum
genetic algorithm is adopted to extract bridge vibration signal
effectively and significantly, which uses the good global opti-
mization ability of quantum genetic algorithm to realize the
parallel adaptive optimization of two parameters of stochastic
resonance.

According to stochastic resonance theory, the input sig-
nal must meet the requirements of small parameters (signal
amplitude A � 1, noise intensity D � 1, and signal
frequency f � 1). Before the parameter optimization of
stochastic resonance system, the input signal, which does not
meet the requirements of small parameters, has to be prepro-
cessed through normalization, frequency shift, modulation,
variable scale and frequency shift scale [105]. In this study,
the frequency shift variable scale method [105] is adopted
to perform the signal preprocessing, and then the adaptive
stochastic resonance method based on the maximum output
SNR is used to extract the vibration features.

The new adaptive stochastic resonance method uses quan-
tum genetic algorithm to optimize the system parame-
ters a and b of stochastic resonance simultaneously. The
inverse of the SNR of the stochastic resonance output signal

is selected as the objective function value of the quantum
genetic optimization algorithm, which reflects the optimiza-
tion degree of the processed signal in process. The specific
steps are as follows:

(1) The parameters of quantum genetic algorithm are ini-
tialized and the fitness evaluation function of the adaptive
stochastic resonance system is selected.

(2) The frequency shift variable scale method is adopted
to preprocess the input signal to meet the conditions of small
parameters of stochastic resonance.

(3) The value range of stochastic resonance system param-
eters a and b is determined according to the actual situation,
converted into binary range, and then a set of binary parame-
ter values is randomly generated.

(4) The progeny chromosomes are generated by the proba-
bility of quantum gate rotation and collapse according to the
parameters generated from each iteration, that is, to find the
preliminary optimized system parameters a and b.

(5) The optimized parameters are substituted into the
stochastic resonance system, and then the output SNR of the
input signal processed by stochastic resonance is calculated.

(6) After many evolutions, the combination of the most
optimized parameters a and b is substituted into the system
to form an adaptive stochastic resonance system, and the
optimization system is used to enhance and extract the weak
characteristics of the signal.

III. SIMULATION EXPERIMENT ANALYSIS
To verify the objectivity and effectiveness of adaptive
stochastic resonance based on quantum genetic algorithm,
we conducted the following analog signal analysis.

A. ADAPTIVE STOCHASTIC RESONANCE ANALYSIS OF
WEAK PERIODIC SIGNALS WITH KNOWN NATURAL
FREQUENCIES
A cosine signal that meets the requirements of small parame-
ters of stochastic resonance is simulated S(t) = A cos(2π f0t),
in which the frequency and amplitude of the small parameter
signal are f0 = 0.01Hz, A = 0.03. Zero mean Gaussian white
noise is added to the signal, where noise intensity is D =
0.2, data length is L = 10000, and sampling frequency is
fs = 10Hz. The time domain and frequency domain of the
analog composite signal are shown in FIGURE3 (A) and (B).
Adaptive stochastic resonance system based on genetic algo-
rithm (GA-ASR) and adaptive stochastic resonance sys-
tem based on quantum genetic algorithm (QGA-ASR) are
adopted to process the composite signal, and the parameters
of the two algorithms are as follows: population number
M = 100, evolutionary generations MaxI = 200, crossover
probability pn = 0.7, mutation probability pc = 0.05, and
quantum rotation probability pn = 0.9. The solution accuracy
of the stochastic resonance system parameters a and b is
0.001, the fitness accuracy is 0.0001, the value range of a is
[0.01, 200], and the value range of b is

[
0.01, 104

]
.

As shown in FIGURE 3 (A) and (B), the frequency of
the original cosine signal is difficult to recognize on the
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FIGURE 3. Comparison of results on weak signal detection using GA-ASR and QGA-ASR.

time-frequency diagram. After GA-ASR processing, the sys-
tem parameters are calculated as a = 7.557, b = 340.296,
and SNR = −16.024; the time and frequency diagrams are
presented in FIGUR 3 (C) and (D). The Lorentz effect can be
observed obviously, that is, the signal energymoves gradually
towards the small frequency signal. Some small frequency
band (such as 0-0.5 Hz in the red box in FIGURE 3 (D)) are
redrawn as a subgraph (omitting the non-low frequency part
of the signal spectrum 0.5-5 Hz) to express this effect clearly.
As shown in the subgraph, the signal noise is greatly sup-
pressed, indicating the characteristics of approximate peri-
odic signal, which is exactly the original cosine signal. Its
amplitude at the reference frequency f0 = 0.01Hz is only
Ax = 0.02708. After QGA-ASR processing, the system
parameters are calculated as a = 17.248, b = 130.993,

