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ABSTRACT Deep neural networks (DNNs) are currently the best-performing method for many classification
problems. For training DNNgs, the learning rate is the most important hyper-parameter, choice of which affects
the performance of the model greatly. In recent years, some learning rate schedulers, such as HTD, CLR, and
SGDR, have been proposed. These methods, some of which make use of the cycling mechanism to improve
the convergence speed and accuracy of DNN, but performance degradation occurs in the convergence
process. Others have good accuracy, but their convergence speed is too slow. This paper proposed a new
learning rate schedule called piecewise arc cotangent decay learning rate (PACL), which can not only
improve the convergence speed and accuracy of DNN but also significantly reduce performance degradation
zone caused by the cycling mechanism. It is easy to implement, but almost at no extra computing expense.
Finally, we demonstrate the effectiveness of PACL, on training CIFAR-10, CIFAR-100, and Tiny ImageNet
with ResNet, DenseNet, WRN, SEResNet, and MobileNet.

INDEX TERMS Deep neural networks, learning rate schedulers, arc cotangent, optimization.

I. INTRODUCTION
Deep learning is an active field of machine learning. Its pur-
pose is to establish a special deep neural network (DNN) [1].
DNN has demonstrated good performance in classification
tasks [2]. However, its performance is greatly affected by the
right choice of learning rates [3]. At present, deep learning
uses gradient descent methods [4] to optimize learning rate
parameters. Though many adaptive optimization algorithms
are proposed in recent years [5]-[8], the essence of those
methods is to improve the gradient descent method [9].
Learning rate [3], the step size of the gradient
descent method in a search process [10], is an impor-
tant hyper-parameter in training processes of deep learning
model [11]. The convergence rate will be very slow, if the
learning rate is set too small, and the model may fall into the
local minimum. If the learning rate is set too large, it may lead
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the model to oscillate between output results [12]. As such,
the final result of the model is greatly influenced by the
learning rate [13].

Piecewise decay method may help to get an ideal result in
theory, but the process of tuning the learning rate is tedious
and time-consuming [14]. Although adaptive methods can
help to adjust the learning rate of each iteration by itself,
the final result is usually worse than piecewise decay [15].

There are many different learning rate schedulers proposed
in the past [16]-[18]. In particular, with the cyclical learning
rate (CLR) [16] and stochastic gradient descent with warm
restarts (SGDR) [17] method, it has been demonstrated that
compared with monotonically decreasing the learning rate,
let the learning rate cyclically changes between reasonable
boundaries can get better effect.

In this paper, we designed a new learning rate scheduler,
called piecewise arc cotangent decay learning rate (PACL),
which resets the learning rate and piecewise decay in each
cycle. As compared with traditional learning rate schedules,
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such as exponential and piecewise decay, PACL can greatly
improve the convergence speed of networks. Compared with
SGDR and CLR, PACL has a larger proportion of small
learning rates, as such better accuracy and a more stable
system can be achieved. In addition, it almost doesn’t need
extra computing expenses.

The contributions of this paper are:

1. A new learning rate scheduler is proposed. It can be
an alternative to the existing schemes. The scheduler has
the features of a warm restart, initializing the learning rate
for every some epochs or iterations. It decays the learning
rate with piecewise arc cotangent function, and has a smaller
proportion of large learning rates and decays the learning rate
rapidly in each cycle.

2. Some learning rate schedulers with cycling mechanisms
have a large performance degradation zone in the conver-
gence process. The PACL significantly reduces the perfor-
mance degradation area caused by the cycling mechanism.
The performance degradation area of PACL in each cycle is
only one-third of the cycle.

3. PACL improves the convergence speed of the net-
work and the convergence capability in the training process.
DNN training with PACL has a faster convergence rate and
higher classification accuracy. In addition, compared with the
adaptive algorithm, it is easy to implement, and almost no
extra computing expense.

The structure of the paper is as follows. Section II reviews
some optimizers and learning rate schedulers proposed in
the past. Section III describes the proposed PACL scheduler.
Section IV shows the experiment results of PACL against
other learning rate schedulers on different networks and
datasets. Section V concludes the contributions of this paper
and discusses some possible future works.

