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ABSTRACT In millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems, the hybrid
beamforming architecture has been put forward to reduce the high hardware cost and power consumption,
which are resulted from the tremendous requirements of dedicated radio frequency (RF) chains. In this
paper, we propose several strategies to design analog and digital precoders for a point-to-point (P2P) hybrid
MIMO system. Aiming at minimizing the Euclidean distance between the optimal digital precoder and
hybrid precoder, we decouple this matrix factorization problem into a nonconvex quadratically constrained
quadratic programming (QCQP) problem and an unit-modulus least-squares (ULS) problem, which can be
solved by the presented three alternating optimization algorithms. Simulation and analysis results indicate
that the proposed semidefinite relaxation based alternating optimization (SDR−AO) algorithm can approach
near-optimal spectral efficiency performance compared with previous algorithms in the literature, but shows
extremely high computational complexity. The alternating direction method of multipliers based alternating
optimization (ADMM−AO) algorithm is preferred in the case that the number of transmit antennas is much
larger than that of receive antennas or the amount of data streams is small. Moreover, when equal number
of RF chains and data streams are employed, the analytical constant modulus factorization based alternating
optimization (ACMF−AO) algorithm is a better choice. Finally, the proposed algorithms can also be well
applied in finite resolution phase shifters (PSs) of the analog component and are extended to wideband
mmWave systems.

INDEX TERMS Millimeter wave communication, hybrid precoding, alternating optimization, quadratically
constrained quadratic programming.

I. INTRODUCTION
Millimeter wave (mmWave) wireless communication has
proven to be one of the prime candidates for next-generation
cellular systems offering large bandwidth and high data
rates [1], [2]. Combined with preprocessing and post-
processing techniques in multiple-input multiple-output
(MIMO) systems, the large antenna array at transceivers
will provide sufficient beamforming gains to combat the
severe path loss in mmWave channel [3]–[5]. However,
new hardware limitations and large-scale antennas will
bring new challenges. In traditional low-frequency (below
6 GHz) MIMO systems, the transmit signals are adjusted by
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baseband digital precoders, then connected to each antenna
after passing though the radio frequency (RF) chain. In this
configuration, the number of RF chains must be equal to the
number of antenna elements. However, deploying such a ded-
icated RF chain for each antenna in mmWave (30−300 GHz)
MIMO systemswill result in prohibitively high hardware cost
and power consumption.

To overcome this challenge, a hybrid transceiver archi-
tecture has recently been put forward, in which full digi-
tal beamformers were replaced by analog/digital precoders
and combiners. Benefiting from the use of analog precoders
and combiners, typically implemented by phase shifters
(PSs), the number of RF chains in hybrid MIMO architec-
tures was greatly reduced. Besides, some economical and
energy-efficiency devices such as low-resolution analog to
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digital converters (ADCs) and digital to analog convert-
ers (DACs) can also be adopted, since the power consump-
tion of ADC/DAC grows exponentially with the quantization
bit [6]–[8].

The pioneering work on hybrid precoding and combining
design for mmWave channel was [9]. Leveraging on the spa-
tial structure of mmWave channel, the design of analog and
digital precoder/combiner were formulated as a sparse signal
recovery problem and solved by the orthogonal matching pur-
suit (OMP) algorithm. After that, aiming at solving the matrix
factorization problem with constant modulus constraints pre-
sented in [9], several alternating minimization (AltMin) algo-
rithms were developed [10]–[13]. The phase extraction based
AltMin (PE−AltMin) algorithm and the iterative coordinate
descent algorithm (ICDA) were proposed in [10] and [11],
respectively. The authors in [12] decoupled the nonconvex
matrix decomposition problem into a series of convex sub-
problems. Subsequently, four hybrid design algorithms were
developed in [13] and the preferred algorithm depended
on the implementation complexity, power consumption, and
other system characteristics. In addition, it is also a good trick
to minimize the Euclidean distance between hybrid precod-
ing matrix and full-digital precoding matrix by relaxing the
objective function or constraints appropriately [14], [15].

Furthermore, in extended multi-user scenarios, the ana-
log precoder/combiner were designed by maximizing the
user’s signal power. Then, based on zero forcing (ZF) [16],
block diagonalization (BD) [17], and minimum mean square
error (MMSE) [18], [19] processing methods, the digital
beamformer were devised to eliminate inter-user interference
(IUI). Recently, hybrid beamforming with sub-connected
structure [10], [20]–[22], dynamic sub-connected structure
[23], [24] and distributed architecture [25]–[27] have been
investigated. In order to further reducing the hardware com-
plexity, the switching networks [28] and the low-resolution
PSs [29] can be employed to further reduce the power con-
sumption caused by analog beamformer. However, the reduc-
tion of hardware complexity is at the expense of performance
loss.

The aforementioned algorithms for solving matrix decom-
position problems with constant modulus constraint make
certain assumptions about the analog precoders or digital
precoders without exception. For instance, the authors in [9]
restrict the feasible solution of analog precoding to the array
response vectors of mmWave channel matrix. Moreover,
the extra orthgonal property was imposed in digital precoder
in [10]. Although these assumptions simplify the design of the
hybrid precoding matrix, it inevitably results in performance
degradation of spectral efficiency.

