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ABSTRACT This work proposes novel techniques toward the design of optimal pilot sequences to
perform channel estimation in block transmission systems over wideband frequency selective wireless fading
channels. The framework developed is based on minimization of the Bayesian Cramér-Rao bound (BCRB)
for the mean squared error (MSE) of the channel state information (CSI) estimate. Optimal pilot signals are
determined for the four predominant classes of block transmission systems, viz. single carrier zero padding
(SC-ZP), multi-carrier zero padding (MC-ZP), single carrier cyclic prefix (SC-CP) and multi-carrier cyclic
prefix (MC-CP) systems. Thismakes the techniques developed general in nature and thus applicable in awide
variety of block transmission systems. As part of this study, succinct expressions and results are also derived
to characterize the error rate performance, incorporating also the effect of CSI estimation error resulting due
to the proposed algorithms. Finally, numerical results obtained via Monte-Carlo simulation are presented to
illustrate and compare the CSI acquisition performance of optimal pilot designs with that of conventional
designs and also validate the theoretical analysis for the error rate performance.

INDEX TERMS Block transmission system, mean square error (MSE), bit error rate (BER), diversity,
minimum mean square error (MMSE), maximum likelihood (ML), zero forcing (ZF).

I. INTRODUCTION
The advent of 4G and 5G technologies coupled with the
increase in popularity of multimedia rich applications is
driving the current demand for high data rates in wireless
networks. While this can be achieved via transmission over
channels with ever increasing bandwidths, the high delay
spreads and the resulting frequency selectivity of wireless
channels, which in turn lead to significant distortion due
to inter symbol interference (ISI), pose a severe challenge
toward the practical implementation of such systems. In this
context, block-transmission schemes, which are based on the
principle of either zero padding (ZP) or the addition of cyclic
prefix (CP) to the transmission frames, present an excellent
solution to overcome this impediment as shown in related
works such as [1]. For ease of study and analysis, these
transmission techniques can be grouped under four major
categories, based on the number of carriers and nature of

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

redundancy employed, as follows: single carrier zero padding
(SC-ZP), single carrier cyclic prefix (SC-CP), multi-carrier
zero padding (MC-ZP) and multi-carrier cyclic prefix
(MC-CP). Some of these techniques are already used in
practice, with MC-CP, alternatively termed as orthogonal
frequency division multiplexing (OFDM), enjoying immense
popularity in 4G and 5G systems due to its low complexity
and robustness to frequency selectivity. At the same time, it is
important to also realize that OFDM has some shortcomings,
the prominent among these being its sensitivity to carrier
frequency offsets (CFO) and also amplifier non-linearity
arising due to the unusually large peak to average power
ratio (PAPR). Another failing along these lines is its inability
to accurately decode symbols at the channel nulls due to
the low output signal-to-noise power ratios (SNR) at the
corresponding subcarriers. Given these drawbacks, single
carrier block transmission, different aspects of which are
explored in [2]–[4] and [5], which do not suffer from CFO
and PAPR distortions, are excellent alternatives to OFDM
that are well-suited for practical implementation. Thus, it is
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essential to design a comprehensive framework for the design
and performance analysis of all the major block-transmission
schemes listed above, which can then be used in appropriate
systems. For instance, in LTE, while OFDM is used in the
downlink, it is replaced by the SC-FDMA waveform in the
uplink to avoid the PAPR problem. The central focus of this
paper is to present a unified approach for block transmission
systems. In particular, channel estimation is one of the key
processes in such systems, which has a significant bearing
on their accuracy of symbol decoding. This becomes even
more challenging in frequency selective channels due to the
wide bandwidth, which can lead to prohibitively high pilot
overheads in the absence of efficient CSI estimation schemes.
Therefore, the design of optimal pilot signalling schemes that
minimize the mean squared error (MSE) and thus maximize
the quality of channel estimation while not compromising
the spectral efficiency, is of utmost importance in these sys-
tems. A concise summary of the associated works by various
researchers in the existing literature in these areas is presented
next.

A. RELATED WORKS
Many works targeting pilot designs have been reported in
prior research, with a good number of them focusing on
OFDM [6] and MIMO-OFDM [7], [8] due to its widespread
adoption as described earlier. Authors in [9] present tech-
niques for SC-CP and MC-CP systems with affine precoded
training for a general doubly selective, i.e. time and frequency
selective channel. On similar lines, for SC-ZP systems, [10]
develops efficient superimposed pilot signalling schemes.
Comprehensive performance analyses of SC block transmis-
sion systems are presented in the treatises in [11], [12]. The
frameworks therein are based on linear equalization and [12]
focuses specifically on the bandwidth efficiency-diversity
gain tradeoff, which impacts the average error rate of the
system. An analytical performance comparison of SC-CP
and OFDM systems is illustrated in [13] considering the
MMSE receiver. A detailed and thorough comparison of the
performance of OFDM and SC-ZP systems considering var-
ious metrics such as throughput, BER sensitivity and PAPR,
is presented in [3]. Authors in [14] characterize the BER of
systems with the CP redundancy, along with the diversity
order, for the popular ZF, MMSE and ML receivers. While
the works above have assiduously addressed several chal-
lenging problems for SC/MC block-transmission systems,
some shortcomings still remain. Most importantly, none of
the aboveworks present a general framework for optimal pilot
design that encompasses all the major block transmission
systems. Furthermore, results are not presented for the BER
performance in block transmission systems incorporating
CSI estimation error. To address these issues that have not
been tackled in the existing literature, this paper proposes
a single framework for the design of optimal pilot signals
in SC-ZP, SC-CP, MC-ZP and MC-CP block-transmission
formats. Its general nature renders the approach presented in
this paper applicable in a wide variety of systems.

B. MOTIVATION AND CONTRIBUTIONS
A part of this work was presented in the conference paper
in [15]. The significant additional contributions of this work
are described below
• On top of proposed optimal pilot design, we have
derived analytical results for the bit error rate perfor-
mance of all the four block transmission systems cor-
responding to three different receivers viz. zero forcing
(ZF), minimum mean square error (MMSE) and max-
imum likelihood (ML). Further, the theoretical BER
analysis is significantly more involved and in-depth.

• Additionally, we have also studied the impact of channel
estimation error on the BER analysis, which is lacking
in [15]. The channel estimate is obtained by employing
the proposed optimal pilot design scheme.

• To make the BER analysis tractable, in case of ZP sys-
tems, we have introduced Overlap-add (OLA) operation
at the receiver. This significantly reduces the complexity
of SC-ZP and MC-ZP BER analyses and renders it
similar to that of their CP counterparts, which is not
present in [15].

Among other achievements, an equivalence is determined
between zero padded systems and ones employing a cyclic
prefix. It is also shown that the diversity order of OFDM and
MC-ZP systems equals unity in multipath Rayleigh fading
channels. Also worth noting is the fact that while SC-CP
transmission achieves the full multi path diversity only for
large block sizes, SC-ZP systems, in stark contrast, are able
to do so for an arbitrary block size.