Il. RELATED WORKS AND MOTIVATIONS

In this section, we review some optimizers like stochastic
gradient descent (SGD) [19], and SGD with momentum [20].
Then we review some common learning rate schedulers pro-
posed in recent years, such as the stochastic gradient descent
with warm restarts (SGDR) [17], and cyclical learning
rate (CLR) [16].

A. OPTIMIZERS
Training DNN is usually considered as the non-convex opti-
mization problem [14], with which a loss function is first
defined and then minimized by the optimization algorithm.
Gradient descent, originally proposed by Cauchy
in 1847 [21], [22], is an iterative optimization algorithm for
finding the minimum of a function. To find such a minimal
of a function using gradient descent, one takes steps propor-
tional to the negative of the gradient of the function at the
current point. The excellent performance of deep learning is
attributable to the gradient descent optimization algorithm.
Stochastic gradient descent (SGD) [19], becomes an exten-
sion of the gradient descent, originated from the stochas-
tic approximation proposed by Robbins and Monro [4]
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in 1951 and was initially applied to pattern recognition [23]
and neural network [24]. In recent years, with the rapid
rise of deep learning, SGD has become a mainstream and
very effective method to solve machine learning optimization
problems. The parameters 6 of a deep neural network update
by stochastic gradient descent (SGD) is as follows
n
b1 =00 = =2 Y V) (1)
where o denotes the learning rate, which is used to adjust the
amplitude of the parameter update. fi(-) is the loss function
of the i-th sample with respect to 6;. The updating process
of SGD is simple and efficient, and the iteration cost is
independent on the total sample. But there is inevitably noise
in the actual data so that it is difficult for SGD to approach
the minimum in the best direction.

The random classical momentum algorithm (CM) [25]
adds momentum term based on SGD. The historical param-
eter changes are integrated to speed up the optimization pro-
cess. Momentum is designed to accelerate DNN training. But
CM has a problem: it keeps accumulating speed and may miss
the optimal solution.

B. LEARNING RATE SCHEDULERS

The learning rate is an important hyper-parameter in
deep learning. Therefore, how to choose the learning rate
has become the most important issue. Common learning
rate schedules include time-based decay [26], piecewise
decay [15], and exponential decay [15].

The piecewise decay drops the learning rate by a factor of
every few epochs. Generally, the learning rate is reduced to
half or one-tenth for every 10 epochs. Another schedule com-
monly used is exponential decay which updates the learning
rate as the following [15]:

Ir=1Irgxe ™ )

where /r( denotes the initial learning rate. k is decay rate, 7 is
iteration number.

Adjusting the learning rate manually is an expensive pro-
cess, and it is difficult to find the best learning rate under the
current model quickly. Therefore, many adaptive methods are
proposed in recent years, such as Adagrad [5], Adadelta [6],
RMSProp [7], and Adam [8]. Adagrad is a sub-gradient
method that can incorporate the gradient information in ear-
lier iterations. The update rule for Adagrad is as follows:

o

—,—Gt T 8gt

where « is a global learning rate shared by all dimensions,
g: 1s the gradient in the ¢ iteration. G; is the sum of the
squares of the past gradients to all parameters 6. € is a smooth-
ing term that avoids division by zero (usually on the order
of 10~%). Adagrad overcomes the trouble of manually adjust-
ing the learning rate. But the optimization efficiency in the
later stage of training is very low because Adagrad accu-
mulates a lot of historical gradients, as a result, makes the
learning rate too small. To solve the problem, Adadelta,

(€)
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an improved version of Adagrad, makes the gradient decay
exponentially following the time in training to avoid the con-
tinuous reduction of the learning rate. In Adadelta, we don’t
need to set the default learning rates, because we use the ratio
of the running average of the previous time step to the current
gradient. Adam, an efficient algorithm for gradient-based
optimization of the stochastic objective function, combines
the advantages of Adagrad and RMSProp, which is suitable
for large data sets and high-dimensional spaces.

These adaptive algorithms have been successfully applied
to various practical problems, especially Adam has become
one of the most popular algorithms for neural network train-
ing. But some studies have pointed out that the generaliza-
tion capability of these adaptive algorithms is worse than
that of SGD in many applications [27], [28]. After Adaptive
Learning Rates, SGDR [17] and CLR [16] were proposed
which have better generalization capability than adaptive
algorithms. Besides experimentations with Adaptive Learn-
ing Rates are computationally expensive which CLR is not.