In this paper, starting from minimizing the Euclidean dis-
tance between the optimal unconstrained digital precoding
matrix and the products of analog RF and digital base-
band precoding matrices, subjecting to constant modulus
constraint and power constraint, we propose three alter-
nating optimization strategies based on different principles
to design hybrid precoding matrix. The proposed methods

are also applicable to the design of hybrid combiner at
receiver due to the similar structure and make no assumptions
about the properties of the analog/digital precoder. Moreover,
the presented algorithms can be extended for OFDM-based
wideband mmWave MIMO systems. The computational
complexity analyses and simulation results demonstrate that
the proposed semidefinite relaxation based alternating opti-
mization (SDR−AO) algorithm can achieve near-optimal
spectral efficiency performance compared with other state-
of-the-art algorithm in the literature, but at cost of extremely
high computational complexity. Although the complexity
of presented the alternating direction method of multipliers
based alternating optimization (ADMM−AO) and analytical
constant modulus factorization based alternating optimiza-
tion (ACMF−AO) algorithms are one order of magnitude
higher than OMP and ICDA algorithm, the spectral efficien-
cies of these two presented algorithms are far superior to
them.More specifically, ADMM−AO is preferred in the case
that the number of transmit antennas is much larger than that
of receive antennas or the amount of data streams is small.
Furthermore, when equal number of RF chains and data
streams are employed, ACMF−AO is a better choice since
it achieves a trade-off between computational complexity
and spectral efficiency performance. Finally, the simulation
results also show that the proposed algorithms can be greatly
applied in uniform quantized PSs of the analog component.

The remainder of this paper is organized as follows.
Section II introduces the data transmission model and
channel model. Section III presents the formulation of
optimization problem and the proposed alternating optimiza-
tion algorithms. In Section IV, the proposed algorithms are
extended for mmWavewideband systems. The computational
complexity analyses and simulation results are provided in
Section V. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL
A. DATA TRANSMISSION MODEL
This paper focuses on a point-to-point (P2P) MIMO system
with hybrid architecture as shown in [9]–[13]. The transmitter
equipped with Nt antennas communicates Ns data streams
with the receiver equipped with Nr antennas. The hybrid pre-
coding and combining architecture are employed to substitute
full digital beamforming architecture for reducing the deploy-
ment of RF chains. Between baseband precoder (combiner)
and PSs, Lt (Lr) RF chains are deployed to up-convert the
complex transmit symbols to the passband domain, which are
subjected to constraints Ns ≤ Lt ≤ Nt and Ns ≤ Lr ≤ Nr to
enable multi-stream communication.

Assuming a narrowband flat fading channel and perfect
synchronization, the Ns × 1 received signal vector after com-
biner processing can be written as

r =
√
PWH

BW
H
RHFRFBs+WH

BW
H
R n, (1)

where P stands for the average received power,WB ∈ CLr×Ns

means the digital baseband combiner, WR ∈ CNr×Lr is the
analog RF combiner, andH ∈ CNr×Nt represents the complex
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channel matrix. FR ∈ CNt×Lt and FB ∈ CLt×Ns denote the
analog RF precoder and digital baseband precoder respec-
tively, and s denotes the Ns × 1 vector of data symbols such
that E

{
ssH

}
=

1
Ns
INs . Besides, n refers to the Nr × 1 vector

of independent and identically distributed (i.i.d.) CN (0, σ 2
n )

additive white complex Gaussian noise.
In order to normalize the total power of the discrete-time

transmitted signal which can be written as x = FRFBs,
the hybrid precoding matrix is enforced to ‖FRFB‖

2
F = Ns.

Furthermore, since the RF precoders (combiners) are imple-
mented by PSs, the hardware limitation will be satis-
fied, namely, the magnitude of all elements in FR (WR)
is constant. Therefore, FR (i, j) ∈ F (WR (i, j) ∈W), ∀i, j,
in which F (W) refers to the feasible set of RF pre-
coders (combiners). For the infinite-resolution PSs, this hard-
ware limitation is equivalent to the unit-modulus constraint
|FR (i, j)|2 = 1 (|WR (i, j)|2 = 1). However, if B-bit uniform
quantized PSs are considered, the feasible set can be defined
by F 1

=

{
ej2πb

/
2B
|b = 1, . . . , 2B

}
. In the following discus-

sion, we first analyze the design of hybrid precoding with the
assumption of infinite resolution PSs. Afterward, in the case
of B-bit resolution PSs, we capture FR by simply selecting
the entries of F that are closest to the RF precoder gained in
infinite resolution PSs.

In this paper, perfect channel state information (CSI) is
assumed to known at both transmitter and receiver. When
Gaussian symbols are employed to transmit over the channel,
the spectral efficiency shall be

R = log2

∣∣∣∣INs +
P

σ 2
nNs

T−1w WH
BW

H
RHFRFB

×FHBF
H
RH

HWRWB

∣∣∣∣, (2)

where Tw =WH
BW

H
RWRWB. For the sake of simplifying

the hybrid beamformer design, we temporarily focus on the
design of RF and baseband precoder FR, FB assuming that
prefect hybrid combiner are employed in receiver. Hence,
the spectral efficiency without considering combiner process-
ing can be expressed as

R = log2

∣∣∣∣INr +
P

σ 2
nNs

HFRFBFHBF
H
RH

H
∣∣∣∣ . (3)

It is worth noting that the structure of hybrid combiner
and precoder are similar, then the next proposed alternating
optimization algorithm for designing hybrid precoder can
also be employed to the design of hybrid combiner. In the
next section, we will focus on the design of hybrid analog
and digital precoding algorithm.

B. CHANNEL MODEL
The limited scattering characteristic of mmWave frequency
band will result in a sparse channel structure. Thus, in this
paper, the clustered channel model based on extended
Saleh-Valenzuela model is adopted, which allows us to accu-
rately capture the mathematical property present in mmWave

channels. The discrete-time narrowband channel matrix H
[9]–[13] is given by

H =

√
NtNr

NcNp

Nc∑
i=1

Np∑
j=1

βi,jar(φi,j)at(θi,j)H , (4)

where Nc stands for the number of scattering clusters, each of
which include Np propagation paths. βi,j is the complex gain
of the jth propagation ray in the ith scattering cluster, which is
assumed following Gaussian distribution CN (0, σ 2

α,i). ar(φi,j)
and at(θi,j) represent the normalized receive and transmit
antenna array response vectors at the angle of φi,j and θi,j,
respectively, while φi,j and θi,j denote the azimuth angles of
arrival and departure (AoA and AoD), respectively.

