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ABSTRACT In the co-phasing techniques applied to the segmented telescope, a Shack–Hartmann wavefront
sensor cannot accurately detect the piston error of the segment. Although the phase diversity (PD) algorithm
can detect the piston error of each segment, it fails to reconstruct the wavefront quickly, and its dynamic range
is small. Other technologies, such as prisms or micro-lens arrays, will significantly increase the complexity
and construction cost of the optical system. Moreover, they may also introduce non-common path errors.
In this study, we propose an approach to address this challenging problem via curvature sensing. This method
uses multi-wavelength to eliminate the influence of 2π ambiguity and improve the capture range of co-
phasing detection. However, curvature sensing is easily influenced by atmospheric seeing. We propose a
wavelet support vector machine optimized via particle swarm optimization (PSO-WSVM) method to deal
with this problem, and to improve the application scope of curvature sensing. We reshape SVM with a
wavelet kernel function, and improve the PSO algorithm. We train the SVM to build a prediction model
to distinguish the piston error range of each pair of adjacent segments and surpass 2π ambiguity. First,
we obtain defocused images by means of the convolution technique. Second, we propose a prediction model
based on SVM. We select the correlation coefficient between the sampling signal and the template signal at
different wavelengths as the input vector, and we choose a wavelet basis function as the kernel function of
SVM. Third, we improve the PSO algorithm with the exponential decreasing inertia weight (EDIW) to tune
the parameters of SVM. Finally, we perform a simulation experiment on a real optical system model based
on the Keck telescope. The results indicate that the performance of this method is better than that of other
state-of-the-art SVM-based classifiers, and it works rapidly during the observation.

INDEX TERMS Image analysis, optical sensors, machine learning, algorithms, active optics, mirrors, phase
measurement, PSO, support vector machine (SVM).

I. INTRODUCTION
Astronomy is about discovery. Astronomers need larger
and larger telescopes to observe more distant and weaker
celestial phenomena across vast distances and enormous
spans of time. However, segmentation is a necessity
to build telescopes larger than the 8 m class due to
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limitations in processing, manufacturing, transportation, and
cost. A larger segmented mirror means a stronger ability
to collect light, and a higher spatial resolution, but the dis-
continuous primary mirror has difficulty co-phasing due to
gravity, wind, thermal drift, movement during slewing and
other factors. In order to achieve the same optical perfor-
mance as a monolithic mirror, the piston errors between
the segments should be controlled to an accuracy of several
nanometers.
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The methods used for co-phasing segmented mirrors
can be divided into three categories based on the mea-
surement principle as follows: (1) Image plane tech-
niques, which mainly include phase retrieval (PR) and
phase diversity (PD). (2) Pupil plane techniques, which
include modified Shack-Hartmann sensing, the pyramid sen-
sor, and the Mach-Zehnder Interferometer. (3) Intermediate
plane techniques, which generally refer to curvature sens-
ing (CS) [1]–[6].

The PR and PD techniques record the light intensity
distribution on the specific plane of the charge-coupled
device (CCD) existing on the telescope and reconstruct the
wavefront by using the recorded light intensity informa-
tion [7], [8]. PR only records the intensity distribution on the
image plane. The wavefront reconstructed using an iterative
algorithm is not unique and can only be used when the object
is a point source. PD uses both light intensity distribution
information on the image and defocused planes to reconstruct
the wavefront. Unlike the PR method this method recon-
structs the wavefront phase to be unique and can be used for
the wavefront phase reconstruction of a light source object
with a specific shape. The advantage of this technique is that
the device is simple, whereas the disadvantage is that the
measurement range of the phase is small (±λused/2) and it is
highly computationally intensive. Moreover, it is susceptible
to atmospheric disturbances.

Shack-Hartmann sensing has the advantages of a high uti-
lization rate of light energy, broad dynamic range, low envi-
ronmental requirements, and suitability for detection with
white light. This method has been successfully applied in
the phase camera system (PCS) of the Keck Telescope and
the alignment and phasing system (APS) of the Thirty Meter
Telescope (TMT). Pyramid sensing has an adjustable sen-
sitivity and sample rate that can be used to detect higher-
order aberrations, but the sensors require an enormously high
manufacturing accuracy. These methods require micro-lens
or prism arrays with fine tolerance over the edges of each pair
of adjacent mirror segments. There are 36, 492, and 984 seg-
ments for the Keck, TMT, and the European Extremely
Large Telescope, respectively. Therefore, these methods are
becoming progressively less practical for future large tele-
scopes. Other methods based on dispersed fringe sensors,
point spread function (PSF) method or modulation transfer
function (MTF) need to measure piston error in another opti-
cal path, which will introduce non-common path errors and
be easily affected by the atmosphere [9]–[11].

In 1988, F. Roddier proposed CS. The wavefront mea-
surements can be obtained by solving the difference between
the normalized intensity on the front and back defocus
planes [12]. The advantage of CS is that the optical path is
simple, no decoupling operation is required, the reconstruc-
tion of a phase is rapid, and the measuring accuracy for low
spatial frequency aberration is high. Moreover, it can detect
both the piston error and the tip/tilt error; however, it has
the disadvantage of having a small capture range (±λ/8) and
being susceptible to atmospheric influences.

At present, only PR, PD, and CS do not introduce
non-common path errors in co-phasing detection technolo-
gies. Comparing the methods mentioned above, we choose
CS as our co-phasing detection method, because it has no
non-common optical path error, no decoupling operation, and
rapid phase reconstruction. However, CS, similar to PR and
PD, has the problem of 2π ambiguity when using monochro-
matic light measurements. Therefore, this study uses a multi-
wavelength measurement method to eliminate the influence
of 2π ambiguities and improve the measurement range of
co-phasing detection. It is assumed that the tip/tilt error of
each segment has been completely removed, and the pis-
ton value of each segment satisfies the uniform distribution
within the limits of ±11λ, where λ is the operating wave-
length.