SNR = −5.154, and the time and frequency diagrams are
shown in FIGURE 3 (E) and (F). As can be seen from
FIGURE 3 (E), although it is not so strict and accurate,
the time domain signal processed by QGA-ASR presents
obvious periodic signal characteristic. Accordingly, peri-
odism is more prominent at the frequency f0 = 0.01Hz,
while the domain ranges of most of the other frequencies
are close to 0. We can infer that the achievement not only
improves the SNR but also shows the Lorentz effect obvi-
ously. The characteristics of stochastic resonance, that is,
those of periodic signals in real-time frequency maps, are
more obvious and perform better in the aspect of noise
removal effect. Furthermore, the amplitude of the reference
frequency increases to Ax = 0.186, which is 6.8 times higher
than that of GA-ASR. This condition greatly enhances the
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FIGURE 4. Effect analysis on detection of weak signal with different noise intensity using different ASR approaches.

periodicity of the signal and amplifies the weak signal by
a large margin. Thus QGA-ASR achieves better stochastic
resonance signal enhancement and Lorentz effect than that
of GA-ASR due to the global optimization ability of the
quantum genetic algorithm. Therefore, QGA-ASR on signal
detection is highly effective, especially for weak signals.

B. ADAPTIVE STOCHASTIC RESONANCE ANALYSIS OF
WEAK SIGNALS WITH DIFFERENT SNR
To examine the ability of analyzing and identifying the weak
signals with different noise intensities using the QGA-ASR
method, we consider a cosine signal that was the same
as the parameters in section 3.1 and met the requirements
of small parameters without losing its generality. Then,
different degrees of zero-mean Gaussian white noise were
added to the cosine signal, where noise intensity was
D1 = 0.005 : 0.005 : 1 and D2 = 1 : 0.05 : 5. The SNRs
under different noise intensities were calculated using adap-
tive stochastic resonance methods and system parameters,
which were the same as those in section 3.1, and SNRs
of the processed results by GA-ASR and QGA-ASR were
abbreviated as SNR1 and SNR2, respectively, and drawn in
FIGURE 4 (a) and (b). The amplitudes of f = 0.01Hz
obtained by GA-ASR processing the compound signal with
different noise intensity are drawn in FIGURE 4 (c) by a
solid blue line. While the maximum amplitudes except the
frequency f = 0.01Hz point of those in the frequency domain
diagram are drawn by a solid red line in FIGURE 4 (d).
Furthermore, the similar counterparts obtained from
QGA-ASR are drawn in FIGURE 4 (e) and (f).

FIGURE 4 (a) and (b) show that although the SNR of
the composite signals decrease gradually with the increase
of noise intensity, it is not a strictly linear and decreas-
ing relationship. The SNRs of the signals processed by
GA-ASR and QGA-ASR have been greatly improved. More-
over, the red solid line representing the SNR of the sig-
nals processed by QGA-ASR in FIGURE 4 (a) and (b) are

above the blue solid line of the signals processed by
GA-ASR inmost cases, thereby indicating that the increase of
QGA-ASR ismore significant. On the other hand, as shown in
FIGURE 4 (c) and (d), according to the representative mean-
ing, if the red solid line is below the blue solid line, then the
frequency to be detected can be detected by the method more
accurately; otherwise, the frequency to be detected cannot be
detected effectively. GA-ASR and QGA-ASR perform well
in detection effectiveness on the initial frequency in the noise
intensity range [0, 0.2], as shown in FIGURE 4 (c) and (e);
and in the noise intensity range [0.2, 1] only QGA-ASR
performs well, while a wide range of misdetection occurs
in the performance of GA-ASR. As the noise intensity con-
tinues to increase, most of the red lines in the results of the
GA-ASR method exceed the blue line in the noise intensity
range [1, 5]. As shown in FIGURE 4 (d), a large-scale error
detection phenomenon occurs. In the QGA-ASR method,
although most of the red line does not exceed the blue line
shown in FIGURE 4 (f), the two lines almost reach the
same level, thereby causing difficulty in identifying the max-
imum value. This result indicates that bad performance of
QGA-ASR occurs in the range [1, 5], and an improvement
in the SNR shown in FIGURE 4 (b) does not help.