Since array geometry will affect the dictionary matrix,
here, we choose the case of uniform linear array (ULA) with
N elements to form the dictionary matrix. The array response
vector at angle of θ has the form

aULA (θ) =
1
√
N

[
1, ejkd sin(θ), . . . , ejkd(N−1) sin(θ)

]T
, (5)

where k = 2π/λ and λ is the carrier wavelength, d denotes
the distance between two adjacent antenna elements. The
array response vectors at both the transmitter and the receiver
can be written in the form of (5). Although this channel model
will be adopted in our simulation, the following proposed
hybrid precoding algorithm is not only just limited to the
above mmWave channel, but also can be applied to more
general models.

III. PROPOSED ALTERNATING OPTIMIZATION
ALGORITHMS
A. THE FORMULATION OF OPTIMIZATION PROBLEM
As shown in reference [9], the hybrid precoders design
problem concerned with maximize spectral efficiency (3)
is equivalent to minimize the Euclidean distance between
optimal unconstrained digital precoder and hybrid precoders,
i.e.

∥∥Fopt − FRFB
∥∥
F . By imposing the limitation on the RF

and baseband precoder, the corresponding design problem
can be written in the following form

(P1) : min
FR,FB

∥∥Fopt − FRFB
∥∥2
F (6a)

s.t. FR (i, j) ∈ F , ∀i, j, (6b)

‖FRFB‖
2
F = Ns, (6c)

where Fopt ∈ CNt×Ns stands for optimal unconstrained dig-
ital precoding matrix, which consists of the first Ns right
singular vectors of H. Therefore, we have Fopt = V1, where
V1 derived from the singular value decomposition (SVD)
of channel matrix, i.e. H = U6VH . Notice that the singular
values in 6 are all non-negative real numbers and sorted in
descending order. Similar to the structure of (P1), the hybrid
combining problem can also be formulated as

min
WR,WB

∥∥Wopt −WRWB
∥∥2
F (7a)

s.t. WR (i, j) ∈ F , ∀i, j. (7b)
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Notably, the above hybrid combining problem is akin to
(P1) except for an extra power constraint (6c). Thus, we pay
attention to (P1) because the developed algorithm can also
be applied to the design of hybrid combining. Unfortunately,
the problem (P1) is nonconvex due to the hardware con-
straint (6b) and power constraint (6c), additionally, optimiz-
ing FR, FB simultaneously make the problem intractable.
In this paper, (P1) is viewed as a matrix factorization problem
and the alternating optimization strategies will be adopted to
deal with it. Based on the principle of alternating optimiza-
tion, we will alternately optimize matrix FR or FB while fix-
ing the other. In this case, the original problem is decoupled
into two unrelated optimization subproblems. Assuming that
the RF precoding matrix FR is given, (P1) will be simplified
as

(P2) : min
FB

∥∥Fopt − FRFB
∥∥2
F (8a)

s.t. ‖FRFB‖
2
F = Ns. (8b)

Obviously, the problem (P2) is a nonconvex quadratically
constrained quadratic programming (QCQP) substantially
[30], which can be reformulated as a semidefinite program-
ming (SDP) by relaxation. We will analyze the problem
elaborately in the following subsection III-B. After solving
(P2), we will update FB by fixing FR and the RF precoding
matrix design problem will be accordingly formulated as

(P3) : min
FR

∥∥Fopt − FRFB
∥∥2
F (9a)

s.t. |FR (i, j)|2 = 1, ∀i, j. (9b)

The problem (P3) will equal to an unit-modulus least-
squares (ULS) problem after matrix vectorization, and some
efficient algorithms will be developed to solve it in next.
We will solve (P2) and (P3) alternately and finally obtain the
hybrid precoders. On top of this, solving (P2) always hap-
pen after solving (P3) to ensure the normalized transmitting
power.

B. SDR−AO: SEMIDEFINITE RELAXATION BASED
ALTERNATING OPTIMIZATION
We first execute vectorization on (P3) to transform the origi-
nal problem into anULS problem [31]. The objective function
in (9a) can be rewritten as∥∥Fopt − FRFB

∥∥2
F

=
∥∥vec (Fopt − FRFB

)∥∥2
2

=

∥∥∥vec (Fopt
)
−

(
FTB ⊗ INt

)
vec (FR)

∥∥∥2
2
. (10)

To make the notation concise, we denote y = vec
(
Fopt

)
,

A = FTB ⊗ INt , and w = vec (FR). Therefore, (P3) will be
restated by

(P4) : min
w
‖y− Aw‖22 (11a)

s.t. |wi|
2
= 1, i = 1, . . . ,NtLt. (11b)

With the introduction of extra auxiliary variable t ∈ C,
the above ULS problem (P4) can be further homogenized to
an unit-modulus quadratic programming (UQP) [32]

(P5) : min
w̄

w̄HRw̄ (12a)

s.t. |w̄i|
2
= 1, i = 1, . . . ,Nt Lt + 1, (12b)

where

R =
[
AHA −AHy
−yHA yHy

]
, w̄ =

[
w
t

]
. (13)

Notice that problem (P4) is equivalent to (P5) in the fol-
lowing sense: [(w?)T , t?]T is an optimal solution of (P5) if
and only if w? is an optimal solution of (P4). To deal with
the UQP (P5), an classical processing method is semedefi-
nite relaxation (SDR) [33]. Rewriting the objective function
in (12a) as w̄HRw̄ = Tr(w̄HRw̄) = Tr(Rw̄w̄H ) and defining
an matrix W as W , w̄w̄H , (P5) can be equivalently refor-
mulated by the following problem

min
W∈Hn

Tr (RW) (14a)

s.t. W(i, i) = 1, i = 1, . . . , n, (14b)