Stochastic gradient descent with warm restarts (SGDR)
[17] improves the performance of SGD. SGDR used warm
restart mechanisms to initialize the learning rate every some
epochs or iterations, and it decays the learning rate with a
cosine annealing for each batch. SGD with warm restarts
requires 2 to 4 fewer epochs than the common learning
rate schedule schemes to achieve comparable or even better
results.

Cyclical learning rates (CLR) [16] is similar to the
SGDR method. Instead of monotonically decreasing the
learning rate, CLR lets the learning rate cyclically change
between reasonable boundaries. Allowing the learning rate to
rise and fall in training will have a temporary negative impact
to the network, but it is beneficial overall.

C. MOTIVATIONS

Exponential and piecewise decay are widely used in the train-
ing of state-of-the-art DNN architectures. The idea of both
exponential and piecewise decay is to set an initial value for
the learning rate and allows it to decay with some algorithms.
The discrete change of learning rate makes the change of
learning performance discrete and sudden, which shows that
it is possible to improve learning performance steadily by
changing the learning rate constantly [18].

Intuitively, with the increase of training iterations,
we should keep the learning rate decreasing to reach con-
vergence. However, it may be more useful to use a learning
rate that changes periodically in a given range. Because the
periodic high learning rate can make the model jump out of
the local minimum and saddle point in the training process.

Dauphin et al. [29] pointed out that the saddle point is more
difficult to converge than the local minimum. If the saddle
point happens at an ingenious equilibrium point, a small
learning rate usually does not produce a large enough gradient
change to make it skip the point. This is the advantage of the
periodic high learning rate, which can make the model skip
the saddle point faster.
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The effect of SGDR and CLR demonstrated that instead
of monotonically decreasing the learning rate, letting the
learning rate cyclically rises and fall in training will improve
classification accuracy and rate of convergence.

Motivated by the formerly mentioned methods with the use
of piecewise decay and cyclical learning rate, we designed a
new learning rate scheduler which implements cycle mecha-
nism and piecewise decay according to arc cotangent.

I1l. PIECEWISE ARC COTANGENT DECAY LEARNING

RATE (PACL)

This section introduces a new scheduling method, named
piecewise arc cotangent decay learning rate (PACL).

A. THE PROPOSED PACL
Fig.1 shows the decay model of piecewise arc cotangent
decay learning rate (PACL), which controls the learning rate
according to

arccot (T;) —arccot(Tfy)
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FIGURE 1. The decaying of PACL.

where Lry,;, and Lrp,, are ranges for the learning rate.
T}, represents total epochs or iterations in a cycle. 7; denotes
how many epochs or iterations have been performed in a
cycle. Lr = Lryg when T; = 0, and Lr = Lry;, when
T; = Tfp. Arc cotangent function is introduced in equation (4)
which makes the learning rate scheduler more effective. Due
to the characteristics of arc cotangent function, PACL has a
larger proportion of small learning rates, as such a more stable
system can be achieved.

Compared with conventional learning rate scheduler, such
as exponential and piecewise decay, PACL has a periodic
mechanism, which enables the model to skip the saddle point
faster during the later stage to achieve better performances.
In addition, PACL makes the learning rate decrease rapidly
in the period, which enables us to set a large initial learning
rate to improve the convergence speed of the model in the
early stage.

Compared with SGDR and CLR, PACL reduces the pro-
portion of large learning rate and decays the learning rate
rapidly in each cycle. It will be more beneficial to optimize
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the neural network. What’s more, the setting of the minimum
learning rate can make the learning rate far away from zero,
which is more helpful to the early training of the network,
because when the learning rate is close to zero, the noise will
dominate the update of DNN weights [18].

B. ESTIMATE MAXIMUM AND MINIMUM BOUNDARY

We use “LR range test”, which was first introduced by
Smith [16] to estimate reasonable maximum and minimum
learning rate boundaries. Fig.2 shows an example of running
“LR range test” with the CIFAR-10 dataset. We set the
initial learning rate to a very low value such as 107>, and
set the final learning rate to a high value such as 1. Then,
we run the model for one epoch while letting the learning rate
increase from the lowest to the highest value we set. With the
increase of the learning rate, it will eventually become too
large, which will lead to the increase of test loss. We can see
a typical curve from an LR range test from Fig.2, where the
test loss has a distinct trough and peak. Generally, Lz, is set
when loss rises, and Lr,;, is set when the gradient of loss is
minimum.