To extensively compare the effectiveness of GA-ASR and
QGA-ASR in detecting weak signals (only considering the
noise intensity range [0, 1] for the time being), we inves-
tigated the amplitude at the frequency f = 0.01Hz to
be detected obtained by the two methods and their ampli-
tude enhancement relative to the maximum in the frequency
domain other than the point are investigated. The distinguish-
able degree kAMP of the amplitude of detection frequency
obtained from the two methods is defined by the formula

kAMP =


AMPf 0 − AMPsM

AMPsM
, AMPf 0 > AMPsM

AMPf 0 − AMPsM
AMPf 0

, AMPf 0 < AMPsM ,
(7)
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FIGURE 5. Comparison of signal enhanced extent using different ASR approaches on weak signal with
different noise intensity.

where AMPf 0 represents the amplitude at the frequency
f = 0.01Hz to be detected in the frequency domain of the
output signal processed by the two methods for a certain
noise intensity signal, while AMPsM represents the maximum
amplitude except the frequency f = 0.01Hz in the frequency
domain (that is, themagnitude of the red solid line in FIGURE
4 (c)-(f)). Formula (7) shows that if k> 0, then the frequency
detection is successful; if k < 0, then the detection fails.
In particular, if k is equal to 0 or a positive number close
to 0, then the detection effect is not good. To express the
detail clearly, the dividing line of k = 0 is represented by
a green dotted line, and the amplitudes of f = 0.01Hz in the
output frequency domain of the two methods (marked as AGA
and AQGA respectively) are drawn in blue and red solid lines,
respectively; and kAMP is represented in a similar manner.

FIGURE 5 (a) shows that when the weak signals with
different noise intensities are processed by the GA-ASR and
QGA-ASR methods, the amplitudes of f = 0.01Hz in the
frequency domain of the two methods exceed each other,
but this approach cannot determine which is better or worse.
We can infer from FIGURE 5 (b), that the distinguishable
degree (marked as kQGA) of the frequency to be detected
after the QGA-ASR process is significantly better than
that (marked as kGA) of GA-ASR. However, among the
amplitudes of f = 0.01Hz in the frequency domain of
FIGURE 5 (a), there are cases in which AGA is larger than
AQGA, such as where D = 0.165; there are cases in which
kGA is smaller than kQGA among the distinguishable degree
of FIGURE 5 (b) especially correspondingly to D = 0.165;
or even cases where AGA is close to AQGA such as where
D = 0.5, there are cases in which kGA is approaching kQGA.
In particular, a considerable range of noise intensity exists
such as D = 0.495, and the case of kGA < 0 exists cor-
respondingly, which indicates an error in frequency detec-
tion. As these experiments are conducted independently,
a different white noise is generated each time to form an

analog signal. Thus, different experiments produce different
processing results. Therefore, the preceding analysis and
results can be regarded as universal and repeatable. In general,
the optimization ability of QGA is better than that of GA,
so the frequency detection effect of QGA-ASR is better than
that of GA-ASR in most cases; except for a slight noise
intensity, the former is at least equal to the latter. Furthermore,
the k obtained by the two methods is less than 0 when the
noise intensity D = 0.945, which needs further analysis.

C. ADAPTIVE STOCHASTIC RESONANCE ANALYSIS OF
NOISE SIGNALS
The frequency detection error of the GA-ASR andQGA-ASR
process of the signal with the noise intensity D = 0. 945 in
section 3.2, may be related to the high noise intensity. The
reason may be that the amplitude of f0 = 0.01Hz in the
output frequency domain obtained from the two methods
cannot exceed the maximum amplitude among the frequency
domain except the point under most cases with different noise
intensities in FIGURE 4 (d) and (f). The similar simulation
data with section 3.2 were used to verify this conjecture, and
the only difference is the noise added to the cosine signal,
where only independent tests of D = 1, D = 2, D = 3 and
D = 4 are conducted for 10 times, respectively. In this case,
the noise intensity is much higher than that in the 3.2 section
test; such a test signal is regarded as very weak in this study.
The same methods with section 3.2 were adopted to process
the analog composite signals, and the results of the four inde-
pendent tests are presented in FIGURE 6 (a)-(d). In view of
the fact that each of the four groups has been tested 10 times,
the distinguishable degree k of GA-ASR and QGA-ASR is
drawn in the blue and red pentagrams, respectively.