W � 0, (14c)

rank(W) = 1, (14d)

where Hn denotes the set of n× n (n = NtLt + 1) Hermitian
matrices, the constraint W � 0 means that W is a positive
semidefinite matrix [34]. Except for the rank constraint,
the other constraints and objective functions in (14) are con-
vex. Thus, we will temporarily ignore the rank-1 constraint
and yield a relaxed form of (14) which is convex:

(P6) : min
W∈Hn

Tr (RW) (15a)

s.t. W(i, i) = 1, i = 1, . . . , n, (15b)

W � 0. (15c)

Algorithm 1 SDR−AO Based Hybrid Precoding Design
Input: Fopt

1: Initialize F(0)
R with random phases;

2: F(0)
B = (F(0)

R )+Fopt;
3: F(0)

B =
√
Ns/‖F

(0)
R F(0)

B ‖F · F
(0)
B ;

4: k = 0;
5: repeat
6: Fix F(k)

B , obtain W by solving (P6) with CVX
toolbox;

7: Update F(k+1)
R using rank-1 approximation and matrix

reconstruction;
8: Fix F(k+1)

R , obtain Z by solving (16) with CVX tool-
box;

9: Update F(k+1)
B using rank-1 approximation and matrix

reconstruction;
10: k = k + 1;
11: until a stopping criterion triggers
Output: FR,FB
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The problem (P6) is well-known as a SDP, which can
be solved readily and effectively by convex optimization
toolbox CVX [30], [33]. However, the optimal solution W?

of (P6) is usually not rank one. Then, to obtain the feasible
solution w̄, some efficient heuristic methods such as random-
ization [33], [35] will be exploited to extract fromW?. In this
paper, we utilize a simple rank-1 approximation on W?, i.e.
W?

1 = λ1q1q
H
1 , where λ1 is the largest eigenvalue and q1

is the eigenvector associated with λ1. After that, an near-
optimal solution of (P5) can bewritten by w̄ =

√
λ1q1 (it is in

general not an optimal solution unless rank(W?) = 1). At last,
removing the last entry of w̄ to form w and the RF precoding
matrix will be reshaped by FR = vec−1(w) eventually.1 So
far, the design of RF precoder has been completed and we
will continue to solve (P2) to get baseband precoder.
As mentioned before, the nonconvex QCQP (P2) can be

transformed into a SDP. Similar to the vectorization and
homogenization procedures in (P4), (P5) and leveraging on
the same SDRmethod (the rank-1 constraint is also dropped),
(P2) will be also reformulated as

min
Z∈Hm

Tr(CZ) (16a)

s.t. Tr (Q1Z) = Ns, (16b)

Tr (Q2Z) = 1, (16c)

Z � 0, (16d)

where m = LtNs + 1 and Z = z̄z̄H is a m× m Hermi-
tian matrix. Besides, z̄ = [zT , t]T , z = vecT (FB), denoting
B = INs ⊗ FR and C, Q1, Q2 is defined by

C =
[
BHB −BHy
−yHB yHy

]
, Q1 =

[
BHB 0
0 0

]
,

Q2 =

[
0(m−1)×(m−1) 0

0 1

]
. (17)

The SDP (16) can also be solved by the CVX toolbox,
and the baseband precoding matrix is harvested by matrix
reconstruction FB = vec−1(z) after the rank-1 approxima-
tion. To sum up, the overall proposed procedure for designing
the hybrid precoders via SDR−AO is given in Algorithm 1.
In addition to the above SDR method for designing FB,

a simple scaling method is available in [10], [13], [15]
to achieve the closed-form solution of baseband precod-
ing matrix. Firstly, without accounting for the power con-
straint (8b), (P2) is simplified as an unconstrained least
squares (LS) problem, we can easily get the solution that
is FB = F+RFopt. After that, the LS solution is multiplied
by an scaling factor γ =

√
Ns/‖FRFB‖F to force it to sat-

isfy (8b). Moreover, when the number of RF chains is equal
to the number of data streams (Lt = Ns) and the columns
of the baseband precoding matrix are unitary to each other
(FHBFB = I), (P2) can be viewed as the orthonormal Pro-
crustes problem (OPP) [10], [13] whose exact solution is
FB = VFUH

F resulting from the SVD of FHoptFR = UF6FVH
F .

1vec−1(·) means the inverse operation of matrix vectorization, namely,
reshaping the NtLt × 1 vector to a Nt × Lt matrix.

Particularly, with the assumption of semi-unitary of FR [8],
the power constraint can be simplified only respect to FB, i.e.
‖FB‖

2
F = Ns, which also facilitates the design of the hybrid

precoders.
The SDR−AO algorithm (Algorithm 1) put forward in

this subsection performs very well in dealing with (P1),
as we will show in section V-B. However, implementing SDR
usually needs high computational complexity due to standard
interior-point method, which will be analyzed in detail in
Section V-A. According to this, we move now to explore
other alternating optimization algorithms to design the hybrid
precoders that require less complexity.

C. ADMM−AO: THE ALTERNATING DIRECTION METHOD
OF MULTIPLIERS BASED ALTERNATING OPTIMIZATION
We have seen in the previous section that, when RF pre-
coder FR is given, (P3) can be reformulated as a UQP (P5).
As shown in [36], [37], the alternating direction method
of multipliers (ADMM), which taking advantage of dual
decomposition and augmented Lagrangian, is presented as
an efficient algorithm to cope with UQP. For the sake of the
usage of ADMM, we recast (P5) as

(P7) : min
x̄,w̄

1
2
x̄HRx̄+ ĨF (w̄) (18a)

s.t. x̄ = w̄, (18b)

where x̄ denotes the n× 1 auxiliary variable, ĨF (·) stands for
the indicator function [30] of the set F that is given by

ĨF (w̄) =

0, w̄ ∈ F

∞, w̄ /∈ F .
(19)