CIFAR-10

Loss

20 4 1 ! ! _
1072 10-* 103 102 bt 10
Learing rate

FIGURE 2. The change of loss with the increase of learning rate in one
epoch.

C. ESTIMATE FREQUENCY OF LEARNING RATE
TRANSFORMATION

In the practical application of PACL, div is introduced to
represent the update frequency of the learning rate in each
epoch. For example, the learning rate updated twice in each
epoch when div = 2. The introduction of Div can make the
learning rate update piecewise or linearly, which makes the
change of learning rate more flexible in the cycle.

We compare the PACL algorithms with different T, and
Div on the CIFAR-10 dataset. Fig.3 shows the learning rate
is initialized to Lr,,y, and decay to Lry,;, by PACL with
different parameters in each cycle. Fig.4. show the accuracy
of PACL with different parameters on the CIFAR-10 dataset.
The results for 75, = 5 and Div = 1 show better perfor-
mance, and therefore we use Tf;; = 5 and Div = 1 in our
later experiments.
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FIGURE 3. Seven different instantiations of this new learning rate
schedule: PACL with Div = 1 (red line), Div = 4 (purple line), Div = 10
(blue line) for Ty, = 10; PACL with Div = 1 (green line), Div = 4 (grey line)
for Ty, = 5; PACL with Ty, = 10 and update the learning rate every step
(orange line); Div = 1 and Initial Tg;, = 10 with doubling periods at every
new cycle start (brown line).
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FIGURE 4. Test accuracy on CIFAR-10. PACL with Div = 1 (red line),

Div = 4 (purple line), Div = 10 (blue line) for Ty, = 10; PACL with Div = 1
(green line), Div = 4 (grey line) for Tg;, = 5; PACL with Ty, = 10 and
update the learning rate every step (orange line); Div = 1 and Initial

Tfin = 10 with doubling periods at every new cycle start (brown line).

IV. EXPERIMENTAL AND ANALYSIS

In this section, we demonstrate the effectiveness of PACL
training with different networks. In the subsections below,
our algorithm (PACL) is used for training on CIFAR-10,
CIFAR-100 and Tiny ImageNet dataset, and compared PACL
with six types of schedulers: exponential decay, piecewise
decay, fixed learning rate, CLR, SGDR, and HTD.

A. EXPERIMENTAL PLATFORM

The experiments in part C of chapter IV were executed on
a computer with Windows10 operating system, Intel (R)
Core (TM) i5-3470MCPU, GeForce RTX™ 2080,32GB
RAM and by programming in Python. We used HUAWETI’s
ModelArts servers for all the rest of the experiments.
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FIGURE 5. Test accuracy on CIFAR-10 with different learning rate schemes: piecewise decay (red line), exponential
decay (purple line), default learning rate (blue line), SGDR (brown line), CLR (orange line) and our approach(green

line).

Each server contains one NVIDIA Tesla P100 GPU, Intel
E5-2690V4 CPU, and 64GB RAM. All the proposed models
are run over highly efficient GPU using the PyTorch deep
learning framework.

B. DATASET

The CIFAR-10 dataset [30] consists of 60000 color images.
These images are 32 x 32, divided into 10 categories, and each
category has 6000 images. There are 50000 training images
and 10000 test images. The CIFAR-100 dataset [30] is just
like the CIFAR-10 but has 100 classes instead of 10, and
each class has 600 images. There are 500 training images and
100 testing images per class.

The Tiny ImageNet [31] is similar to the ImageNet [32],
but it has only 200 categories. Each category has 500 images
for training, 50 for testing, and 50 for verification. The images
are 64 x 64 pixels.