C. ORGANIZATION
The section-wise organization of the rest of the paper is
described below. The system models for SC-CP, SC-ZP,
MC-CP and MC-ZP systems are described in section II. The
next section details the proposed technique for optimal pilot
signal design in the above systems based on minimizing the
BCRB for MSE of channel estimation. This is followed by
the BER performance analysis of block transmission systems
with channel estimation error for the ZF, MMSE and ML
receivers in section IV. Section V and VI describe the results
of simulation studies for the above systems and conclusions
respectively.
Notation: Boldface small letters (a) and boldface cap-

ital letters (A) denote vectors and matrices, respectively.
(.)H denotes the Hermitian of a matrix. Tr denotes the trace
operator. The expectation with respect to a random variableY
is denoted by EY {.}. IN and 0N×M denote the N×N identity
and N×M zero matrices, respectively. The standard Gaus-
sian Q function, defined as Q (x) , 1

√
2π

∫
∞

x exp
(
−
u2
2

)
du,

is denoted by Q (x)

II. SYSTEM MODEL
Consider a block transmission-based system with the infor-
mation symbols p(n) blocked into N×1 vectors denoted by

p (k) = [p(kN ), . . . , p(kN+N−1)]T , (1)
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FIGURE 1. Block diagram of the transmit and receive processing in
SC(MC)-CP systems.

FIGURE 2. Block diagram of the transmit and receive processing in MC-ZP
systems.

where 0 ≤ n ≤ (N−1) and E
{∣∣p(kN+n)|2∣∣} = 1. For

ZP systems, the vector p (k) is multiplied by a P×N zero
insertion matrix Tzp =

[
IHN 0Hν×N

]H prior to transmission,
where P = N+ν. As a result, a zero sequence of length ν is
appended at the rear of every block for the removal of the
effect of inter block interference due to multipath compo-
nents. On the other hand, in CP systems, the vector p (k) is
pre-multiplied with the P×N cyclic prefix inclusion matrix
Tcp =

[
IHν×N IHN

]H , which leads to the insertion of a prefix
comprising of the trailing ν symbols of p (k) in the generated
transmit symbol vector. The L×1 multipath channel vector
h = [h (1) , h (2) , . . . , h (L)]T is assumed to be symmetric
complex Gaussian with zero mean and covariance matrix
Kh ∈ CL×L , such that E{|h (l)|2} = σ 2

hl . The subsequent
subsections describe further details regarding the transmit and
receive processing for each of the block transmission systems
viz. SC-CP, MC-CP, MC-ZP and SC-ZP.

A. SC-CP SYSTEMS
At the receiver, after removal of the cyclic prefix using the
truncation matrix 0 = [0N×ν IN ], the resulting output
symbol vector ȳsccp ∈ CN×1 can be expressed in time domain
as

ȳsccp (k) = 0HTcp︸ ︷︷ ︸
W

p (k)+ecp (k) . (2)

FIGURE 3. Block diagram of the transmit and receive processing in SC-ZP
systems.

where H denotes a lower triangular Toeplitz matrix
with the first row [h(0), 01×(P−1))] and the first column
[h(0), . . . , h(L), 0(P−L−1)]T . The N point discrete Fourier
transform (DFT) of the channel impulse response is given as
ω = [ω0, ω1, . . . , ωN−1], where

ωn =

N−1∑
n=0

hle−j2π
nl
N . (3)

It is well known that the resulting matrixW ∈ CN×N is given
as a circulant matrix with the first column

[
ω 01×(N−L)

]T .
Let this be decomposed as W = FHN�FN , where
� = Diag (ω) denotes the diagonal matrix of eigenvalues that
are equal to the DFT coefficients of h. Here, FN represents
an N×N discrete Fourier Transform (DFT) matrix with its
(i, j)th entry given as f (i−1)(j−1)n where fn = e−j

2π
N . The

circularly symmetric additive white Gaussian noise (AWGN)
vector ecp ∈ CN×1 is assumed to be zero mean with covari-

ance matrix Rcp , E
{
ecp(n)eHcp(n)

}
= σ 2

ecpIN . For ease
of analyis, equation (2) can be alternatively expressed in
frequency domain after demodulation with FN as [1]

ysccp (k) = Xsccp (p (k))h+ẽcp (k) , (4)

where Xsccp (p(k)) =
√
NDiag (FNp (k))FN ∈ CN×L

and FN of size N×L denotes a truncated matrix created by
choosing the first L columns of FN and ẽcp (k) = FN ecp (k).

B. MC-CP SYSTEMS
After removal of the cyclic prefix at the receiver the resulting
output vector for MC-CP systems can be expressed as

ȳmccp (k) =Wpmc (k)+ecp (k) , (5)

where pmc = FHN p is the N×1 transmitted pilot vector
obtained after the inverse discrete Fourier transform (IDFT)
operation at the transmitter. An alternative formulation [15]
for the above model after FFT demodulation at the receiver is
given as

ymccp (k) = Xmccp (p (k))h+ẽcp (k) , (6)

where Xmccp (p (k)) =
√
NDiag (p (k))FN ∈ CN×L .
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C. MC-ZP SYSTEMS
In an MC-ZP system, the received symbol vector ȳmczp can
be expressed as

ȳmczp (k) = HTzppmc (k)+ezp (k) , (7)

where ezp is an AWGN noise vector of size P×1 with zero

mean and covariance matrix Rzp , E
{
ezp(n)eHzp(n)

}
=

σ 2
ezpIP. The received vector is pre-multiplied by the overlap-

and-add (OLA) matrix Roa = [IN Iν] ∈ CN×P, where
Iν ∈ CN×ν comprises of the first ν columns of IN , which
performs the overlap-add (OLA) operation. The resulting
output vector can be expressed as

ymczp (k) = RoaHTzp︸ ︷︷ ︸
W

pmc (k)+Roaezp︸ ︷︷ ︸
eoa

(k) . (8)

The OLA operation amounts to retaining the first N entries
of ymczp while adding the last ν entries to its first ν entries.
Further, the resulting noise vector eoa = Roaezp post the OLA
operation at the receiver is given by

eoa =



ezp1+ezpN+1
...

eν+eN+ν
eν
...

eN


. (9)

It can be easily shown that the vector eoa is zero-mean
colored noise that has the covariance matrix Reoa ,
E
{
eoa(k)eHoa(k)

}
= σ 2

oaIN = (N−3ν)σ 2
ezpIN ∀N ≥ 3ν.

After demodulation with the P-point DFT matrix FP with its
(i, j)th entry given as f (i−1)(j−1)p where fp = e−j

2π
P , (7) can be

alternatively expressed as

ymczp (k) = Xmczp (p (k))h+FPezp︸ ︷︷ ︸
ẽzp

(k) , (10)

where the matrix Xmczp (p (k)) ∈ CP×L is defined as

Xmczp (p (k)) =
√
PDiag

(
ZzpFHN p (k)

)
FP (11)

with Zzp = FPTzp ∈ CP×N . The matrix FP denotes the
matrix formed by the last L columns of FP.

D. SC-ZP SYSTEMS
The output vector in an SC-ZP system, obtained after per-
forming N -point DFT operation on the received vector can
be expressed as

ysczp (k) =Wp (k)+eoa (k) . (12)

The received vector without the OLA operation can also be
expressed as

ȳsczp (k) = Xsczp (p (k))h+ẽzp(k), (13)

where the matrix Xsczp (p (k)) ∈ CP×(L) is defined as

Xsczp (p (k)) =
√
PDiag

(
Zzpp (k)

)
FP, (14)

The procedure for optimal pilot design in each of the above
systems is described next.