As mentioned in the method of multipliers, the augmented
Lagrangian function of (P7) is formulated by

Lµ(x̄, w̄, t) =
1
2
x̄HRx̄+ ĨF (w̄)+ t H (x̄− w̄)

+
1
2
µ ‖x̄− w̄‖22 , (20)

where t is an n × 1 vector of Lagrange Multipliers and
µ > 0 represents a scalar augmented Lagrangian parameter.
In light of the ADMM approach [37], the solution of (P7)
is composed by the following iterations with respect to the
augmented Lagrangian function (20), namely

x̄(k+1) = argmin
x̄

Lµ
(
x̄, w̄(k), t(k)

)
, (21)

w̄(k+1)
= argmin

w̄
Lµ
(
x̄(k+1), w̄, t(k)

)
, (22)

t(k+1) = t(k) + µ
(
x̄(k+1) − w̄(k+1)

)
, (23)

where k is the iteration index. As we can see in (21)−(23),
during each iteration, the augmented Lagrangian function is
minimized alternately to harvest the optimization variable
and the dual variable is updated with a step size µ. Now,
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we take (21) into account, which can be written in detail as

min
x̄

1
2
x̄HRx̄+

(
t(k)
)H (

x̄− w̄(k)
)
+

1
2
µ

∥∥∥x̄− w̄(k)
∥∥∥2
2
.

(24)

Since the objective function Lµ
(
x̄, w̄(k), t(k)

)
in (24) is a

convex quadratic function of x̄, we can find the minimum
from the following optimality condition

∇x̄Lµ
(
x̄, w̄(k), t(k)

)
= (R+ µIn)x̄+ t(k) − µw̄(k)

= 0,

(25)

where ∇x̄Lµ(·) represents the gradient of function Lµ(·). This
equation yields the solution of (21), that is

x̄(k+1) = (R+ µIn)−1(µw̄(k)
− t(k)). (26)

Subsequently, we will derive the solution of (22),which is
restated by

min
w̄

ĨF (w̄)+
1
2
µ

∥∥∥∥w̄− x̄(k+1) −
1
µ
t(k)
∥∥∥∥2
2
. (27)

It is obvious that the solution of (22) is the projection of
x̄(k+1) + 1

µ
t(k) on F . Thus, we have

w̄(k+1)
= PF

{
x̄(k+1) +

1
µ
t(k)
}
, (28)

where PF {a} refers to the projection onto F for a arbitrary
vector a, while all non-zero elements in a are already nor-
malized by itself.

So far, the design steps of ADMM approach to solve (P5)
has been finished, and we will reshape the RF precoding
matrix FR by extracting the first NtLt terms of w̄ and carrying
out thematrix reconstruction operationFR = vec−1(w). Con-
cerning about the baseband precoder design, we will adopt
the simple scaling LS solution FB = γF+RFopt instead of the
SDR method with high computational complexity shown in
subsection III-B. From the above, the provided procedure for
designing the hybrid precoders by virtue of ADMM−AO is
summarized in Algorithm 2.
It is worth noting that choosing the penalty parameter

µ appropriately is crucial to guarantee the convergence of
ADMM in Algorithm 2 and achieve satisfactory perfor-
mance. Here, we choose the value µ = 102 as a step size,
which will also be exploited in the following simulations.
Furthermore, we omit the analysis of convergence results
of ADMM, cause that it has been discussed elaborately in
[36], [37]. The ADMM−AO algorithm requires two-fold iter-
ations, which may also lead to high complexity whenever a
large number of iterations is appeared. Next, we will develop
a more intuitive and straightforward alternating optimization
algorithm to design the hybrid precoders.

D. ACMF−AO: ANALYTICAL CONSTANT MODULUS
FACTORIZATION BASED ALTERNATING OPTIMIZATION
Let us observe the problem (P5) again. It is clear that the
Hermitian matrix R in objective function is an nonnegative

Algorithm 2 ADMM−AO Based Hybrid Precoding Design
Input: Fopt

1: Initialize F(0)
R with random phases and set t(0) = 0,

µ = 102;
2: F(0)

B = (F(0)
R )+Fopt;

3: F(0)
B =

√
Ns/‖F

(0)
R F(0)

B ‖F · F
(0)
B ;

4: k = 0; i = 0;
5: repeat
6: Fix F(k)

B , obtain w̄ by
7: repeat
8: x̄(i+1) = (R+ µIn)−1(µw̄(i)

− t(i));
9: w̄(i+1)

= PF {x̄(i+1) − 1
µ
t(i)};

10: t(i+1) = t(i) + µ
(
x̄(i+1) − w̄(i+1));

11: i = i+ 1;
12: until a stopping criterion triggers
13: Update F(k+1)

R by matrix reconstruction;
14: Fix F(k+1)

R , update F(k+1)
B with

F(k+1)
B = (F(k+1)

R )+Fopt;
15: F(k+1)

B =
√
Ns/‖F

(k+1)
R F(k+1)

B ‖F · F
(k+1)
B ;

16: k = k + 1;
17: until a stopping criterion triggers
Output: FR,FB

definite matrix (w̄HRw̄ ≥ 0) on account of the equivalence
of (P4) and (P5). Furthermore, the rank of n× n matrix R
satisfies the following inequality

rank(R) = rank([A,−y]) = rank(A)

≤ NtNs < NtLt + 1 = n. (29)

Therefore, there must be a non-zero vector w̄ such that
w̄HRw̄ = 0, which means that the optimal value in (P5) can
be taken on the value zero. In particular, if we define the SVD
of the singular matrix R as R = UR6RUH

R , the problem (P5)
can be converted to seek a vector that satisfies the following
equation

w̄ = UR,2p, (30a)

|w̄i|
2
= 1, i = 1, . . . , n, (30b)

where UR,2 ∈ Cn×l contains the last l (l = n− rank(R)) sin-
gular vectors of R corresponding to the singular value zero.
p represents the l × 1 complex coefficient vector. The prob-
lem (30a) of finding a linear combination of l singular vectors
to satisfy the unit-modulus constraint (30b) is described as
a constant-modulus factorization problem [38], [39], which
can be accurately solved by the analytic constant modulus
factorization (ACMF) algorithm.