The residual piston error on the segmented primary mirror
will introduce diffraction effects at the in-focus plane and out-
of-focus plane. Consequently, the physical optics-based CS
method can be applied to measure the piston error of the seg-
ments. However, the application of the CSmethod on ground-
based telescopes is limited by atmospheric seeing [13].

Aiming to address the problem that the CSmethod is easily
influenced by atmospheric seeing, this study proposes the
method of particle swarm optimization optimized wavelet
support vector machine (PSO-WSVM) to solve the influence
of atmospheric seeing, and to improve the application scope
of the CS method.

To simulate the effects of atmospheric seeing, the images
obtained at the CCD are filtered by the long exposure optical
transfer function (OTF) of the atmosphere, developed by
Fried [14]. The Fried constant selected in this step satisfies
a uniform distribution on the interval [0.1, 0.2] (unit: m) [15].
Thus, a casual atmospheric seeing is added to each image.
The method proposed in this study should be able to accu-
rately guess the piston error range of each pair of adjacent
segments without knowing the Fried constant.

The basic idea of machine learning (ML) is to utilize a dif-
ferent algorithm to generate models from input data on a com-
puter. The concept has evolved to be employed inmany differ-
ent applications, such as expert systems, data mining, image
recognition, fault diagnosis, natural language processing,
robotics, and biomedical applications [16]–[20]. In recent
years, artificial intelligence methods such as SVM, convo-
lutional neural networks (CNNs), self-encoding networks,
and anti-neural networks have emerged, some of which have
been used for wavefront sensing and have achieved excellent
performance.

Dailos et al. [21] employed CNNs to predict the piston
step values between segments with high accuracy, as well as
a broad capture range at visible wavelengths. Li et al. [22]
proposed a novel approach to construct the feature vector
by the in-focal and defocused images, which can get rid of
the dependence of the CNN dataset on the imaging target.
Nishizaki et al. [23] presented a new class of wavefront
sensors by extending their design space based on CNN,which
simplifies both the optical hardware and image processing in
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wavefront sensing. Xu et al. [24] proposed a control algo-
rithm based on a deep learning control model to compensate
for wavefront aberrations, eliminating the dependence on the
deformable mirror response matrix. Paine and Fienup [25]
used machine learning operating on a point-spread function
to determine a reasonable initial estimate of the wavefront.

In the 1990s, SVM for machine learning was proposed.
Since SVM has a principle based on structural risk minimiza-
tion (SRM), it has unique advantages in working on nonlin-
ear problems with fewer samples and high dimensions [26].
Compared with CNN, the unique advantage of SVM is that
themodel is small and does not require a heavy computational
load. In addition, no special hardware is required in SVM.
Complete in theory and straightforward in application, it has
gradually become a popular machine learning algorithm that
is widely used in pattern recognition, object identification,
cancer recognition, image semantic segmentation, automatic
text classification and biological sciences [27]–[29].

II. THE PROPOSED MODEL
In this section, we present this novel model in detail. First,
we provide CS based on physical optics and introduce atmo-
spheric seeing into the model. Then, we propose an SVM
classifier based on the wavelet kernel function. After that,
we present the PSO algorithm with the exponential decreas-
ing inertia weight (EDIW) to optimize the parameters of the
WSVM. Finally, the flow of the entire algorithm is given in
detail.

A. WAVEFRONT SENSING MODEL CONSIDERING
ATMOSPHERIC SEEING
Located on the Mauna Kea volcano summit in Hawaii,
the Keck telescope is one of the most successful segmented
telescopes in the world. The primary mirror of the Keck
Telescope is 10 m in diameter and is a mosaic composed
of 36 hexagonal segments with a diameter of 1.8 m each. The
optical structure of the Keck telescope is used as the optical
model of this study. The segmented primary mirror is shown
in Figure 4, and the generalized pupil function of it is given
by:

f (ρ) =
n∑
i=1

h
(
ρ − ρi

)
exp

[
iφ
(
ρ − ρi

)]
(1)

where, h
(
ρ − ρi

)
is the transmission intensity function of the

ith segment and can be given by:

h
(
ρ − ρi

)
=

{
1,

∣∣ρ − ρi
∣∣ ≤ a

0,
∣∣ρ − ρi

∣∣ > a
(2)

ρ and ρi are the coordinate vector on the aperture plane
and the central coordinate of the ith segment, respectively.
φ
(
ρ − ρi

)
is the phase function of the ith segmented mirror.

Suppose two adjacent mirror segments are located on both
sides of the y-axis and the gap between them is arbitrarily
small. The phase is φ1 in the field of x < 0 while the
phase is φ2 in the field of x > 0. Thus, the phase difference

between the adjacent segments is1φ, where1φ = φ1− φ2.
The piston error between the adjacent segments will affect
the normalized intensity distribution at a distance z from the
segmented primary mirror.

The illuminance on the detector plane parallel to the screen
with z apart from the screen is the function of x which is given
by [30]:

I (x) /I0 = 1+ A [sin (1φ)]+ B [1− cos (1φ)]

A = C (x/ρ)− S (x/ρ)

B = C2 (x/ρ)− S2 (x/ρ)− 1/2

ρ =
√
λz/2 (3)

where C and S are the Fresnel cosine and sine integrals,
C (x) =

∫ x
0 cos

(
π t2/2

)
dt and S (x) =

∫ x
0 sin

(
π t2/2

)
dt

respectively, and ρ appoints the signal width.
Although Equation (3) gives the phase sensing of two adja-

cent segments with infinite length, it is impossible to simulate
the defocused image of a real segmented primarymirror when
the piston error and seeing are considered. Therefore, a new
approach needs to be explored to achieve our goals. In this
study, the Fresnel-Kirchhoff diffraction formula is applied to
achieve this goal. This method takes advantage of the idea of
convolution to obtain the complex amplitude at a plane where
the pupil has propagated a distance z[30]. It is expressed as:

U (x, z) ∝ FT−1
{
FT [f (ρ)] e−iv

2z/2k
}

(4)

where x is a two-dimensional position vector in the detector
plane, v is a spatial frequency vector, U (x, z) is the complex
amplitude fields at a distance z from the pupil, f (ρ) is the
complex pupil function and z is the effective propagation
distance defined by:

z =
(f − l) f

l
(5)

where l is the distance from the focal plane, and f is the focal
length of the segmented primary mirror telescope.