III. PROPOSED OPTIMAL PILOT DESIGN
The proposed optimal pilot design algorithm is developed
employing the BCRB metric, which corresponds to a lower
bound on the mean squared error (MSE) of estimation
wherein apriori information about the unknown parameter
of interest is available. Since the BCRB is a lower bound
on MSE that depends on the apriori pdf of the channel
vector h, it does not depend on any specific channel esti-
mation technique. The BCRB corresponding to the multipath
channel vector h is given as

E
{
(ĥ−h)(ĥ−h)H

}
≥ (JB)−1 , (15)

where JB ∈ CL×L represents the Bayesian Fisher Information
Matrix (BFIM) that can be expressed as [16]

JB = JT+JI . (16)

The matrix JT stands for the FIM corresponding to pilot
symbols and JI represents the FIM associated with prior
information of h. Using Equation (8.55) from [16], one can
determine the i, jth element ofJD as Eqn. (17), as shown at the
bottom of this page. Substituting m (θ) := m (h) = Xsczph
and Kx (θ) = Kȳsczp (h) defined as

Kȳsczp (h) = E
{(
ȳsczp−m (h)

) (
ȳsczp−m (h)

)H}
= E

{
ẽsczpẽHsczp

}
= σ 2

ezpIP, (18)

JT can be determined as

JT =
XH
sczpXsczp

σ 2
ezp

, (19)

where Xsczp =
√
NDiag (FNp (k))FN . Using Eqn.(8.57)

of [16], which states JP = K−1θ , one can determine
JI = K−1h . Further, given the probability density function

ph (h) = 1

(2π)
L
2 |Kh|

1
2
exp

[
−

1
2h

HK−1h h
]
, the Fisher informa-

tion matrix (FIM) JI corresponding to a priori information
can be determined as [16]

JI = −Eh

[
∇

2ln ph (h)
]
= K−1h . (20)

[JD]i,j = Eθ
[
Tr
[
K−1 (θ)

∂Kx (θ)

∂θi
K−1 (θ)

∂Kx (θ)

∂θj

]
+2Re

[
∂mH (θ)

∂θi
K−1x (θ)

∂m (θ)
∂θj

]]
, (17)
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where Kh denotes the channel covariance matrix. The power
delay profile of the channel, which represents the average
power of the channel taps, is captured in the diagonal entries
of the covariance matrix Kh defined as

Kh = E
{
hhH

}
, (21)

with E
{
|h (i)|2

}
= [Kh]i,i. Substituting the above expres-

sions for JT and JI in (16), one can express (15) as

E
{
(ĥ−h)(ĥ−h)H

}
≥

(
XH
sczp (p(k))Xsczp (p(k))

σ 2
ezp

+K−1h

)−1
.

(22)

Therefore, the BCRB for the MSE associated with ĥ is lower

bounded as esczp (p (k)) = Tr
(

XHsczp(p(k))Xsczp(p(k))
σ 2ezp

+K−1h

)−1
.

The line of action for optimal pilot design is described next.
In the following course of analysis, the index k is dropped for
notational ease. The optimization framework toward design
of the pilot sequence for SC-ZP systems can be formulated
as

minimize
p

esczp (p) (23)

subject to ‖p‖2 ≤ PT , (24)

where PT denotes the total transmit power. Further simplifi-
cation of the optimization problem above can be performed
as shown in the ensuing analysis. Since Tzp is a zero padding
matrix, it follows that

Tzpp =
[
p 0Hν×N

]H
. (25)

Therefore
∥∥Tzpp∥∥ = ‖p‖. Further, ∥∥FPTzpp

∥∥ = ∥∥Tzpp
∥∥ =

‖p‖, where FP is a unitary DFT matrix of size P×P.
Let s = FPTzpp ∈ CP×1 and ρp = |sp|2, where
ρp and sp∀1 ≤ p ≤ P denote the pth elements of ρ and s.
Hence, (24) can be modified as

‖s‖2 =
P∑
p=1

ρp ≤ PT . (26)

Next, esczp (p) in (23) is expressed as

esczp (p) = Tr

K−1h +
P
σ 2
ezp

FP
H Diag(s)HDiag(s)︸ ︷︷ ︸

Diag(ρ)

FP


−1

.

(27)

Let the eigenvalue decomposition of the inverse of the chan-
nel covariance matrix K−1h be given as

K−1h = U3UH , (28)

where U represents a unitary matrix of size L×L and
3 denotes a diagonal matrix of size L×L consisting of the

eigenvalues λl, 1 ≤ l ≤ L. Substituting this in (27), one can
simplify the expression for esczp (p) as

esczp (p) = Tr

3+ P
σ 2
ezp

(FPU)H︸ ︷︷ ︸
AH

Diag(ρ) (FPU)︸ ︷︷ ︸
A


−1

(29)

= Tr (3+2)−1 , (30)

where the matrix 2 ∈ CL×L is defined as

2 =
P
σ 2
ezp

AHDiag (ρ)A. (31)

Applying Schwartz’s inequality [17], it follows that[
Y−1

]
i,i
≥

1
[Y]i,i

∀ 1 ≤ i ≤ N , (32)

where [Y]i,i denotes the ith diagonal entry of the matrix Y.
Employing this inequality, the quantity esczp can be lower
bounded as

esczp (p) ≥
L∑
l=1

1
[3+2]l,l

. (33)

Let θ = [θ1, . . . , θl, . . . , θL]T ∈ CL×1 where θl =
[2]l,l ∀1 ≤ l ≤ L. From (31), it follows that

θ =
P
σ 2
ezp


∣∣[A]1,1∣∣2 . . .

∣∣[A]P,1∣∣2
...

...
...∣∣[A]1,L ∣∣2 . . .

∣∣[A]P,L ∣∣2


︸ ︷︷ ︸
ÃL×P

ρ1...
ρP


︸ ︷︷ ︸
ρ

, (34)

where Ã can be expressed as

Ã =
P
σ 2
ezp


∣∣[A]1,1∣∣2 . . .

∣∣[A]P,1∣∣2
...

...
...∣∣[A]1,L ∣∣2 . . .

∣∣[A]P,L ∣∣2
 . (35)

The quantity ρ can be replaced by its least squares estimate

ρ = Ã†θ , (36)

where Ã†
=

(
ÃH Ã

)−1
ÃH denotes the pseudo inverse of Ã.