First, defining UH
R,2 = [u1, . . . ,un], the linear system

(30a) can be decomposed into w̄i = uHi p, i = 1, . . . , n, where
uHi is the ith row of UR,2. After that, we will rewrite the
constraint (30b) as

|w̄i|
2
= uHi pp

Hui = vec(uHi pp
Hui)

= (uTi ⊗ uHi )vec(pp
H )
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= (uTi ⊗ uHi )(p
∗
⊗ p) = 1. (31)

Stacking all n such constraints into a single linear system
results in

Tv =

1...
1

 , (32)

where

T =

u
T
1 ⊗ uH1
...

uTn ⊗ uHn

 , v = p∗ ⊗ p. (33)

Choosing a simple Householder transformation matrix or
normalized discrete Fourier transform (DFT) matrix as an
n× n unitary matrix Q, such that

Q


1
1
...

1

 =

√
n
0
...

0

 . (34)

Accordingly, the linear system (32) will be precisely equiv-
alent to the following equations

t̂
H
1 v =

√
n, (35a)

T̂v = 0, (35b)

where the l2 × 1 vector t̂1 and (n− 1)× l2 matrix T̂ are
determined by QT = [t̂1, T̂

H
]H . Notice that the linear equa-

tion (35a) is equivalent to

‖p‖22 = n. (36)

The proof of the equivalence between (35a) and (36) can be
found in Appendix A. Hence, the equation (35a) can always
be satisfied by scaling the solution of the homogeneous linear
equation (35b). Now, the nonhomogeneous linear system (32)
with certain structure will be restated as{

ˆTv = 0
v = p∗ ⊗ p

(37)

The exact solution of (37) can be obtained by solving
a simultaneous diagonalization problem, when (n > l2) is
supposed (see [38] for more details). Here, we adopt the
following procedures to obtain an approximation:
1) Perform the SVD of T̂ (T̂ = UT6TVH

T ) and select vT
as the right singular vector in VT associated with the
singular value zero.

2) Reshape the l2 × 1 vector vT into a l × l matrix,
0 = vec−1(vT). The coefficient vector p equal to the
singular vector of 0 + 0H corresponding to the largest
singular value.

3) Scale p by
√
n/‖p‖2 and set ˆw = UR,2p. Then, the vec-

tor w̄ is obtained by setting the magnitude of all
elements of ŵ equal to unity.

Hence, by using the ACMF algorithm, the problem (P5)
can be solved again. In next, the reconstruction of the

RF precoding matrix FR and design of the baseband pre-
coding matrix FB is similar to the steps elaborated in
subsection III-B and III-C. The detailed algorithm design
procedure of ACMF−AO based hybrid precoders are omit-
ted, since most of the processes are the same as Algorithm 2
except for the solution of w̄.
Until now, we have put forward three alternating optimiza-

tion methods based on different principles to design hybrid
precoding matrix in a narrowband channel. In the following
discussion, we will analyze the design of Hybrid Precoder in
Wideband MmWave Systems.

IV. HYBRID PRECODING IN WIDEBAND MmWave
SYSTEMS
In this section, the proposed AO algorithms are extended
to mmWave wideband systems. As shown in [10], the
hybrid precoder design problem in OFDM-based wideband
mmWave MIMO systems can be written as

min
FR,FB[k]

K∑
k=1

∥∥Fopt[k]− FRFB[k]
∥∥2
F (38a)

s.t. FR (i, j) ∈ F , ∀i, j, (38b)

‖FRFB[k]‖2F = Ns, (38c)

where k ∈ [1,K ] is the subcarrier index, Fopt[k] and FB[k]
represent the optimal unconstrained digital precoder and
baseband precoder for the k th subcarrier, respectively. It is
worth noting that the analog precoder is constant over
the subcarriers, since it is implemented after inverse fast
Fourier transform (IFFT) processing. Similar to the nar-
rowband case, the alternating optimization algorithm is still
one of the good choices to solve the problem (38). Par-
ticularly, the digital precoder for each subcarrier should
be updated in parallel. Hence, the digital precoding matrix
design problem for the k th subcarrier is the same as (P2).
Here, we adopt the scaling LS solution FB[k] = γkF+RFopt[k]
(γk =

√
Ns/‖FRFB[k]‖F ). After that, the analog precoder

design problem will be accordingly formulated as

min
FR

K∑
k=1

∥∥Fopt[k]− FRFB[k]
∥∥2
F (39a)

s.t. |FR (i, j)|2 = 1, ∀i, j. (39b)

The problem is similar to (P3) except for the sum-
mation in the objective function. Next, we will execute
matrix vectorization to transform it into an UQP prob-
lem. Denoting y[k] = vec

(
Fopt[k]

)
, A[k] = FTB[k]⊗ INt ,

and w = vec (FR), then the objective function in (39a) is
transformed into

∑K
k=1 ‖y[k]− A[k]w‖22. With the introduc-

tion of auxiliary variable t , the problem (39) is finally homog-
enized as

min
w̄

w̄H
K∑
k=1

R[k]w̄ (40a)

s.t. |w̄i|
2
= 1, i = 1, . . . ,Nt Lt + 1, (40b)
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TABLE 1. Complexity comparison of the proposed and competing
algorithms.

where

R[k] =
[
A[k]HA[k] −A[k]Hy[k]
−y[k]HA[k] y[k]Hy[k]

]
, w̄ =

[
w
t

]
. (41)

The above discussion demonstrates that the three afore-
mentioned AO algorithms are also applicable to the wideband
mmWave systems. In the next section, we will analyze the
performance of different hybrid precoding algorithms from
the perspective of computational complexity and spectral
efficiency.