The spatial distribution of image intensity on the defocus
plane is the square of the complex amplitude distribution
modulus.

I (x, z) = |U (x, z)|2 (6)

The defocused image obtained on the out-of-focus plane
can be obtained by convolving the object in the spatial domain
with the PSF of the defocusing optical system.

idefocus = o (x) ∗ PFSdefocus (x) (7)

The above correlation can be converted to the frequency
domain which is expressed as follows:

Idefocus = O (x) ∗ OTFdefocus (x) (8)

OTFdefocus (x) =
∣∣OTFdefocus (x)∣∣ eiATFdefocus(x)

= MTFdefocus (x) eiATFdefocus(x) (9)

Considering that a ground-based telescope is affected by
atmospheric disturbances, the intensity image acquired on the
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out-of-plane is filtered by the long exposure optical transfer
function (OTF) of the atmosphere, proposed by Fried [31].
The Fried constant randomly selected for the OTF in this
study satisfies the principle of uniform random distribution
between 0.1 m and 0.2 m statistically. Accordingly, each
simulated out-of-focus image is added to the effects of a dif-
ferent atmospheric turbulence. A simulated intensity image
acquired with the described method is shown in Figure 4.

The mathematical model of long-exposure MTF based on
the Kolmogorov atmospheric turbulence model is chosen in
this study to simulate the imaging system MTF [32].

〈
MTFI

(
q̂
)〉
= MTFdI

(
q̂
)
exp

[
−3.44

(
D
r0
q̂/2

)5/3
]

(10)

where q̂ = qobj/qcut , qobj = 2π f , f is the spatial frequency,
qcut = kD/ (2Li), k is the wavenumber, D is the diameter
of the imaging system with a circular aperture, and Li is the
imaging distance.

B. WAVELET SUPPORT VECTOR MACHINE (WSVM)
In 1995, the support vector machine (SVM) was formally
proposed by Cortes and Vapnik [25]. SVM is a new machine-
learning algorithm, developed based on SRM principles and
statistical learning theory. SVM is essentially a form of super-
vised learning algorithm, which can eliminate the unfavor-
able factors such as slow convergence, overfitting, and the
easy to fall into local minimum value trap of the artificial
neural network. Due to its unique advantages such as its small
sample size, strong generalization ability, fast learning effi-
ciency, and relatively simplemodel construction, it has a wide
range of applications in classification, feature recognition,
and regression prediction.

The basic idea of SVM is to find an optimal separating
hyperplane with the maximum margin in the feature space
constructed by mapping the input vectors to a higher dimen-
sion through some nonlinear mapping and classifying the
different type of sample. The hyperplane divided by this prin-
ciple has the best tolerance to local disturbances, the resulting
classification results are the most robust, and the general-
ization ability to classify the unexemplified samples is the
strongest. Based on this idea, the classification accuracy can
be improved.

After continuous research and innovation by scholars in
recent years, different versions of SVM has evolved, such as
the least squares SVM (LS-SVM), the Bayesian SVM, and
the fuzzy SVM.

Compared with traditional SVM, LS-SVM adopts an
equality constraint rather than the inequality constraint in tra-
ditional SVM,which reduces the complexity of the algorithm.
LS-SVM converts the quadratic problem into solving linear
equations by treating the error squared loss function as the
empirical loss of the training set. It increases the convergence
speed and computational efficiency for solving a specific
problem in practice. Thus, it achieves a better compromise
between accuracy and generalization performance.

FIGURE 1. The architecture of SVM.

The core idea of machine learning is to estimate the poste-
rior probability of the model, trained as accurately as possible
using a limited training set. Given this rule and based on
Bayesian theory, Bayesian SVM aims at maximizing the
posterior probability of parameter distribution to obtain the
optimal parameter value during optimization. Consequently,
the selection of the parameter in the model meets the require-
ments of an objective principle, and the prediction accuracy
of SVM is improved to a certain extent.

In some application scenarios, some meaningless data
points are generated due to noise, but these data points are not
needed for the machine. However, traditional SVM cannot
identify and discard these bad points. Given this, a fuzzy
membership value is allocated to each input point to improve
the noise immunity of the traditional SVM, thus, to reshape
the SVM into fuzzy SVM. This method can effectively sup-
press the adverse effects of noise and outliers on input sam-
ples and improve the performance of SVM.

LibSVM is integrated software for support vector classi-
fication, (including C-SVC and nu-SVC where C and nu are
parameters), regression (epsilon-SVR, nu-SVR) and distribu-
tion estimation (one-class SVM) [33].

In the actual application process of SVM, related research
shows that the choices of parameters C and the kernel param-
eter g are closely related to the performance of the algorithm.
The key to fully exploit the performance of SVM is to set C
and g appropriately.

The choices of penalty factor, kernel function, and ker-
nel parameters are directly related to the performance of
the SVM. Solving severe nonlinear problems with SVM do
not yield satisfactory results because the traditional kernel
function cannot generate a complete base in L2 space after
transform processing.

Suppose there is a set labelled training data {(xi, yi)}
(i = 1, 2, . . . , l) , xi ∈ Rn representing the input column
vector of the ith training point, and yi ∈ R is the output. l
represents the number of points in the training set, as shown
in Figure 1.