Therefore, the constraint in (26) can be expressed in terms of
θ as

P∑
p=1

ρp =

P∑
p=1

L∑
l=1

[
Ã†
]
p,l
θl ≤ PT . (37)

Substituting the bound determined in (33) for esczp, the prob-
lem in (23) can be expressed as

minimize
θ

L∑
l=1

1
λl+θl

subject to
P∑
p=1

L∑
l=1

[
Ã†
]
p,l
θl ≤ PT . (38)
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The Lagrangian function for the optimization problem in (34)
can be formulated as

L(θ , µ) =
L∑
l=1

1
λl+θl

+µ

P∑
p=1

L∑
l=1

([
Ã†
]
p,l
θl−PT

)
. (39)

The KKT framework described in [18] states that the saddle
point of the Lagrangian function ∇L(θ , µ), obtained by set-
ting ∇L(θ , µ) = 0, is an optimal solution for the convex
minimization problem (34). Using this property, the optimal
solution can be determined as shown in the following steps.
Differentiating L(θ ) respect to θl , one obtains

∂L(θ )
∂θl

=
−1

(λl+θl)2
+µ

P∑
p=1

[
Ã†
]
p,l
. (40)

Setting ∂L(θ )
∂θl

to zero determines θl as follows

θl =
1√

µ
∑P

p=1

[
Ã†
]
p,l

−λl . (41)

where µ can be evaluated by employing the power constraint
as shown below

L∑
l=1

P∑
p=1

[
Ã†
]
p,l
θl = PT

H⇒

L∑
l=1

P∑
p=1

[
Ã†
]
p,l

 1√
µ
∑P

p=1

[
Ã†
]
p,l

−λl

 = PT (42)

H⇒ µ =


∑L

l=1

√∑P
p=1

[
Ã†
]
p,l

PT+
∑L

l=1 λl
∑P

p=1

[
Ã†
]
p,l


2

. (43)

Further ρ can be obtained as ρ = Ã†θ . s∗p can be expressed
as

s∗p =
√
ρp, 1 ≤ p ≤ P. (44)

Let s = FPTzpp = Zzpp. Finally, from the definition of
s above, the optimal pilot sequence p∗sczp for SC-ZP block
systems is derived as

p∗sczp = Z†
zps∗. (45)

Furthermore, it can be noted that the proposed optimization
technique for pilot design is generic and can be readily
extended to MC-ZP, SC-CP and MC-CP systems by appro-
priately defining s as follows. For MC-ZP systems, since s is
given by Eqn. (11) as s = ZzpFHN pmczp, the optimal pilot for
such a system follows as

p∗mczp =

(
ZzpFHN

)†
s∗. (46)

For SC-CP systems, since s is given from the description in
Eqn. (4) as s = FNpsccp, it follows that optimal pilot sequence
can be obtained as

p∗sccp = F−1N s∗. (47)

Finally for MC-CP systems, since s is obtained from Eqn. (6)
as s = FNpmccp, the optimal pilot can be determined as

p∗mccp = s∗. (48)

IV. PERFORMANCE ANALYSIS OF ZF, MMSE AND ML
RECEIVERS FOR BLOCK TRANSMISSION SYSTEMS
This section begins with a brief characterization of the chan-
nel estimation error, followed by its effect on the performance
of block transmission systems. Let 1h (l) denote the estima-
tion error corresponding to h (l) that can be characterized as
having zeromeanwith varianceE{|1h(l)|2} = σ 2

1hl . One can
express ω̂n, the nth DFT co-efficient of the estimated channel
vector ĥ, as

ω̂n =

L−1∑
l=0

ĥ (l) e−j2π
nl
N =

L−1∑
l=0

(h(l)+1h(l)) e−j2π
nl
N (49)

= ωn+

L−1∑
l=0

1h(l)e−j2π
nl
N

︸ ︷︷ ︸
1ωn

, (50)

where ĥ(l) = h(l)+1h(l). From (50), assuming ωn and
the estimation error 1ωn to be independent of each other,
the variance corresponding to ĥ (l) and ω̂n can be evaluated
respectively as

E
{∣∣∣ĥ (l)∣∣∣2} = σ 2

ĥl
= σ 2

hl+σ
2
1hl , (51)

E{
∣∣ω̂n∣∣2} = ᾱn = αn+1αn, (52)

where αn = E{|ωn|2} and 1αn = E{|1ωn|2} denote the
variances of the DFT channel co-efficient ωn and the error
1ωn respectively. The expression for αn can be derived as

αn = E
{
|ωn|

2
}
= E

{
ωnω

∗
n
}

= E

{
L−1∑
l=0

h (l)
1
√
N
e−j

2πnl
N

L−1∑
m=0

h∗ (m)
1
√
N
ej

2πnm
N

}
(53)

=
1
N
E

{
L−1∑
l=0

L−1∑
m=0

h (l)h∗ (m) e−j
2πnl
N ej

2πnm
N

}
(54)

=
1
N

L−1∑
l=0

L−1∑
m=0

E
{
h (l)h∗ (m)

}
e−j

2πnl
N ej

2πnm
N (55)

=
1
N

L−1∑
l=0

L−1∑
m=0

Kh (l,m) e−j
2πnl
N ej

2πnm
N (56)

=
1
N
fHN (n)KhfN (n) (57)
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where fN (n) =
[
1 e−j2π

n
N . . . e−j2π

(L−1)n
N

]T
. Similarly the

variance of 1ωn, denoted by 1αn, can be determined as
follows

1αn = E
{
|1ωn|

2
}
= E

{
1ωn1ω

∗
n
}

= E

{
L−1∑
l=0

1h (l)
1
√
N
e−j

2πnl
N

L−1∑
m=0

1h∗ (m)
1
√
N
ej

2πnm
N

}

=
1
N
E

{
L−1∑
l=0

L−1∑
m=0

1h (l)h∗ (l) e−j
2πnl
N ej

2πnm
N

}

=
1
N

L−1∑
l=0

L−1∑
m=0

E
{
1h (l)h∗ (m)

}
e−j

2πnl
N ej

2πnm
N

=
1
N

L−1∑
l=0

L−1∑
m=0

JB (l,m) e−j
2πnl
N ej

2πnm
N

=
1
N
fHN (n) JBfN (n)

where fN (n) =
[
1 e−j2π

n
N . . . e−j2π

(L−1)n
N

]T
. Let gn , |ωn|2

and ĝn ,
∣∣ω̂n∣∣2. Since the MMSE estimator is being

employed, the error 1h (l) follows a symmetric complex
Gaussian distribution. Hence, ĝn is exponentially distributed
with the probability density function fĜn

(
ĝn
)
that can be

obtained as

fĜn
(
ĝn
)
=

1
ᾱn

exp
(
−ĝn
ᾱn

)
, gn ≥ 0. (58)

Employing the above results, the following sub-sections
now develop the theoretical BER expressions in the
presence of channel estimation error for SC-ZP, SC-CP,
MC-CP and MC-ZP block transmission systems described in
sections IV-A, IV-B, IV-C and IV-D respectively for various
linear as well as non-linear receivers considering binary phase
shift keying (BPSK) modulation.

A. BER ANALYSIS OF SC-ZP SYSTEMS
1) ZF RECEIVER
Let �̂ denote the estimate of � = Diag (ω). Further, let 1�
be defined as Diag (1ω), where 1ω = [1ω1, . . . ,1ωN ]T .
The ZF based symbol vector estimate for SC-ZP systems in
the presence of channel estimation error can be expressed as

p̂ZF = FHN �̂
−1FNysczp (59)

= FHN �̂
−1FN

(
FHN�FNp+eoa

)
(60)

= FHN �̂
−1FN

(
FHN

(
�̂−1�

)
FNp+eoa

)
(61)

= p+FHN �̂
−1FN eoa−FHN �̂

−11�FNp︸ ︷︷ ︸
ẽoa

. (62)

The covariance of the noise vector ẽoa ∈ CN×1 can be
computed as

Rẽoa
= E{ẽoaẽHoa} (63)
= σ 2

oaF
H
N �̂
−1�̂−HFN+PTFHN �̂

−11�1�H �̂−HFN (64)

= σ 2
oa


FHN


1+γzp|1ω1|

2

|ω̂1|
2 0 . . . 0

...
. . .