C. EXPERIMENT ON CIFAR-10
We train the ResNet-32 [33] with seven types of schedulers
mentioned earlier on the CIFAR-10 dataset. The networks
are trained by SGD with momentum of 0.9 and a mini-batch
size of 128. Using L2 regularization, regularization
coefficient = 0.001, to avoid overfitting, small values of
L2 can help prevent overfitting the training data.
Experiments in this part, we do not use any image pre-
processing. For exponential and piecewise decay, we use an
initial learning rate of 0.1, and the former is decayed by a
factor of 10 times after every ten epochs while the latter is
decayed by 0.9 times after every epoch. For CLR and SGDR,
we set Lrae = 0.5, Lru,, = 0.001, and for HTD, we set
Lrpay = 0.5, Lrpin = 0. For our algorithm (PACL), we set
initial parameters as Lryqx = 0.5, Lr i, = 0.001, T, = 5,
Div = 1. All tests are trained for 100 epochs, 390 iterations
in each epoch.
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Fig.5. and Fig.6.provide a comparison among exponen-
tial decay, piecewise decay, fixed learning rate, HTD, CLR,
SGDR, and PACL on the CIFAR-10 dataset. As can be seen
from Fig.5. although PACL (green curve) has a temporary fall
in performance in the training process compared with other
algorithms, it can make DNN convergence faster and final
accuracy higher. The PACL (green curve) not only reaches
an accuracy of 85.87% after only 5,450 iterations but also
the final accuracy of 88.96 is significantly higher than that of
other algorithms without cycle mechanism. In addition, com-
pared with CLR (orange curve) and SGDR (brown curve),
PACL has less performance loss during training. The final
accuracy is also slightly higher than that of CLR and SGDR
by 0.23% and 0.35%. We define performance degradation
as 90% below the highest accuracy in a stable period. The
performance degradation area of PACL is only one-third on
average in the stable period. This phenomenon can be found
clearly in Fig.5. The same results are also reflected in the test
of the Tiny-Image dataset.

D. EXPERIMENT ON DIFFERENT NETWORK

Shortcut (or short path) is a very effective structure in the
development of the CNN model. Neural network models
with shortcut structures, such as ResNet [33], WRN [34],
and DenseNet [35], have excellent performance in computer
vision tasks. In addition, SENet [36] and MobileNet [37]
also have good performance in image recognition due to
their unique structure. In this part, we provide comparisons
between CLR, SGDR, HTD, and PACL based on the network
mentioned earlier.

For PACL, the learning rate bounds set followed TABLE 1
We set Hyper-parameter Tg, = 10, div = 1 for ResNet,
DenseNet, WRN, SENet and MobileNet. Specially, we set
Tgin = 5, div = 1 for DenseNet on CIFAR-10.

For image preprocessing, we normalize the input data
using the channel means and standard deviations. For
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FIGURE 6. Test loss on CIFAR-10 with different learning rate schemes: piecewise decay (red line), exponential decay (purple
line), default learning rate (blue line), SGDR (brown line), CLR (orange line) and our approach(green line).
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FIGURE 7. Test accuracy on CIFAR-10 with different learning rate schemes: piecewise decay (red line), exponential decay (purple line), default

learning rate (blue line), SGDR (brown line),CLR (orange line) and our approach(green line).

data augmentation, we padded the picture by 4 pixels on
each side, then, perform random cropping and horizontal

flipping.
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TABLE 2 compares the result of accuracy performance
when training the network by PACL to other methods. In the
table, the left two columns give the architecture used in the
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TABLE 1. Learning rate settings for PACL.

Ltinax Ltmin Epoch
0.1 0.05 0-150
0.05 0.01 151-200
0.01 0.001 201-250
0.005 0.001 251-300
0.001 0.0005 301-400

TABLE 2. Comparison of PACL on ResNet, WRN, and DenseNet. The table
shows the average accuracy of 3 runs on the CIFAR-10 and CIFAR-100.
Some literature use error rate as an evaluation standard, we convert the
error rate into accuracy to compare. The character * indicates results are
directly obtained from the original paper.

TABLE 3. Learning rate settings for PACL.

Networks Ltax Ltin Epoch
0.1 0.05 0-80
ResNet-110 0.01 0.005 81-150
0.001 0.005 151-200
0.1 0.01 0-80
MobileNetV2 0.05 0.005 81-150
0.01 0.001 151-200

TABLE 4. Classification accuracy of different learning rate schemes test
on Tiny ImageNet dataset.