The regression of a series of nonlinear data points xi =[
x1i , x

2
i , . . . , x

n
i

]
will become a linear regression problem
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after being mapped to a high-dimensional space by the non-
linear mapping function ϕ (·).

y = f (x) = w · ϕ (x)+ b (11)

where, x denotes the SVM input vector, x = (x1, x2, . . . , xN ),
y denotes the corresponding SVM output, w represents the
connection weight vector of SVM, and b is a constant.
According to the SRM principle, w needs to be selected.

The ε-insensitive loss function developed by Vapnik is
adopted, which is given by:

Lε (y− f (x)) =

{
0 |y− f (x)| ≤ ε
|y− f (x)| − ε otherwise

(12)

where ε is a constant called the tube size and the value of it
will affect the number of support vectors.

If the function f can estimate all (xi, yi) with precision ε,
then searching and finding the smallest w allows the problem
to be transformed into a convex optimization problem as
follows:

min 1
2 ‖w‖

2
+ C

N∑
i=1

(
ξi + ξ

∗
i

)

s.t.


yi −

N∑
i=1

wiK
(
xj, xi

)
− b ≤ ε + ξi, j = 1, . . . ,N

N∑
i=1

wiK
(
xj, xi

)
+ b− yi ≤ ε + ξ∗i , j = 1, . . . ,N

ξi, ξ
∗
i ≥ 0, j = 1, . . . ,N

(13)

where ξi, ξ∗i are relaxation variables, b is a constant, K (·) is
a nonlinear mapping function, and C is a penalty coefficient.
A larger value of C means that a larger penalty will be
imposed on the sample point where the training error is higher
than ε.
The solution of the dual convex optimization problem

described above uses the following Lagrangian function:

L
(
w, b, ξi, ξ∗i , αi, α

∗
i , ηi, η

∗
i
)

=
1
2
‖w‖2 + C

l∑
i=1

(
ξi + ξ

∗
i
)

−

l∑
i=1

αi (ξi + ε − yi + wϕ (xi)+ b)

−

l∑
i=1

α∗i (ξi + ε − yi + wϕ (xi)+ b)

−

l∑
i=1

(
ηiξi + η

∗
i ξ
∗
i
)

(14)

where αi, α∗i , ηi and η
∗
i are nonnegative constants and called

Lagrangian multipliers.
The objective function L (·) maximizes αi, α

∗
i , ηi, η

∗
i ,

and minimizes w, b, ξi, ξ∗i . According to the Karush-
Kuhn-Tucker condition, the condition that L (·) takes the

extreme value satisfies the following constraints:

∂L
∂b
=

l∑
i=1

(
αi − α

∗
i
)
= 0,0 ≤ αi, α∗i ≤ C

∂L
∂w
= w−

l∑
i=1

(
αi − α

∗
i
)
ϕ (xi) = 0⇒ w

=

l∑
i=1

(
αi − α

∗
i
)
ϕ (xi)

∂L
∂ξ∗i
= C − α∗i − η

∗
i = 0⇒ C = α∗i + η

∗
i (15)

The above optimization problem is equivalent to solving
its dual form as follows:

max
αi,α

∗
i

−
1
2

l∑
i,j=1

(
αi − α

∗
i
) (
αj − α

∗
j

) (
ϕ (xi) · ϕ

(
xj
))

+

l∑
i=1

(
αi − α

∗
i
)
yi−

l∑
i=1

(
αi + α

∗
i
)
ε (16)

It obeys the constraints:

w =
l∑
i

(
αi − α

∗
i
)
xi, 0 ≤ αi, α∗i ≤ C, i = 1, . . . , l (17)

As a result, the expression function used by the SVM as the
regression prediction can be expressed as follows:

f (x) =
l∑
i=1

(
αi − α

∗
i
)
(ϕ (xi) ϕ (x))+ b

=

l∑
i=1

(
αi − α

∗
i
)
κ (x, xi)+ b (18)

where κ (x, xi) represents the kernel function
The basic idea of SVM to solve nonlinear regression

problems is to map the nonlinear regression problems
into a high-dimensional space. Thus, the nonlinear prob-
lems are transformed into linear problems, and this map-
ping process is achieved by selecting an appropriate kernel
function.

Based on Mercer’s condition, every positive definite func-
tionK (x, xi) can be expressed as an inner productK (x, xi) =
ϕ (x)T ϕ (xi). Therefore, by choosing a positive definite ker-
nel κ (x, xi) and reformulating the problem in terms of
inner products of ϕ, one can implicitly work in very high
dimensional spaces without having to formulate an explicit
parametrization of the basis. A popular choice for the kernel
function is the Gaussian radial basis function (RBF) kernel.
The essential idea of RBF is that the backpropagation learn-
ing algorithm applies recursive techniques, which are called
random approximations in statistics.

κ (x, xi) = exp
(
−‖x− xi‖22 /2σ

2
)

(19)
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where σ (σ > 0) denotes the bandwidth parameter of the
kernel function, and it controls the range of action of the
function in the radial direction.

RBF is widely used in regression analysis and pattern
recognition and has excellent mapping capabilities. The RBF
kernel is associated with an infinite-dimensional feature map.
However, the performance is often not ideal when it is applied
for approximating complex functions.