For the very weak signals with the same noise inten-
sity whose noise composition are from 10 different experi-
ments, each amplitude distinguishable degree k in the results
processed by the ASR method is different from the results
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FIGURE 6. Effect analysis on extremely weak signal using different ASR approaches.

processed by ASR method is different from others because
the random white noise is generated independently. When D
is 1, 2, 3 and 4 respectively, even if the frequency detection
effect of QGA-ASR is better than that of GA-ASR, k is close
to 0 or less than 0 in many tests, which means that these
frequency detection results are wrong. If we heighten noise
intensity D further and perform many experiments, then the
times of frequency detection errors will also increase with
the heightener of D. All the test frequency detections may
fail, even for QGA-ASR with better weak signal detection
ability when the noise intensity D is large enough. Therefore,
the ratio of noise intensity D (or the maximum amplitude of
noise

√
2D calculated using formula (2)) to the amplitude of

signal A = 0.03 is larger with the continuous heightener ofD,
and the frequency detection test on the extremely weak signal
also fails.

A zero-mean Gaussian white noise is simulated by
Matlab 2014b to verify the aforementioned conjecture, whose
noise intensity is D = 0.2, the data length is L = 10000,
and the sampling frequency is fs = 10Hz. The analog sig-
nal is analyzed by the same methods shown in section 3.1,
where f0 = 0.01Hz is considered as the target frequency (in
fact, the frequency does not exist in the weak signal) in the
ASR process. The analysis results of the time and frequency
domain are drawn in FIGURE 7, where only the 0-0.5 Hz
frequency range diagram is drawn to compare clearly with
the analysis results of ‘‘the very weak signal’’.

The time and frequency diagrams of the original sig-
nal in FIGURE 7 (A) and (B) are as the same as those
presented in FIGURE 3 (A) and (B), and any frequency
is difficult to recognize. After the same GA-ASR process,
FIGURE 7 (C) and (D) seem to show a certain Lorentz effect,
but the frequency fx = 0.005Hz is not consistent with the
reality, that is, not only is there no such frequency in the

white noise signal, but the frequency is also different from
the assumed target frequency. Similarly, the fx = 0.002Hz
in FIGURE 7 (E) (F) obtained from QGA-ASR processing
is also inconsistent with reality. This shows that the bistable
stochastic resonance system cannot extract or detect the
‘‘weak signal’’ from the pure white noise, and is ineffective
when used with the QGA-ASR method, which possesses
better global solution search performance. These experimen-
tal results show that the weak signal detection of adaptive
stochastic resonance system is not ‘‘achieved randomly’’, but
through scientific and effective processes.

D. ADAPTIVE STOCHASTIC RESONANCE ANALYSIS OF
WEAK PERIODIC SIGNAL WITH WRONG NATURAL
FREQUENCY
In practical engineering, sometimes determining the exact
frequency of a signal to be detected is difficult and only
the approximate frequency can be inferred. A cosine signal
S(t) = A cos(2π f0t) is simulated to investigate the frequency
detection effect in the case where the approximate target
frequency is known, which meets the requirements of small
parameters. The frequency of the small parameter signal is
f0 = 0.01Hz, the amplitude A = 0.03, the data length is
L = 10000 and the sampling frequency is fs = 5Hz. The zero-
mean-value Gaussian white noise with different intensity are
added to the cosine signal, where the noise intensities is
D = 0.05 : 0.05 : 1 in turn, which constitutes the weak signal
submerged by different noise intensity. Methods similar to
those discussed in section 3.2 are adopted to analyze the sig-
nal sequences one by one with regard to different frequencies
f0s = 0.0093 : 0.0001 : 0.0107 (Hz) as the target frequencies
in this study.

Different noise intensity D is regarded as x-axis, different
target frequency f is used as y-axis, and the amplitude
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FIGURE 7. Comparison of results on noise signal detection using GA-ASR and QGA-ASR.

distinguishable degrees kGA and kQGA of the frequency to
be detected obtained from different weak signals processed
by GA-ASR and QGA-ASR based on different frequency f
are taken as z-axis and drawn in the form of a stereogram
in FIGURE 8. In the graph, we not only draw the case
where k changes among the variations of f and D but also
draw the thin sheet at k = 0 (in yellow color) to clearly
distinguish the positive and negative k values.We can observe
from FIGURE 8 that the analysis results of the two methods
show k value less than 0 in a certain range of the target

frequency f , and both of them can detect the target frequency
in a certain neighborhood close to the correct target frequency
f0 = 0.01Hz. In particular, a larger range exists in which the
amplitude distinguishable degree obtained by QGA-ASR is
larger than 0, compared with that of GA-ASR.