...

0 . . .
1+γzp|1ωN |2

|ω̂N |
2


︸ ︷︷ ︸

4

FN


,

(65)

where γzp =
PT
σ 2oa

. It has been assumed that the symbol
vector p and the noise vector eoa are uncorrelated. The noise
co-variance matrix above is a circulant matrix as it can be
expressed in the form Rẽoa = σ 2

oaF
H
N4FN , where 4 is the

diagonal matrix of eigenvalues, all of which are equal to the
component wise noise variance

1
N

N∑
n=1

σ 2
oa
(
1+γzp|1ωn|2

)
|ω̂n|

2 , ∀1 ≤ n ≤ N . (66)

As the quantity 1ωn is small, one can ignore its variation
across the block of N symbols. Let |1ωn|2 , ω̆, 1 ≤ n ≤ N .
Therefore, the instantaneous signal-to-noise ratio (SNR) for
the ZF receiver in SC-ZP systems with channel estimation
error can be expressed as

SNRzf
sczp=

PT
1
N

∑N
n=1

σ 2oa(1+γzpω̆)
|ω̂n|

2

=
1

1
N

∑N
n=1

(1+γzpω̆)
γzpĝn

. (67)

The instantaneous bit error rate (BER) for the above system
with BPSK modulation [14] can be determined as

BERzf
sczp = Q

√√√√ 2N∑N
n=1

(1+γzpω̆)
γzpĝn


= Q


√√√√ 2N∑N

n=1
1

γ̆zpĝn

 , (68)

where γ̆zp ,
γzp

1+γzpω̆
. Further, the harmonic mean inequal-

ity [19] has been employed in the last expression (68) to lower
bound the instantaneous BER i.e.

Q
(√

2 N γ̆zpĝn

)
≥ Q

(√
2N γ̆zp min

n
1≤n≤N

ĝn

)
. (69)

In order to compute the average BER, consider

Gm = min
n

1≤n≤N

ĝn. (70)

The cumulative distribution function of X can be evaluated as

FGm (gm) = Pr (Gm ≤ gm) = 1−Pr

(
min
n

1≤n≤N

ĝn ≥ gm

)
(71)

= 1−
N∏
n=1

Pr
(
ĝn ≥ gm

)
(72)
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= 1−
N∏
n=1

exp
(
−
gm
ᾱn

)
(73)

= 1−exp

(
−gm

N∑
n=1

1
ᾱn

)
. (74)

The simplification from (71) to (72) involves the assumption
that ĝ (0) , ĝ (1) , . . . , ĝ (N−1) are uncorrelated i.e. for the
scenario when L = N . Let α̃ ,

∑N
n=1

1
ᾱn
. The corresponding

pdf fGm (gm) can be evaluated as

fGm (gm) =
dFGm (gm)

dgm
= α̃ exp (−gmα̃) . (75)

Hence, the average BER for the ZF-based symbol estimate in
SC-ZP systems can be lower bounded as

BER
zf
sczp

(
γ̆zp
)

=

∫
∞

0
Q
(√

2N γ̆zpgm
)
fGm (gm) dgm (76)

=

∫
∞

0
Q
(√

2N γ̆zpgm
)
α̃ exp (−gmα̃)dgm (77)

=
1
√
2π

∫
∞

0

∫
∞

√
2N γ̆zpgm

exp
(
−y2

2

)
α̃ exp (−gmα̃)dydgm

=
1
2

1−

√√√√ γ̆zpN
α̃

γ̆zpN
α̃
+1

 . (78)

Substituting

α̃ ,
N∑
n=1

1
ᾱn
=

N∑
n=1

1
αn+1αn

(79)

and

˘γzp ,
γzp

1+γzpω̆
=

PT
σ 2oa

1+PT
σ 2oa

=

PT
(N−3ν)σ 2ezp

1+ PT
(N−3ν)σ 2ezp

(80)

in eqn. (78), the resulting expression can be further simplified
as

1
2

1−

√√√√ NPT

PT+
∑N

n=1
1
ᾱn

(
(N−3ν) σ 2

ezp+PT ω̆
)
 . (81)

As a special case, the average BER in the absence of CSI
estimation error can be obtained by setting1αn and ω̆ to zero
in the above equation and is determined as

1
2

(
1−

√
NPT

PT+
∑N

n=1
1
αn
(N−3ν) σ 2

ezp

)
. (82)

2) ML RECEIVER
The symbol estimate pml obtained using the ML receiver in
an SC-ZP system with imperfect CSI can be expressed as

pml = argmin
p

∥∥∥ȳsczp−Diag (√PFPh
)
Zzpp

∥∥∥2 . (83)

The pairwise error probability (PEP) Pr
(
p→ p′|ĥ, γ

)
for

vectors p,p′ where the vector p′ has been erroneously
decoded in place of the transmitted vector p can be simplified
as

Q

√γ
2

√√√√√
∥∥∥∥∥∥Diag

(√
PFPĥ

)
Zzp

p−p′︸ ︷︷ ︸
e

∥∥∥∥∥∥
2
 , (84)

where γ = PT
σ 2ezp

and the quantity Diag
(√

PFPĥ
)
Zzpe can

be equivalently expressed as

Diag
(√

PFPĥ
)
Zzpe = Diag

(
Zzpe

)︸ ︷︷ ︸
Dzp

√
PFP︸ ︷︷ ︸
V

ĥ. (85)

Next, the square of the norm of the above quantity can be
evaluated as∥∥∥Diag (√PFPĥ

)
Zzpe

∥∥∥2 = (DzpVĥ
)H (

DzpVĥ
)

(86)

= ĥHVHDH
zpDzpVĥ (87)

= ĥHUz
H9Uzĥ (88)

= ĥHu 9ĥu =
L−1∑
l=0

ψl

∣∣∣ĥul ∣∣∣2 , (89)

where ĥu = Uzh. UH
z 9Uz denotes the eigenvalue decompo-

sition of VHDH
zpDzpV and 9 = Diag

(
[ψ0, ψ1, . . . , ψL−1]T

)
is the diagonal matrix of eigenvalues. Since Uz is a unitary
matrix, the modified channel tap vector ĥu has similar statisti-
cal characteristics as that of ĥ. The PEP can now be expressed
as

Pr
(
p→ p′|ĥ, γ

)
︸ ︷︷ ︸

PEPml
sczp

= Q

√γ
2

√√√√L−1∑
l=0

ψl

∣∣∣ĥul ∣∣∣2
 . (90)

The amplitudes of the channel taps
∣∣∣ĥul ∣∣∣ are Rayleigh

distributed with the probability density function

f∣∣∣Ĥul ∣∣∣
(∣∣∣ĥul ∣∣∣) =

∣∣∣ĥul ∣∣∣
σ 2
ĥl

exp
−
|ĥul |

2

2σ2
ĥl . (91)

Therefore the quantity yl = ψl

∣∣∣ĥul ∣∣∣2 is exponentially dis-

tributed with the probability density function

fYl (yl) =
1

2σ 2
ĥl
ψl

e
−

yl
2σ2
ĥl
ψl
.