V. RESULTS
A. COMPUTATIONAL COMPLEXITY ANALYSES
In this subsection, we discuss the computational complexity
with respect to the aforementioned SDR−AO, ADMM−AO
and ACMF−AO hybrid precoding algorithms and compare
with other novel algorithms. Specifically, for the SDR−AO
algorithm, the computational complexity is dominated by
convex optimization toolbox with a complexity of O(n3.5)
as shown in [33], in which the interior-point method is uti-
lized. However, the SDR processing enhances the dimension
of problem to n2, which means that O(n7) floating point
operations is required to solve (P6). Similarly, solving (16)
to obtainW requiresO(m7) computations. In addition to this,
during the rank-1 approximation for updating the matrix FR,
FB, the SVD should be executed with complexity O(n3),
O(m3). Therefore, the overall computational complexity of
the SDR−AO algorithm presented in Algorithm 1 is given
by O

(
k(L7t (N

7
t +N

7
s )+L

3
t (N

3
t +N

3
s ))
)
, where k is the iter-

ation index. Here and next, ‘‘1’’ in n, m (n = NtLt + 1,
m = LtNs + 1) is discarded so that we can compare the com-
plexity of different algorithms directly.

For the ADMM−AO based hybrid precoding design,
the calculation of w̄ includes matrix-vector multiplication
and matrix inversion operations which require complex-
ity of O(n2) and O(n3), respectively. Moreover, updating
the matrix FB with the scaling LS solution involves the
Moore-Penrose inversion (here, the Moore-Penrose inver-
sion of FR is implemented by (FHRFR)−1FHR virtually)
and matrix-matrix multiplication operations, which bring
aboutO

(
L2t Nt

)
andO

(
LtNtNs

)
computations. However, since

LtNtNs ≤ L2t Nt � n2, we will leave this calculation out in the
final complexity result. In short, the computational complex-
ity of the ADMM−AO algorithm shown in Algorithm 2 is
O
(
koki(N 3

t L
3
t + N 2

t L
2
t )
)
, where ko and ki are the numbers of

external and internal iterations.
For the ACMF−AO hybrid precoding algorithm, the

complexity is dominated by the SVD and matrix-matrix mul-
tiplication operations. Implementing the SVD on matrices
R and T̂ requires O(n3) and O(l2n2) computations. The
other multiplication operation parts have complexity O(ln2).
In consequence, the ACMF−AO algorithm requires compu-
tational complexity of O

(
k(N 3

t L
3
t + (l2 + l)N 2

t L
2
t )
)
totally.

At last, the computational complexity of the proposed
three algorithms and the novel algorithms from the pre-
vious literature are listed in Table 1. Compared with the
OMP [9], PE−AltMin [10], ICDA [11] and HD−LSR [13]
algorithms, the complexity of presented ADMM−AO and
ACMF−AO algorithms are one order of magnitude higher,
especially the SDR−AO algorithm show extremely high
computational complexity. However, the complexity of
ADMM−AO, ACMF−AO is comparable to GP−AltMin
[15], while ADMM−AO may slightly higher due to the
two-fold iterations.

B. SIMULATION RESULTS
In this section, we evaluate the spectral efficiency
performance of the presented hybrid precoding algorithm
by numerical simulations, where the OMP [9], PE−AltMin
[10], ICDA [11], HD−LSR [13] and GP−AltMin [15] algo-
rithms are considered as the competitors and the optimal
digital precoding scheme is employed as the benchmark.
The propagation environment is modeled as Nc = 8 cluster
and Np = 10 path with Laplacian distributed with an angle
spread of 5◦. The AoA/AoD azimuths of the cluster are
assumed to be uniformly distributed in [0, 2π ] and channel
path gains are assumed to be Gaussian distribution with
the variance σ 2

α,i = 1. The total power constraint is fixed
and power allocation for each stream is equal and signal-
to-noise ratio (SNR) is defined as SNR = P/σ 2

n . Finally, all
achievable simulation results are averaged over 100 random
channel realizations.

Fig. 1, 2 illustrate the spectral efficiency for the pro-
posed algorithms and other state-of-the-art algorithms in
a 64× 16 mmWave MIMO system with Lt = Ns = 4(8).
Obviously, over the whole SNR range in consideration,
the best performing algorithm is the proposed SDR−AO
algorithm, followed closely by PE−AltMin, ACMF−AO,
and GP−AltMin, respectively, and there is only a small gap
of them. In the case of small data streams and RF chains,
the proposed ADMM−AO algorithm achieves better per-
formance than the OMP algorithm in the low SNR range
(−20 − 0 dB) and less performance in the medium SNR
range (0 − 10 dB). Note that mmWave MIMO systems
usually operate in low and medium SNR regimes. However,
as shown in Fig. 2, when the amount of data streams and RF
chains increases properly, the performance of ADMM−AO
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FIGURE 1. Spectral efficiency versus SNR for different precoding
algorithms in a 64×16 mmWave MIMO system with Lt = Ns = 4.

FIGURE 2. Spectral efficiency versus SNR for different precoding
algorithms in a 64× 16 mmWave MIMO system with Lt = Ns = 8.

algorithm is close to that of GP−AltMin algorithm and
better than OMP algorithm. In addition, HD−LSR algo-
rithm is always superior to OMP algorithm and infe-
rior to GP−AltMin algorithm and the spectral efficiency
obtained by the ICDA algorithm is far smaller than the other
algorithms.