Network Depth-k Method CIFAR-10  CIFAR-100 Network Depth-k Method Top-1 Top-5
piecewise decay* 93.57 - piecewise decay 51.44 74.36
ResNet[33] 110 CLR* 93.6 72.5 ResNet[33] 110 CLR 52.33 75.49
HTD* 94.32 73.22 HTD 52.36 73.08
PACL 94.73 75.84 PACL 52.50 75.54
piecewise decay*  95.90 77.73 piecewise decay ~ 44.20 71.62
DenseNet- 100-12 CLR* 94.9 75.9 MobileNet 20 CLR 49.32 75.89
BC[35] ’ HTD* 95.53 77.83 V2[37] - HTD 42.85 70.21
PACL 95.49 77.80 PACL 52.44 77.00
piecewise decay* ~ 95.83 79.50
WRN[34] 20-10 SST[]))R: gg;g ;(9)2; the CIFAR datasets: SGD with the momentum of 0.9; the
PACL 96.24 81.11 L2 regularization coefficient = 0.001; the mini-batch size
piccewise decay ~ 95-29 81.28 of 128. For piecewise decay, we used the initial learning
29. CLR 96.27 81.07 rate 0.1, which decays by 0.1 at 80 and 150 epochs. For PACL
SEResNet[36] 63644 SST%R Zgg é gi é ; and CLR, the learning rate followed TABLE 3 and set Hyper-
PACL 96:29 81:30 parameter Tp, = 10,div = 1. We set L 5,4y = 0.1, Lrppjy = 0
piecewise decay 93.17 72.94 for HTD.
MobileNet CLR 93.39 72.62 TABLE 4 compares the result of accuracy performance
V2[37] x2_0 SP?TDDR 93.41 72.76 when training the network by PACL to other methods. For
93.45 72.83 R . . .
esNet, the top-1 accuracy of PACL is slightly higher than
PACL 93.73 7320 : P y ¢ ghtly g

experiments. The third column gives the learning rate update
method. The other two columns show the average accuracy
from three runs.

For ResNet, the original test accuracy of 93.57% on
CIFAR-10 can be improved to 94.73%, and accuracy of
75.84% on CIFAR-100. The accuracy of WRN trained with
PACL can achieve 96.24% and 81.11% on CIFAR-10 and
CIFAR-100 respectively. Performance improvement can also
be reflected in SEResNet and MobileNet. PACL is out-
performing the most current leading methods except for
DenseNet-BC-100-12.The accuracy performance of PACL
on DenseNet-BC-100-12 is similar to HTD, 95.49, and 77.80
respectively.

E. EXPERIMENT ON TINY IMAGENET

In this part, we provide comparisons between piecewise

decay, CLR, HTD, and PACL on the Tiny ImageNet dataset.
We trained the ResNet-50 and MobileNet V2 on the Tiny

ImageNet dataset using settings similar to the experiment on
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that of other methods, but for MobileNet, the top-1 accuracy
of PACL is higher than that of other methods.

Fig.7. compares the results of running with the piece-
wise decay, CLR, HTD, and PACL for the ResNet and
MobileNetV2. As can be seen from Fig.7.(a) and Fig.7. (b)
that convergence rate and final accuracy of PACL (blue curve)
is better in comparison to any other algorithms.

Especially, compared with CLR (orange curve), PACL
greatly reduces the performance degradation zone in each
cycle. The performance degradation area of PACL in each
cycle is only one-third of the cycle.

V. CONCLUSION

In this paper, we propose a new scheduling method,
named piecewise arc cotangent decay learning rate (PACL),
to improve the performance of DNNs. PACL combines the
advantages of piecewise decay and CLR, adopts the mecha-
nism of the cyclic learning rate, and the learning rate piece-
wise decay in each cycle. Compared with other learning
rate schedulers with circular mechanisms, PACL significantly
reduces the performance degradation zone caused by the
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cycling mechanism. Besides, the setting of a minimum learn-
ing rate can make the learning rate far away from zero, which
improves the effect of learning rate scheduler with circular
mechanisms in the early stage of network training. Training
DNNs with PACL can improve not only the accuracy of the
network but also its convergence speed. Finally, we demon-
strate the effectiveness of PACL, on CIFAR-10, CIFAR-100,
and Tiny ImageNet, training with ResNet, DenseNet, WRN,
SEResNet, and MobileNet. Future work should consider the
application of PACL in some popular adaptive optimization
algorithms such as Adam.
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