The average PEP for vectors p, p′ can be determined by
averaging the quantity in (90) over the joint pdf. Due to the
independence assumption of yl s, the probability density can
be simplified as

fY1,Y2,...,YL (y1, y2, . . . , yL) =
L∏
l=1

1

2σ 2
ĥl
ψl

e
−

yl
2σ2
ĥl
ψl
. (92)

VOLUME 8, 2020 112137



M. Majumder, A. K. Jagannatham: Optimal Pilot Design and Error Rate Analysis of Block Transmission Systems

The quantity in (90) can further be upper bounded using the
Chernoff bound as

Q


√√√√γ

∑L−1
l=0 ψl

∣∣∣ĥul ∣∣∣2
2

 ≤ 1
2
exp

(
−γ

∑L
l=1 yl
4

)
. (93)

Employing the pdf in (92), the upper bound for average PEP
can be simplified as

PEP
ml
sczp

≤
1
2

∫
∞

y1=0
. . .

∫
∞

yL=0
e
−γ

∑L
l=1 yl
4

L∏
l=1

1

2σ 2
ĥl
ψl

e
−

yl
2σ2
ĥl
ψl
dyl

(94)

=
1
2

L∏
l=1

∫
∞

yl=0
e−

1
4 γ yl

1

2σ 2
ĥl
ψl

e
−

yl
2σ2
ĥl
ψl
dyl (95)

=

L∏
l=1

1

4σ 2
ĥl
ψl

∫
∞

yl=0
e
−

 γ
4+

1
2σ2
ĥl
ψl

yl
dyl (96)

=

 1

2+γ σ 2
ĥl
ψl

L

. (97)

Considering BPSK modulation and equi-probable symbols,
the average BER for the ML receiver in SC-ZP systems can
be simplified as

BER
ml
sczp (γ ) ≤

1
2N

 1

2+γ σ 2
ĥl
ψl

L

. (98)

Therefore, it can be readily seen that the ML receiver in
SC-ZP systems achieves diversity order L.

3) MMSE RECEIVER
The minimum mean square error (MMSE) receiver in pres-
ence of channel estimation error yields the symbol vector
estimate as p̂mmse

sczp that can be expressed as

p̂mmse
sczp = ŴM ȳsczp = ŴMWp+ŴM ẽzp︸ ︷︷ ︸

esczp

, (99)

where

ŴM = γzpŴH
(
γzpŴŴH

+IN
)−1

(100)

= FHN



γzpω̂
∗

1(
γzp
∣∣ω̂1

∣∣2+1)2 . . . 0

...
. . .

...

0 . . .
γzpω̂

∗
N(

γzp
∣∣ω̂N ∣∣2+1)2


FN

(101)

where Ŵ = FHN �̂FN . The covariance matrix of the estimated
symbol vector p̂mmse

sczp can be expressed as

E{p̂mmse
sczp

(
p̂mmse
sczp

)H
} = E

{(
ŴM ȳsczp

)(
ŴM ȳsczp

)H}
(102)

= ŴME{ysczpyHsczp}Ŵ
H
M . (103)

The right hand side term of the expression (103) can be further
expanded as

ŴME{
(
Wp+ẽzp

) (
Wp+ẽzp

)H
}ŴH

M (104)

= FHN

γzpω̂
∗

1

(
γ |ω1|

2
+1
)
ω̂1(

γzp
∣∣ω̂1

∣∣2+1)2 . . . 0

...
. . .

...

0 . . .
γzpω̂

∗
N

(
γzp |ωN |

2
+1
)
ω̂N(

γzp
∣∣ω̂N ∣∣2+1)2


FN .

(105)

The simplification from (104) to (105) involves substitution
of Ŵ = FHN �̂FN ,W = FHN�FN ,E{pp

H
} = PT and equation

(101). The covariance matrix of the signal component in (99)
i.e. ŴMWp can be evaluated as

E{
(
ŴMWp

) (
ŴMWp

)H
}

= E{ŴMWppHWHŴH
M }

= FHN



γ 2
zp|ω̂1|

2 |ω1|
2(

γzp
∣∣ω̂1

∣∣2+1)2 . . . . . . 0

...
. . .

...

0 . . .
γ 2
|ω̂N |

2
|ωN |

2(
γzp|ω̂N |

2
+1
)2


FN .

(106)

The covariance matrix of the effective noise vector
esczp = ŴM ẽzp can be evaluated as

E{
(
ŴM ẽzp

) (
ŴM ẽzp

)H
} (107)

= σ 2
zpŴMŴH

M (108)

= FHN



γzp|ω̂1|
2(

γ |ω̂1|
2
+1
)2 . . . . . . 0

...
. . .

...

0 . . .
γzp|ω̂N |

2(
γ |ω̂N |

2
+1
)2


FN .

(109)

From (105), (106), (109), it can be observed that
the covariance matrices are circulant in nature. Hence,
the component-wise variance is equal for all N symbols of
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the block. The instantaneous SINR for the nth symbol can be
evaluated as

SINRmmse
sczp =

1
N

∑N
n=1

γzp
2
|ω̂n|

2
|ωn|

2(
γzp|ω̂n|

2
+1
)2

1
N

∑N
n=1

γ |ω̂n|2(
γzp|ω̂n|

2
+1
)2 . (110)

Applying the Cauchy- Schwarz inequality in (110),
the numerator can be upper bounded as

N∑
n=1

γ 2
zp|ω̂n|

2
|ωn|

2(
γzp|ω̂n|

2
+1
)2≤γ 2

zp

N∑
n=1

|ω̂n|
2(

γzp|ω̂n|
2
+1
)2 N∑

n=1

|ωn|
2.

Hence, the expression for SINRmmse
sczp in (110) can be modified

as

SINRmmse
sczp ≤

N∑
n=1

γzp|ωn|
2
≤

N∑
n=1

γzpgn.

The instantaneous BER corresponding to symbol detection
using the MMSE estimate for SC-ZP systems is seen to be

BERmmse
sczp = Q


√√√√2γzp

N∑
n=1

gn

 . (111)

Let gsum =
∑N

n=1 gn. The probability density function asso-
ciated with the quantity gsum can be expressed as

fGsum (gsum) = fg1+g2+...+gN (gsum) (112)

=

[
N∏
n=1

1
αn

]
N∑
j=1

e
−
gsum
αj∏N

n=1
n 6=j

(
1
αn
−

1
αj

) . (113)

The average BER corresponding to the MMSE symbol esti-
mate of SC-ZP systems with channel estimation error can be
evaluated as shown next

BER
mmse
sczp

=

∫
∞

0
Q
√(

2γzpgsum
)
fGsum (gsum) dgsum (114)

=
1
2

N∑
n=1

N∑
j=1

∏N
n=1
n 6=j

αj
αn∏N

n=1
n 6=j

(
1
αj
−

1
αn

) (1−√ γzpαj

γzpαj+1

)
. (115)

B. BER ANALYSIS FOR SC-CP SYSTEMS
1) ZF RECEIVER
The ZF-based symbol vector estimate p̂ZFsccp in the presence of
channel estimation error can be expressed as

p̂zfsccp = FHN �̂
−1FNysccp (116)

= FHN �̂
−1FN

(
FHN�FNp+ẽcp

)
(117)

= FHN �̂
−1FN

(
FHN

(
�̂−1�

)
FNp+ẽcp

)
(118)

= p−FHN �̂
−11�FNp+FHN �̂

−1FN ẽcp︸ ︷︷ ︸
ezs

. (119)

Next, the covariance of the noise vector ezs can be evaluated
as

Rezs

= E{ezseHzs} (120)

= σ 2
ecpF

H
N �̂
−1�̂−HFN+PTFHN �̂

−11�1�H �̂−HFN

= σ 2
ecpF

H
N



(
1+γcp|1ω1|

2)
ĝ1

0 . . . 0

...
. . .