In order to examine the impacts of the transceiver antennas,
we demonstrate the spectral efficiency versus the num-
ber of receive antennas Nr and transmit antennas Nt with
Lt = Ns = 4, SNR = 0 dB in Fig. 3 and 4, respectively.
It is observed that the SDR−AO algorithm consistently
remains the closest to the optimal digital precoding scheme
as receive/transmit antenna increases, still followed closely
by PE−AltMin, ACMF−AO, and GP−AltMin, that implies
the versatility of them inmmWaveMIMO systems. Neverthe-
less, when the number of receive antennas is much smaller
than that of transmit antennas, the proposed ADMM−AO
algorithm is distinctly superior to the OMP algorithm and

FIGURE 3. Spectral efficiency versus number of receive antennas for
different precoding algorithms (Nt = 64, Lt = Ns = 4, SNR = 0 dB).

FIGURE 4. Spectral efficiency versus number of transmit antennas for
different precoding algorithms (Nr = 4, Lt = Ns = 4, SNR = 0 dB).

can almost achieve the same spectral efficiency as HD−LSR,
as shown in Fig. 4, which indicates that the proposed
ADMM−AO algorithm is applicable to the case Nt � Nr.
Furthermore, the ICDA algorithm is sensitive to transceiver
antennas since it shows a large performance gap with other
algorithms.

The above simulation results show the superiority of the
proposed algorithms when equal number of RF chains and
data streams are employed. Next, we will depict the spectral
efficiency of the above algorithms vesus the number of data
streams Ns in Fig. 5, where Lt = 8 and SNR = 0 dB.
Observe that PE-AltMin is not applied because the orthogonal
structure of digital precoder imposes same number of RF
chains and data streams, while the constraint n > l2 also
makes Lt = Ns the best choice for applying ACMF−AO,
therefore, ACMF−AO is also not involved. As shown
in Fig. 5, the HD−LSR algorithm and proposed ADMM−AO
algorithm outperform the SDR−AO algorithm and other
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FIGURE 5. Spectral efficiency versus number of data streams for different
precoding algorithms (Nt × Nr = 64× 16, Lt = 8, SNR = 0 dB).

FIGURE 6. Spectral efficiency versus resolution of PSs for different
precoding algorithms (Nt × Nr = 64× 16, Lt = Ns = 4, SNR = 0 dB).

algorithms when the number of data streams is much less
than RF chains. However, when the number of data streams
is equal to the number of RF chains, the performance of
ADMM−AO and HD−LSR significantly deteriorates, which
implies that these two algorithms are more suitable for low
data streams transmission scenarios. Finally, we examine the
effects of the resolution of PSs in Fig. 6, when designing
the analog component of the hybrid precoder and combiner.
As expected, the spectral efficiency will improve as the res-
olution of PS increases. It can be observed that the proposed
three algorithm performs better than the PE−AltMin algo-
rithm for all considered PS resolutions. For the presented
algorithms, employing only B = 4 bits is sufficient to closely
approach the performance of the optimal full-digital case.

In summary, we can draw the following conclusions. Our
proposed three algorithms apparently outperform the OMP
and ICDA algorithm, in any case. Regarding spectral effi-
ciency performance, SDR−AO performs best but at cost of

extremely high computational complexity. When the num-
ber of transmit antennas is much larger than that of receive
antennas (which is always the case in massive MIMO) or
the amount of data streams is small, ADMM−AO is always
preferred, since it performs very close to SDR−AO with
a relatively lower complexity. Furthermore, ACMF−AO is
a better choice considering the trade-off between computa-
tional complexity and spectral efficiency performance, when
equal number of RF chains and data streams are employed.

VI. CONCLUSIONS
In this paper, we put forward several alternating optimiza-
tion strategies to design hybrid precoding for P2P mmWave
MIMO systems. Firstly, the original matrix factorization
problem is iteratively decoupled into a nonconvex QCQP and
an ULS problem after matrix vectorization. The non-convex
QCQP can be transformed into a SDP and then solved
by the SDR method or be solved by scaling the uncon-
strained LS problem. Afterwards, we focus on developing
three different algorithms to solve the ULS problem. Finally,
the computational complexity analyses and simulation results
demonstrate that, in each case, the proposed algorithms are
superior to previously proposed algorithms from the litera-
ture, especially the SDR−AO can achieve near-optimal spec-
tral efficiency but at cost of extremely high complexity. The
ADMM−AO is preferred in the case that when the number of
transmit antennas is much larger than that of receive antennas
or the amount of data streams is small. When equal number
of RF chains and data streams are employed, ACMF−AO is
a better choice. Furthermore, the proposed methods are also
applicable to the design of hybrid combiner at receiver due
to the similar structure and can be well extended to wideband
mmWave systems.

APPENDIX A
PROOF OF THE EQUIVALENCE BETWEEN (35a) AND (36)
Defining uHi = [ui1, . . . , uil], then T can be expressed as

T =

u
∗

11u11 · · · u
∗

11u1l · · · u
∗

1lu11 · · · u
∗

1lu1l
...

. . .
...

. . .
...

. . .
...

u∗n1un1 · · · u
∗

n1unl · · · u
∗
nlun1 · · · u

∗
nlunl

 .
(42)

Denoting the first row of the unitary matrix Q as ˜qH1 , which
much be equal to 1

√
n [1, . . . , 1], thus, t̂

H
1 can be expressed as

t̂
H
1 = q̃

H
1 T=

1
√
n

[
ũH1 ũ1, . . . , ũ

H
1 ũl, . . . , ũ

H
l ũ1, . . . , ũ

H
l ũl

]
,

(43)

where ũj = [u1j, . . . , unj]T is the jth column ofUR,2. Employ-
ing the semi-unitary property of UR,2 (UH

R,2UR,2 = Il) and
reshaping t̂1 as a matrix gives

T̃t = vec−1(t̂1) =
1
√
n
Il . (44)
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Accordingly, we have

t̂
H
1 v = (p∗ ⊗ p)T vec(T̃t ) = pT T̃tp∗

=
1
√
n
pTp∗ =

1
√
n
‖p‖22 =

√
n. (45)

Finally, we arrive at the desired result in (36).
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