The results shown in FIGURE 8 are transferred to a plane
in FIGURE 9 to further clarify the specific range of the
frequency to be detected successfully. Analogously, to bet-
ter distinguish the positive and negative value of k , it is
preprocessed as follows: if k > 0, then 2 is added to the
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FIGURE 8. Stereogram of effect analysis on weak signal with different noise intensity using different ASR
approaches based on different target frequency.

FIGURE 9. Plane of effect analysis on weak signal with different noise intensity using different ASR
approaches based on different target frequencies.

value of k; otherwise, if k < 0, then 2 is subtracted. We can
observe in the plane diagram that when the frequency section
[0.0096, 0.0104] is regarded as the target frequency range
to analyze the weak signal, both methods can obtain a high
success rate in frequency detection; however, each method
can hardly obtain a high success rate in the target frequency
range of [0.0093, 0.0096] and [0.104, 0.0107], which are
outside the above range. Moreover, in the frequency range
[0.0096, 0.0104], there are more amplitude distinguishable
degrees kQGA (the value has been subtracted from 2, which
is similarly done hereafter) obtained from the QGA-ASR
method lager than 3 (themagenta area is larger); inmost of the
frequency ranges the amplitude distinguishable degrees kQGA
exceed 1 (light blue region). However, in the frequency range
adjacent to [0.8, 0.95] and f = 0.0096 Hz, the amplitude
distinguishable degrees obtained from the two methods are
all less than 0, which means that misdetection may occur if

the approximate target frequency is slightly different from
the real frequency when the signal is extremely weak. On the
other hand, the SNR extreme value (calculated by the approx-
imate target frequency) optimized in the process of adaptive
stochastic resonance, is also considerably different from the
actual SNR (calculated by the true frequency of the signal),
with the increase of the difference between the approximate
target frequency and the real frequency of the signal. This
condition also verifies the importance of determining the true
frequency of the signal in advance. Due to space limitations,
the different SNRs are not reported in this study.

We can sum up that QGA-ASR can detect the fre-
quency characteristics of weak signal clearly and suppress
noise effectively through the aforementioned analysis. This
approach works well even for the detection of the approx-
imate frequency, where a small difference from the actual
frequency is regarded as target frequency. Moreover, for the
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FIGURE 10. Time and frequency graph of dynamic monitoring signals of bridge using GNSS.

extremely noisy signal (neither it does not contain any spe-
cific meaningful signal, or the scale of the weak signal is too
small and it falls alone to this category let alone), the twoASR
methods cannot detect its right frequency; for the frequency
detection that a large difference between the actual frequency
and target frequency, frequency misdetection always occurs
regardless of the ASR methods adopted.

IV. ENGINEERING APPLICATION
In this study, the QGA-ASRmethod is applied to the analysis
of GNSS monitoring data of bridges.

A. ENGINEERING DATA SOURCES
Sutong Yangtze River Highway Bridge, commonly known
as Sutong Bridge, is located between the cities of Nantong
and Suzhou in eastern Jiangsu Province. The bridge is a
double-tower and double-plane steel box girder cable-stayed
structure with a total length of 8146m, a main span of 1088m
and a main cable tower of 300.4 m high. The bridge located
downstream of the Yangtze River is often hit by typhoons
in the summer every year. Various bad factors, coupled with
the temperature difference between day and night and sea-
sonal variation, have a very adverse impact on the accurate
positioning of the superstructure of the cable tower. High
requirements are proposed to determine geometric line type,
elevation, dynamic parameters, and cable tower deviation of
the main beam to ensure the construction safety and index of
bridge structure design during the construction period. A set
of remote real-time dynamic geometric monitoring system
based on GNSS technology had been established, which can
monitor the geometry and structural state of towers and beams
continuously and in real-time [25]. The GNSS monitoring
equipment was installed on top of the cable tower as soon
as the roof was sealed. For the natural frequency of the large
cable-stayed bridge that is generally much less than 5 Hz,
the vibration signal can be recorded by setting the sampling
rate of the GNSS receiver at the monitoring point to 10 Hz

according to the Nyquist theorem, which provides a scientific
basis for the safe construction of the bridge [25].