Wavelet theory has been widely used in various fields
since Morlet proposed it due to its good localization. The
modeling of many practical problems can be attributed to the
mathematical problem of nonlinear function approximation.
The wavelet basis function is a series obtained by transform-
ing and scaling the wavelet decomposition, which has the
property of function approximation by wavelet decomposi-
tion. Therefore, we can obtain a set of complete bases in
L2 space by expansion and translation of the wavelet basis
function and then use it to approximate any nonlinear func-
tion. Because it introduces scaling and translation factors,
it has more degrees of freedom than the general wavelet
decomposition so that it can describe the characteristics of
complex functions more accurately. In this study, we applied
the wavelet basis function as the kernel function aimed at
improving the approximate accuracy of the SVM. TheMorlet
wavelet basis function is taken as the kernel function and is
given by equation (20) [34]:

κ (x, xi) = cos
(
1.75×

x − xi
σ ′

)
exp

(
−‖x, xi‖2

2σ ′2

)
(20)

where σ ′
(
σ ′ > 0

)
is the standard deviation of the Morlet

wavelet kernel function (MWKF), and it represents the width
of the MWKF.

The selection of the input vector and associated parameters
of the SVM is critical to the predictive performance of the
model being trained. The core SVM hyper-parameters are the
penalty parameter C , the tube size ε defined in the epsilon-
insensitive function, and the bandwidth parameter σ of the
kernel function if the RBF is taken.

The penalty parameter C determines the allowable devi-
ation of the tolerance greater than the threshold ε. When C
approaches infinity, the existence of classification error sam-
ples is not allowed, and then it becomes a hard margin SVM
problem, which leads to overfitting. However, when C tends
to 0, it means that we do not consider whether the classifica-
tion is correct, but that the larger the interval, the better. In this
case, a meaningful solution will not be obtained, and the algo-
rithm will also not converge, which results in an underfitting
problem.C is a parameter attached to the slack variable intro-
duced by the SVM in order to solve the linear indivisibility
of the data set. The slack variable can be understood as a
regularization term, and C is the coefficient of the regulariza-
tion term, which is used to balance empirical risk and model
complexity.

The tube size ε ensures the sparsity of dual variables and
the existence of a global minimum solution in SVM. The

selection of tube size ε is closely related to the generalization
capability of the model. The parameter bandwidth σ of the
kernel function controls the range of action of the function in
the radial direction, and the performance in machine learning
is the ability to learn.

The selection of the RBF directly affects the perfor-
mance of the SVM classifier. Regarding the selection
of hyper-parameters for SVMs, previous scholars have
done a lot of outstanding research work. Some common
strategies that are applied to determine the appropriate
hyper-parameters are grid search, K-fold cross-validation
(CV), heuristic search, Nelder–Mead search, random search,
genetic algorithms (GAs), the PSO algorithm, and pattern
search. Currently, the K-fold CV method is widely used in
the selection of kernel functions.

For this study, we chose the improved PSO algorithm as the
optimization algorithm to address the above problems. The
PSO algorithm searches for the best C , σ , and ε parameters
by comparing the prediction error in every epoch. The search
space of the PSO algorithm forms a three dimensional tensor,
one for each parameter.

C. PARTICLE SWARM OPTIMIZATION ALGORITHM FOR
WSVM
Inspired by the social flocking behavior of birds, the PSO
algorithm is a global optimization algorithm first proposed
by Kenney and Eberhart in 1995. The PSO algorithm sim-
ulates the clustering and migration behavior of birds during
predation. Each particle in the algorithm has individual char-
acteristics, but helps each other to reflect the characteristics
of the group [35].

The advantage of the PSO algorithm over other algorithms
is that PSO has a memory function, and the knowledge of a
good solution is preserved. For example, in GA, the previous
knowledge is changed with the change of population, and
PSO has no crossover and mutation operation compared with
GA. Particles are only updated by internal speed, the principle
is more straightforward, there are fewer parameters, and it is
easier to implement.

The basic idea of the PSO algorithm is to use the posi-
tion coordinates and velocity of the current best position
and the global value to update the position of the cur-
rent best position and find a new position. Then it will
calculate the corresponding fitness of the new position to
evaluate the quality of the solution. The process is shown
in Figure 2.

Assume that in an n-dimensional solution space, there
is a community of N particles where the ith particle is
represented as a one-dimensional vector denoted by xi =
(xi1, xi2, . . . , xin). Suppose the optimal position the ith par-
ticle has searched so far is pbesti = (pi1, pi2, . . . , pin).
The optimal position searched by the entire particle swarm
so far is the global optimal position denoted by gbest =
(g1, g2, . . . , gn) and vki =

(
vki1, v

k
i2, . . . , v

k
in

)
representing

the moving rate of the ith particles after k iterations. When
these two optimum values are found, the particle swarm
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FIGURE 2. Simulated movement of a particle in the search space by
updating the position and velocity.

updates its position and velocity according to the following
formula:

vkid = w′vk−1id + c1rand1
(
pbestk−1id − xk−1id

)
+c2rand2

(
gbestk−1d − xk−1id

)
xkid = xk−1id + vkid (21)

where k is a positive integer indicating the number of itera-
tions, i (i = 1, . . . ,m) denotes the number of a particle in the
set of particles consisting of m particles. d (d = 1, 2, . . . , n)
denotes the dimension searched in the n-dimensional solution
space. w′ represents the inertia weight and w′ is a monotone
decreasing function in the interval 0.9 to 0.4 during the
iterative process [36], ci (i = 1, 2) represents a nonnegative
learning factor, and randi (i = 1, 2) is a normalized random
number.

The first term denotes the inertia properties, which indi-
cates the tendency of the particles to maintain their previous
speed. The second term shows the cognitive properties of
the particles, which represents the tendency of the particles
to move toward the current global best solution. The third
term signifies the social properties, which shows the group’s
historical experience of collaboration and knowledge sharing,
and represents a trend for the positions of the particles to
approach the current optimal position of the group or neigh-
borhood.

The optimization problem of the penalty coefficient and the
kernel parameter in SVM can be regarded as the optimization
problem in a two-dimensional solution space.