...

0 . . .

(
1+γcp|1ωn|2

)
ĝN

FN ,

(121)

where the quantity γcp =
PT
σ 2ecp

. It can be observed that the

noise covariance matrix is circulant in nature since it can
be expressed in the standard form of a circulant matrix i.e.
AHDA, where A and D are unitary and diagonal matrices
respectively. Thus, the noise variance is identical for all

the components and is given by 1
N

∑N
n=1

σ 2ecp

(
1+γcp|1ωn|2

)
ĝn

.
Similar to the discussion of SC-ZP systems, one can define
ω̆ , |1ωn|2. The instantaneous SNR for the ZF receiver for
SC-CP systems in the presence of channel estimation error,
can be expressed as

SNRzf
sccp =

PT
1
N

∑N
n=1

σ 2ecp(1+γcpω̆)
ĝn

=
1

1
N

∑N
n=1

1+γcpω̆
γcpĝn

. (122)

Proceeding on similar lines to that of SC-ZP systems,
the average BER can be determined as

BER
zf
sccp >

∫
∞

0
Q
(√

2N
γcp

1+γcpω̆
gm

)
fGm (gm) dgm (123)

=
1
2

1−

√√√√ NPT

PT+
∑N

n=1
1
ᾱn

(
σ 2
ecp+PT ω̆

)
, (124)

whereGm stands for the quantity defined in (70). As a special
case, the average BER in absence of channel estimation error
can be determined as

1
2

(
1−

√
NPT

PT+
∑N

n=1
1
αn
σ 2
ecp

)
. (125)

2) MMSE RECEIVER
On similar lines to that of SC-ZP systems, the average BER
corresponding to MMSE symbol estimation for SC-CP sys-
tems in the presence of channel estimation error can be
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approximated by setting γcp =
PT
σ 2ecp

as

BER
mmse
sccp =

∫
∞

0
Q
(√

2γcpgsum
)
fGsum (gsum) dgsum (126)

=
1
2

N∑
n=1

N∑
j=1

∏N
n=1
n 6=j

αj
αn∏N

n=1
n 6=j

(
1
αj
−

1
αn

) (1−√ γcpαj

γcpαj+1

)
,

(127)

where, gsum =
∑N

n=1 gn.

3) ML RECEIVER
As shown in [14], the PEP corresponding to the symbol
vectors p,p′ conditioned on the channel estimate ĥ can be
simplified as

Pr
(
p→ p′|ĥ, γcp

)

= Q


√√√√γcp

∥∥∥Ŵ (p−p′)
∥∥∥2

2

 (128)

= Q



√√√√√√γcpĥH VH
cpD

H
cpDcpVcp︸ ︷︷ ︸
Ṽcp

ĥ

2

 (129)

= Q

√γcp∑L−1
l=0 φl |ĥul |

2

2

 , (130)

where Vcp =
√
NFN , Dcp = Diag

(
FN

(
p−p′

))
and φl is the

lth eigenvalue of Ṽcp = VH
cpD

H
cpDcpVcp. As shown in [14],

the average PEP can be determined by averaging over the
channel pdf as

Pr
(
p→ p′|γcp

)
=

∫
∞

0
Q
(√
γcp2NLχ

) 1
α′
e−

χ

α′ dχ (131)

=
1
2

(
1−

√
γcpNLα′

γcpNLα′+1

)
. (132)

The average BER for the ML receiver in SC-CP systems can
be further obtained as

BER
ml
sccp =

1
2N−1

(
1−

√
γcpNLα′

γcpNLα′+1

)
(133)

C. BER ANALYSIS FOR MC-CP SYSTEMS
1) ZF RECEIVER
The ZF-based symbol estimate for MC-CP systems in the
presence of channel estimation error can be expressed as

p̂zfmccp = �̂
−1FNymccp (134)

= �̂−1FN
(
FHN�p+ẽcp

)
(135)

= �̂−1�p+�̂−1FN ẽcp (136)

= �̂−1
(
�̂−1�

)
p+�̂−1FN ẽcp (137)

= p−�̂−11�p+�̂−1FN ẽcp (138)

The system model for the nth subcarrier can be expressed as

p̂zfmccp (n) = p (n)+
(
[FN ]n,nẽcp (n)−1ωnp (n)

ω̂n

)
︸ ︷︷ ︸

ezm(n)

. (139)

The noise variance for the nth subcarrier can be determined
as

E{|ezm (n)|2}} =
σ 2
ecp+PT ω̆

|ω̂n|
2 =

σ 2
ecp (1+γ ω̆)

ĝn
. (140)

Employing the above result, the instantaneous SNR on nth
subcarrier can therefore be evaluated as

SNRzf
mccp =

PT
σ 2ecp+PT ω̆

ĝn

=
γcpĝn(
1+γcpω̆

) = γ̆cpĝn, (141)

where γ̆cp =
γcp

1+γcpω̆
. The average BER for the nth subcarrier

with BPSK modulated symbols can be obtained as

BER
zf
mccp

(
γ̆cp
)

=
1
N

N∑
n=1

∫
∞

0
Q
(√

2γ̆cpĝn

)
1
ᾱn

exp
(
−
ĝn
ᾱn

)
dĝn

=
1
2N

N∑
n=1

(
1−

√
γ̆cpᾱn

1+γ̆cpᾱn

)
. (142)

Hence, as seen from the above expression, the average BER
of MC-CP based systems asymptotically achieves a diversity
order equal to unity. In the absence of channel estimation
error i.e. where ω̆ = 0, the BER expression reduces to

BERzf
mccp

(
γcp
)
≈

1
2

N∑
n=1

(
1−
√

γcpαn

1+γcpαn

)
. (143)

2) MMSE RECEIVER
Replacing p by pmc = FHN p and γzp = γ̆cp =

γcp
1+γcpω̆

in (99)

for SC-ZP, the SINR for the nth subcarrier in MC-CP systems
can be obtained as

SINRmmse
mccp = γ̆cpgn. (144)

The average BER for BPSK modulated symbols on the nth
subcarrier of the MC-CP system can be simplified as

BER
mmse
mccp

(
γ̆cp
)
=

1
N

N∑
n=1

∫
∞

0
Q
(√

2γ̆cpgn
)
fGn (gn) (145)

=
1
2N

N∑
n=1

(
1−

√
γ̆cpαn

1+γ̆cpαn

)
. (146)
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3) ML RECEIVER
The problem for maximum likelihood (ML) detection of the
data symbol vector p using the received signal ymccp for
MC-CP systems can be expressed as

p̂ml
mccp

= argmin
p

(
�̂−1FNymccp−p

)H
�̂H �̂

(
�̂−1FNymccp−p

)
.

Since, �̂H �̂ is a diagonal matrix with positive diagonal
entries, it is evident from (147) that ML detection is equiv-
alent to considering symbol detection on the individual sub-
carriers similar to the ZF receiver described in (142). Hence,
the average BER performance of the ML receiver is similar
to that of the ZF receiver given in (142) for MC-CP.