The GNSS system used Kalman filter and double differ-
ence solution algorithm to process the measurement data,
and a real-time displacement result with high accuracy can
be obtained [23], [24]. The bridge GNSS monitoring data
series was transformed into the bridge axis coordinate system,
and then averaged, and the accuracy of the data sequence
is surveyed. The plane accuracy is δx = 3.6mm, and δy =
2.8mm, which is better than that of±5mm, thereby indicating
that it enables dynamic characteristic analysis of bridges.

B. APPLICATION ANALYSIS
We analyzed a section of x-direction monitoring time series
data starting at 20:32 on December 26, 2006, with a duration
of 500 s. The data were collected from the GNSS monitor-
ing point in the bridge axis coordinate system on the north
bridge tower. The time and frequency domains are drawn in
FIGURE 10. The frequency domain obtained by FFT method
has an obvious frequency signal f = 0.156Hz, but the
frequency domain extreme value is small at an order of
magnitude of 10−3 mm. Furthermore, a certain influence of
noise exists.

To meet the condition of stochastic resonance and its
small parameters, we apply the quadratic spline curve fit-
ting method to make the frequency domain of the signal
distributed symmetrically around 0, and then we analyze
the signal through the combination of heterodyne spectrum
analysis and stochastic resonance principle [109]. The ideal
of the heterodyne spectrum analysis [109] is as follows: the
known signal fc = 0.152Hz is multiplied by the original
signal s(t) = A0 cos(2π f0t) + n(t) (the difference of fre-
quency between the two signals is 0.004 Hz); for cos(2π f0t) ·
cos(2π fct) cos(2π (f0 − fc)t)+ cos(2π (f0 + fc)t), two signals
with frequencies of f0± fc can be obtained. The signal f0+ fc
converts the energy to the f0− fc with lower frequency due to
the stochastic resonance effect if f0 + fc ≥ f0 − fc exists.
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FIGURE 11. Frequency domain graphs obtained from different methods on dynamic monitoring signals of bridge
using GNSS.

Then the heterodyne signal is processed by GA-ASR
and QGA-ASR methods, respectively, where f0 − fc =
0.005Hz is regarded as the extreme value objective func-
tion of SNR, and the selection of other parameters is same
as that in section 3.1. Stochastic resonance occurs through
the GA-ASR method when the system structural parame-
ters a and b are 0.135 and 126.833 respectively, and the
maximum value obtained is SNR = −2.118. Stochastic
resonance occurs through the QGA-ASR method when the
parameters a and b are 0.028 and 15.636, respectively, and the
maximum value obtained is SNR = −0.656. The spectrum
diagrams obtained from the two algorithms are drawn in
FIGURE 11, and the spectrum obtained by FFT transform
of the heterodyne signal is also drawn in the diagram for
comparison.

We can infer from the diagram that the spectral peak of
f = 0.004Hz obtained from the GA-ASR and QGA-ASR
methods, which corresponds to 0.156Hz in the original signal
according to the heterodyne method, is consistent with the
preset vibration frequency of the bridge tower. We prove
that the tower of the bridge is in a safe state during this
period. The amplitudes of the spectral peak A in the latter
two pictures reach both 3.06×10−2, which is nearly 10 times
higher than the 3.17×10−3 obtained by simple usage of FFT.
This condition makes the vibration frequency signal more
significant.

The amplitudes of the peaks obtained by the GA-ASR
and QGA-ASR methods shown in FIGURE 11 are the same,
which indicates that the optimization ability of GA and QGA
is the same. These results are consistent with the analysis
in section 3.3 that ‘‘the weak signal detection of the two
algorithms is the same under partial noise intensity’’. On the
other hand, even if f0 − fc = 0.005Hz is regarded as the
extreme objective function of SNR (this is not consistent with
the reality where the actual situation is f0 − fc = 0.004Hz)

in the ASR process, the final spectral peak can still fall at
0.004 Hz. This result is another strong evidence that the
analysis of section 3.4 is correct and scientific. However,
a smaller spectral peak also exists at the 0.156Hz in the
last two subgraphs, which is the frequency of the original
signal. This situation may be related to the imperfection of
the Lorentz effect, or the fact that the gap between f0 ± fc is
not large enough.