K-fold CV is used in machine learning to work on the
problem of overfitting and improve the ability to predict data
outside of the training set. It divides the raw data into k groups
or folds, where each data subset is taken as a validation set,
and the remaining k-1 folds are taken as the training set.
In this way, k models are obtained, and the k models are
evaluated in the verification set, severally. Next the k-fold
CV accuracy is obtained by weighting the error obtained in
the k models, which is also called the CV mean of square

error (MSE, CV-MSE). CV effectively utilizes limited data,
and the results of the evaluation are as close as possible
to the performance of the model on the test set. Therefore,
CV-MSE is taken as the fitness function value for the trained
model in this study. The magnitude of the value of CV-MSE
is inversely related to the prediction accuracy.

The parameters of PSO are adjusted to balance the global
search and local mining ability of the algorithm. The inertia
weight is introduced to the velocity term.

In GA, knowledge is shared between the chromosomes,
and the entire population evenly converges towards the opti-
mal domain. However, the flow of information is unidirec-
tional in PSO, that is, only gbest gives information to other
particles. It makes the search of the entire algorithm follow
the current solution, which makes it easy for the algorithm to
fall into the local extremum. In order to avoid the above sit-
uation of falling into the local extremum, the PSO algorithm
should be improved.

By adjusting the parameters of PSO, the global and local
exploration abilities of the algorithm can be balanced. The
inertia weight w′ is introduced to the velocity term, and the
w′ is linearly or nonlinearly adjusted to the iterative pro-
cess to balance the globality and convergence speed of the
search. The inertia weight w′ indicates the capability of the
particle to retain the original velocity. The larger w′ indicates
that the global search ability of the particle is stronger, and the
local convergence ability is weaker. Conversely, the smaller
w′ is, the stronger the local convergence ability of the particle,
and the weaker the ability to locate the global minimum.

The inertia weight is adjusted according to the iterative
process and the flight condition of the particle to balance
the globality of the search and the convergence speed of
the algorithm. In the initial stage of optimization, the global
search capability should be strengthened while local opti-
mization should be paid more attention to in the later stage.
Accordingly, the value of w′ should gradually decrease as
iterations increase. Therefore, it is necessary to adjust the
value of w′ dynamically.
The traditional PSO algorithm applies a linear decreasing

inertia weight (LDIW). However, when the objective function
is a non-convex function, if the initial PSO fails to find the
global best advantage, the linearity of w′ decreases and falls
into the local extremum, resulting in premature convergence.
In this study, we utilize EDIW. Its basic idea is making w′

change slowly in the early stage of iteration to increase the
global search ability of the algorithm andmakingw′ fall faster
in the later stage to improve the local search ability of the
algorithm, thus finding the global optimal solution.

w′ = wend

(
wstart
wend

)(1−k/kmax)

(22)

where wstart = 0.9 and wend = 0.4 represent initial and
termination weights, respectively, k represents the current
number of iterations, kmax denotes the maximum number of
iterations set.
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FIGURE 3. Flowchart of EDWI-PSO-WSVM adopted for the study.

The learning factor ci (i = 1, 2) is often referred to as the
acceleration constant to control the moving step size of a
particle in an iteration. Generally, c1 = c2 = 2. The learn-
ing factor represents the particle’s exploration ability. In the
initial stage of optimization, the particles should be given
the ability to think and explore more. Therefore, the learn-
ing factor should also be adjusted appropriately linearly; c1
decreases linearly and c2 increases linearly.

c1 = c1s −
iter (c1s − c1e)

itermax

c2 = c2s +
iter (c2e − c2s)

itermax
(23)

where c1s (c1e) and c2s (c2e) denotes initial (or end) values of
c1 and c2, respectively, iter represents the current number of
iterations and itermax denotes the number of iterations at the
termination.

In this article, the improved PSO algorithm with EDWI is
applied to optimize the critical parameters in theWSVM. The
flowchart of the optimization is shown in Figure 3.

III. SIMULATION EXPERIMENTS AND RESULTS
To analyze the performance of our proposed model,
we design a simulation experiment and compare the proposed
model with some state-of-the-art SVM methods on the same
dataset. First, we use the optical system parameters of the
Keck telescope to create an optical model of the segmented
primary mirror system. Following this, we use this model
to get the dataset. Second, we perform statistical processing
on the dataset, reducing the input vector dimension of the
WSVM and obtaining a new dataset. Finally, we expound the
experimental results of the proposed method and compare it
with several other state-of-the-art SVM methods.

We aim to control the 2π ambiguity in the wavefront
sensing, somethingmay be learned from the idea of redundant

TABLE 1. Simulation parameters in the segmented active optics
simulation system.

measurements, and it is applied to improve the robustness of
the algorithm. Given this, we use a set of available lights
with the wavelengths chosen from an arithmetic series of
numbers. In this study, λ0 = 700nm is chosen as the pri-
mary wavelength, and three additional shorter wavelengths
are also considered: λ1 = 0.93λ0, λ2 = 0.86λ0 , and λ3 =
0.79λ0 [20].
The piston value of each segment is randomly generated,

and the process satisfies the principle of a uniform distribu-
tion over the interval [−11λ0, 11λ0]. Consequently, the range
of the difference between any two adjacent segments is
[−22λ0, 22λ0]. The parameters selected in the simulated
optical system with a segmented primary mirror are shown
in Table 1.

Ground-based telescopes are susceptible to atmospheric
turbulence, which is the unique property of ground-based
telescopes and the reason for the development of adaptive
optics. The effect of atmospheric turbulence on the tele-
scope optical system is statistically represented as a change
in the optical transfer function (OTF). In the mathematical
form, OTF acts as a filter. The perfect parallel wavefront
enters the telescope aperture after passing through the atmo-
sphere. Due to piston errors existing on the segmented pri-
mary mirror, the wavefront becomes discontinuous. Thus,
in the out-of-focal plane, an intensity image is generated.
Essentially, the perfect wavefront is filtered twice, once by
the atmosphere, and the second time by the effect of the
optical system of the considered telescope. In this study,
the long exposure OTF of the atmosphere developed by
Fried is selected to simulate the filtering effect of atmo-
spheric turbulence on intensity. Here, the Fried parame-
ter is randomly selected, which has a uniform distribution
from 0.1 m to 0.2 m. In this way, there is a differ-
ent atmospheric seeing for each intensity image. A sim-
ulated intensity image acquired in a detector is shown in
Figure 4.

As shown in Figure 4, the window size is 100 pixels ×
100 pixels. The window data captured on the CCD will be
further processed to be used as samples for training and
testing.
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FIGURE 4. An example of the simulated defocus intensity image.
A rectangular area centered at the midpoint of the line connecting the
geometric center of two adjacent segments is selected as the input data
point. The position of this data point is marked with a red solid line
window in this figure.

The EDIW-PSO-WSVM proposed in this study works
to predict the ambiguity range of the piston error between
two adjacent segmented mirrors. Each ambiguity range is
assigned a non-repeating integer tag as the training label
of the EDIW-PSO-WSVM, and use template matching to
obtain the normalized cross-correlation coefficient as input
parameters then the machine will perform the task of clas-
sification. The interval step of the ambiguity range caused
by the different piston errors between each pair of adjacent
segments is selected as π . Moreover, the piston errors for
each segment satisfy the uniform random distribution on the
interval from−11λ0 to 11λ0 and the principle of independent
identically distributed hypothesis. The algorithm topology is
shown in Figure 5.

First, the piston value of each segment is randomly taken
from a uniform distribution over the continuous interval
(−11λ0, 11λ0), and then the physical optics’ method is
applied to create a diffraction intensity image collected by
the detector at the out-of-focus plane, as shown in Figure 4.
The effect of different atmospheric seeing on the acquired
intensity image is simulated by introducing a long expo-
sure transfer function and changing the value of the Fried
parameter selected randomly from the interval of 0.1 m to
0.2 m. After that, the captured intensity images are cropped
into smaller rectangular sample images, and input data is
generated by assigning the non-repeating integer labels to
the corresponding ambiguity ranges between two adjacent
segments. The role of EDIW-PSO-WSVM is to train the
machine based on the limited number of these input data
points. Once the model is trained, it should be able to predict

which labeled range the ambiguity range between each pair
of adjacent segmented mirrors falls into. The processing flow
for intercepting data is shown in Figure 5.

After the above process, the intensity images obtained
by the detector are cropped into smaller rectangular blocks
centered on the geometric center of each pair of two adjacent
segment edges. An example of the image matting is shown
in Figure 4, marked with a solid red line. This matting
is to extract the diffraction information between adjacent
segments on the out-of-focal plane as the input data of
the machine. The data points obtained by the method are
a two-dimensional matrix containing the information of
diffraction intensity which could only be converted to a
one-dimensional vector as an input point for the SVM.
It will lead to dimension disaster for SVM if a 3D array is
turned into a 2D grayscale image and then converted into
a one-dimensional vector. It will increase the computational
difficulty of the model. After careful study of the 3D array at
the edge of the adjacent segments, it is found that the piston
error affects the corrugation shape at the edges and the ridge
of the corrugation is parallel to the edge of the segments.
Taking this advantage into account, we average the sampling
window data along the edge of the mirror, that is, in the
direction of the ridge.

Different piston errors are added to the adjacent segments
in the model. Following that, a series of waveforms simi-
lar to those shown in Figure 5(c) is obtained. In order to
suppress the detector noise, the intensity of the pixel point
on the detector is averaged along the direction of the gap.
The waveform obtained by changing the difference of piston
between adjacent two segments ranging from −λ to λ with a
step size of 0.1λ, as shown in Figure 6. The conclusion can be
drawn from Figure 6 that the shape of the waveform changes
periodically as the piston difference of the two adjacent seg-
ments changes. The variation period of the waveform is an
integer multiple of the wavelength of the test light, and the
possible difference can be derived from the information of the
waveforms.

To reduce the dimension of the EDIW-PSO-WSVM input
vectors and improve the recognition accuracy and the effi-
ciency of the model, 22 different ambiguity ranges with four
homochromatic lights were simulated with piston error rang-
ing from 0 to 11 λi(i = 0, 1, 2, 3) and a step size of 0.05λi(i =
0, 1, 2, 3). Then, the normalized processing is performed, and
the theoretical data obtained is shown in Figure 7. It can be
seen that the signal maps normalized by four monochromatic
lights of different wavelength change periodically and the
periods of signals corresponding to the different wavelengths
are different. It indicates that the one-dimensional vector
composed of the signal intensities of four different wave-
lengths of monochromatic light corresponding to different
piston errors is present and unique. Then, the signal strength
of four different monochromatic lights can be used as the
input vector of WSVM. The piston error information of
the segments is fully retained, which significantly improves
the calculation efficiency of the model.
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FIGURE 5. Light intensity signal of the image at the edge of the adjacent
segments on the CCD at the out-of-focus position: (a) CCD acquisition
intensity image at defocused position; (b) 3D map of light intensity
information at the cutoff window; (c) The 2D map of the red dotted line
in Figure 5(b) is averaged along the direction of the corrugated ridge.

FIGURE 6. The information of the wave corresponding to Figure 5(c)
when the two adjacent mirrors have different piston errors.

Given the geometric symmetry of the intensity image gen-
erated by the simulation, the data augmentation is used to
reduce the computational burden in our simulation process.
The sampling window is translated and rotated to acquire
more intensity information of the image under diffraction,
and the piston error interval of two adjacent segments is
recorded as the label to expand the training set.