In addition, the damage identification method proposed by
Rytter according to the damage state of the bridge is defined
by the following levels: (i) detecting the existence of damage,
(ii) determining the location of damage, (iii) estimating the
degree of damage, and (iv) determining the effect of damage
and predicting the remaining fatigue life.

This method can be used to monitor and detect the weak
characteristic change of the structure submerged in noise
from the time series of GNSS dynamic monitoring during
the construction and operation of the bridge, when the bridge
tower and other structures are relatively geometrically stable
and the vibration characteristics are obvious. To achieve the
goal of level (i), we can use this method in the cases where
relative geometry of bridge towers and other structures is
stable during bridge construction and operation from the
time series of GNSS dynamic monitoring, and the vibration
characteristics exist but is not very significant. From the time
series of GNSS dynamic monitoring of the bridge, the weak
characteristics and slight changes of the structure submerged
in noise can bemonitored and detected using the newmethod.
The unfavorable situation is grasped in advance to achieve
the goal of level (i). Based on the application range of this
method and the physical structure of the relatively stable
bridge structure, for example, from 0.154 Hz to 0.156 Hz,
the ‘‘fault’’ level in the field of mechanical engineering is
not yet reached, and thus the term ‘‘fault signal detection’’ is
unsuitable. A reasonable term is ‘‘vibration frequency change
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monitoring’’, which is closely related to the early detection
of damage of the level (i) bridge structure, and has important
practical application value.

Finally, the proposed algorithm has high computational
complexity and is unsuitable for the rapid characteristic
identification and analysis of bridge dynamic monitoring
data based on GNSS in the case of sudden mode changes.
Focusing on the global optimization ability of quantum
genetic algorithm, thereby improving the accuracy and
prominent detection of frequency and its subtle changes,
the QGA-ASR method does not consider the computational
complexity reducing like the discussion in [111], thus it is
as time-consuming as GA -ASR. This method also does
not consider the bridge dynamic characteristic identification
and signal denoising described in [94] and [112], which
can be conducted in a situation where the noise amplitude
is not large and the approximate frequency is unknown.
However, in analyzing the bridge health monitoring data,
QGA-ASR has a better ability than GA-ASR to identify
or examine the frequency in the normal operation stage of
the bridge. This task involves detecting the main vibration
frequency and its slight changes on the bridge using the
QGA-ASRmethodwhen the dynamic deformation is small or
the main vibration frequency is submerged in the noise under
various environmental excitations. Complementary analysis
and identifying possible damage in advance are necessary so
that measures can be taken to protect the bridge structure.
Acting early on potential damage to the bridge is possible
when a large irregular mutation in dynamic deformation or
the main vibration frequency of the structure is monitored.
With regard to the scientific judgment on whether the main
vibration frequency of the bridge changes before and after
the weak external environment varies, this method has an
advantage but at the cost of high calculation complexity and
time spent on identifying the weak frequency and its slight
changes prominently. Therefore, it is worthwhile to use such
a relatively time-consuming algorithm to identify possible
damage of the bridge in the early stage.

V. CONCLUSION
In this paper, a parameter optimization adaptive stochastic
resonance algorithm based on quantum genetic algorithm
is proposed. The SNR of the bistable system output was
regarded as the fitness function, and the quantum genetic
algorithm was used to optimize the global optimization abil-
ity. The structural parameters of the stochastic resonance
system were optimized to accomplish the extraction of the
periodic components of the weak periodic signal in the analog
signal.

According to the simulation experiment, the QGA-ASR
method was validated to perform better than the GA-ASR
method in dealing with the weak signal with different SNR.
Stochastic resonance was not observed in the pure white
signal without any weak signal. Furthermore, the QGA-ASR
method was verified to be superior to the GA-ASR method
when SNR was used as the fitness function to optimize the

structural parameters for the frequency detection in which the
approximate frequency had a small difference from the actual
frequency that was regarded as target frequency.

With the combination of heterodyne and QGA-ASR
method, the vibration signal of bridge dynamic monitoring
based on GNSS was extracted successfully under the con-
dition of large parameters. Although this method did not
consider the special cases, such as irregular vibration signals
and non-white noise signals, in GNSS bridge monitoring,
and was slightly more time-consuming, it had a significant
feature extraction effect in the case of approximate frequency
of vibration is known and was inundated by white noise.
However, the method had a good engineering application
value in finding the early abnormal changes that occurred on
bridges as a result of vibration.
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