The flow of the whole simulation experiment is shown
in Figure 8. First, a random piston error is added to
each segment of the segmented primary mirror system by
the MATLAB software, and four different wavelengths of
light sources are taken as incident light to obtain their

FIGURE 7. The normalized signal strength of four monochromatic lights
corresponding to different piston error ranging from 0 to. X-axis and
y-axis represent the number of steps ( for each step) and the normalized
signal strength, respectively.

FIGURE 8. Recognition flow of the piston errors of segments.

respective light intensities on the detector. Second, the
information matrix at the gap of the adjacent segments
is extracted, and the matrix is averaged along the gap to
obtain the information of the waveform. Third, the normal-
ized cross-correlation coefficient between the waveform is
obtained and the template is calculated. The four normalized
cross-correlation coefficients calculated for the four different
wavelengths of light are input as an input vector in the model
of EDIW-PSO-WSVM while the range of the difference in
piston between two adjacent segments is taken as the label.
A five-fold CV is utilized for training this proposed model,
and CV-MSE is chosen as the fitness function value. The
improved PSO is used to tune the WSVM hyper-parameters
in this model. In this study, data from 8000 samples are
used to build up a dataset. From this dataset, the training
dataset and testing dataset are generated by random division
of the dataset into two parts. In this step, 6000 groups of
data are treated as the training dataset while the remaining
2000 groups of data are selected as the testing dataset.

In order to verify the effectiveness of the proposed
algorithm, the classification results of this algorithm are
compared with other state-of-the-art SVM algorithms. The
proposed method is simulated and compared with the
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TABLE 2. Classification result.

FIGURE 9. Evolution of the best fitness and average fitness in improved
PSO method.

following methods: grid search [33], PSO [35], the genetic
algorithm (GA) [37], linearly decreasing inertia weight
(LDIW-PSO) [38], Butterworth inertia weight strategy
(BPSO) [39], adaptive inertia weight algorithm (AIW-
PSO) [40].

In order to reduce the accidental error, the average value
of 20 simulation experiments is taken. As shown in Table 2,
the classification accuracy of the EDIW-PSO-WSVM algo-
rithm is better than that of the other SVM algorithms we
comparedwith. Considering that the proposed algorithm adds
computational steps to calculate the kernel matrix in the
optimization of parameters c and g, the calculation time is
slightly increased, but it is still within the acceptable range.

In this study, the proposed algorithm is applied to the
determination of the piston error range between two adjacent
segments, which makes up for the 2π ambiguity of the tradi-
tional optical detection method and improves on the range of
wavefront capture of the curvature wavefront measurement
method.

In Figure 9, the classification accuracy of the range of the
piston error between adjacent segmented mirrors is shown.
As shown in the graph, the proposed EDIW-PSO-WSVM
method can quickly find the best parameters in the training

model. The average fitness appears to fluctuate in the initial
stage of the search, and it gradually converges to about 98
% after nearly 80 evolutionary iterations. The CV accuracy
achieved over the training eventually reaches around 99.5 %.
The time of training the EDIW-PSO-WSVM to recognize a
testing sample is about 0.31 s. The CPU applied in this pro-
cess is Intel(R) Xeon(R) E5-1620 @ 3.6 GHz. The installed
software version of MATLAB is R2017a.

Considering this method is based on image, it is not nec-
essary to build an additional optical path, simultaneously
avoiding the introduction of non-common path errors. The
recognition accuracy of this method is above 98 %. The
training time is about 611 s, and no additional computer
configuration is needed. The piston error range of each seg-
ment can be recognized in real-time during the observation
of a segmented telescope, which solves the 2π ambiguity in
traditional optical measurement methods.

IV. CONCLUSION
In this study, we investigated issues related to the piston align-
ment of segment optical mirrors. We proposed a EDIW-PSO-
WSVM algorithm to solve the challenging problems posed
by 2π ambiguity and the effects of atmospheric exposure.
We considered the following problems caused by traditional
methods for wavefront sensing: (1) The traditional wave-
front measurement would exhibit a periodic phase variation
of 2π using monochromatic light, making it challenging to
achieve both high precision and a broad measurement range.
(2) Due to the influence of the atmospheric seeing on the
ground-based telescope, the traditional optical measurement
method will produce an unremovable error, which will affect
the measurement accuracy of wavefront sensing. To address
these problems, we proposed a EDIW-PSO-WSVM algo-
rithm combining four different wavelengths of the light
source. We improved the shortcomings of the traditional
wavefront sensing technique, in which it is susceptible to
2π ambiguity. We apply mathematical statistics and image
processing techniques to extract features of the image plane
as input parameters, and use template matching to obtain
the normalized cross-correlation coefficient as input parame-
ters to establish a EDIW-PSO-WSVM classifier. The global
search capability and convergence speed are balanced by
introducing the EDWI. Thereafter the enhanced PSO algo-
rithm is applied to find the hyper-parameters (c and g) of
SVM. The simulation results presented in this paper prove
that the proposed EDIW-PSO-WSVM is superior to other
state-of-the-art SVM methods. It can distinguish the piston
error range between each pair of adjacent segments accu-
rately, and it can exclude the limitation of 2π ambiguity in
any interferometry.

Our approach has many advantages over other co-phasing
detection techniques. First, our method expands the measure-
ment range of the piston error between adjacent segments
to ±11λ0 and the accuracy of our method is better than
0.05λ0 RMS, in units of the largest wavelength. Second,
our method is adaptable, fast, and does not require iteration
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once it is trained. Moreover, our model can be re-trained
with subsequent acquisition data to obtain a more accurate
model. Finally, our method does not require the provision of
an additional optical path, but an imaging detector. Therefore,
it can also avoid the introduction of non-common path errors.
Furthermore, the simulation experimental results show that
the proposed technique is effective for random atmospheric
seeing with Fried parameter changes in the range of 0.1 m to
0.2 m. Future work is currently being carried out to verify the
adaptability of our method for the tip/tilt errors.
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