D. BER ANALYSIS FOR MC-ZP SYSTEMS
1) ZF, MMSE AND ML RECEIVER
The ZF symbol estimate in MC-ZP systems in the presence
of channel estimation error can be expressed as

p̂zfmczp = �̂
−1FNymczp (147)

= �̂−1FN
(
FHN�p+eoa

)
(148)

= p+�̂−1 (FN eoa−1�p)︸ ︷︷ ︸
ẽoa

. (149)

The noise affecting the nth data symbol p (n) transmitted on
nth subcarrier has the variance

E{
∣∣ẽoa (n)∣∣2} = σ 2

oa+PT ω̆

|ω̂n|
2 =

σ 2
oa
(
1+γzpω̆

)
ĝn

. (150)

The instantaneous SNR on the nth subcarrier can therefore be
evaluated as

SNRzf
mczp =

PT
σ 2oa+PT ω̆

ĝn

=
γzpĝn(
1+γzpω̆

) = γ̆zpĝn, (151)

where γ̆zp =
γzp

1+γzpω̆
. On similar lines to that of MC-CP

systems, the average BER can be determined as

BER
zf
mczp

(
˘γzp
)

=
1
N

N∑
n=1

∫
∞

0
Q
(√

2 ˘γzpĝn

)
1
ᾱn

exp
(
−
ĝn
ᾱn

)
dĝn

=
1
2N

N∑
n=1

(
1−

√
γ̆zpᾱn

1+γ̆zpᾱn

)
. (152)

In the absence of channel estimation error, the average BER
for these systems can be readily obtained by setting ω̆ = 0

BER
zf
mczp

(
γ̆zp
)
=

1
2N

N∑
n=1

(
1−

√
γ̆zpαn

1+γ̆zpαn

)
. (153)

Once again, the average BER performance of the ZF receiver
is similar to that of theML receiver forMC-ZP based systems
due to the diagonal nature of �̂H �̂.

FIGURE 4. MSE comparison of the proposed pilot scheme with the
standard random pilot scheme and BCRB for SC-ZP systems.

V. SIMULATION RESULTS
This section presents results of a Monte-Carlo simulation-
based study for the MSE and BER performance of the
described optimal pilot design strategies toward channel esti-
mation in SC-ZP and MC-CP systems. The setup considers
a frequency selective Rayleigh fading channel, in which the
channel taps are generated as independent circularly symmet-
ric complex Gaussian random variables with mean equal to
zero. The transmit symbols for various block-transmission
systems are assumed to be BPSKmodulated. Simulations are
performed for two different pairs of (ν,N ) given as (32, 32)
and (16, 48). The second set is chosen from the reference [1].
Both these sets satisfy the requirement ν ≥ L and also enable
us to explore the effect of guard interval and block length
on the estimation performance. The simulation results are
averaged over 1000 independent channel realizations. Fig.4
and Fig.5 plot the output MSE of the linear minimum mean
square errror (LMMSE) [20] channel estimate versus SNR
for SC-ZP and MC-CP systems, respectively. For any zero
mean parameter h, the LMMSE estimator is given by

ĥ = RhyR−1yy y, (154)

where Rhy = E
{
hyH

}
= E

{
h
(
Xsczph+ẽzp

)H}
= KhXH

sczp

and Ryy = E
{
yyH

}
= KhXsczpXH

sczp+σ
2
zpIP. Thus,

the LMMSE estimate of h for our system model in Eqn. (13)
can be evaluated as

ĥ =
(
XH
sczpXsczp

)−1
XH
sczpȳsczp, (155)

where Xsczp =
√
PDiag

(
Zzpp∗sczp

)
FP. These figures

clearly demonstrate that the MSE achieved by the proposed
optimal pilot design technique is substantially lower in both
the systems in comparison to that of random pilot sequences.
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FIGURE 5. MSE comparison of the proposed pilot scheme with the
standard random pilot scheme and BCRB for MC-CP systems.

FIGURE 6. MSE and BCRB performance comparison of channel estimate
employing the proposed pilot design scheme for different values of
N = {64,256,512} in SC-ZP systems.

More specifically, one can observe a 6.62 dB improvement in
MSE for the SC-ZP system, whilst that for itsMC-CP counter
part is 3.1 dB at SNR = 10 dB. The MSE is also seen to
decrease when the block length increases from N = 32 to
N = 48, as expected, since the estimation accuracy is higher
for a pilot sequence of larger length. Another trend that is
eminently clear from the figures is that the MSE of both the
single and multi-carrier systems above achieves the BCRB
for the proposed techniques. Yet, there is a slight deviation of
the MSE from the ideal BCRB in the low SNR regime, which
can be attributed to the inequality in (32) that is used to deter-
mine the optimal designs. This inequality becomes tighter at
higher SNRs, which explains the observed deviation.We have
also provided MSE and BER results for other (ν,N ) pairs

FIGURE 7. BER performance comparison of ZF receiver employing
proposed pilot design approach for different values of N = {64,256,512}

in SC-ZP systems.

FIGURE 8. MSE and BCRB performance comparison of channel estimate
employing the proposed pilot design scheme for different values of
N = {64,256,512} in MC-CP systems.

(16, 64), (16, 256), (16, 512), comprising of larger number of
subcarriers and block lengths, as shown in Fig. 6, Fig. 8, Fig. 7
and Fig. 9. It can be observed from all the four figures that the
estimation performance get significantly improved for larger
values of N .
Results are now presented to validate the BER performance

and the pertinent analysis carried out in section IV. For this
purpose, the ZF, MMSE and ML receivers are variously used
to estimate the transmit symbol vector. For these simulations,
the number of symbols per block is set as N = 16 and the
SNR is increased from 0 dB to 40dB. The BER performance
of MC-ZP and MC-CP systems for such a setup is shown
in Fig. 10 and fig.11, respectively. It can be readily seen
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FIGURE 9. BER performance comparison of ZF receiver employing
proposed pilot design approach for different values of N = {64,256,512}

in MC-CP systems.

FIGURE 10. BER comparison of the proposed pilot scheme with the
standard random pilot scheme and theoretical bounds for MC-ZP systems.

that similar to MSE, the BER of the proposed algorithms
is significantly lower than that obtained using random pilot
sequences. Moreover in Fig. 10, the BER performance is seen
to be in good agreement with the corresponding analytical
results derived in (152) and (153) for imperfect and perfect
channel knowledge, respectively, which lends credence to
analysis in section IV. It is also worth noting that both the
figures attest to the fact that the ZF, MMSE and ML receivers
considered in this study yield the same BER values. This is
explained by the decoupled symbol detection process for each
subcarrier. Fig.11 shows a similar trend for MC-CP systems.
In contrast, Fig.12 that plots the BER performance of SC-ZP
systems shows that the ML receiver yields the best response

FIGURE 11. BER comparison of the proposed pilot scheme with the
standard random pilot scheme and theoretical bounds for MC-CP systems.

FIGURE 12. BER comparison of the proposed pilot scheme with the
standard random pilot scheme and theoretical bounds for SC-ZP systems.

for these systems followed by the MMSE receiver, which is
in turn better in comparison to that of the ZF receiver. Inter-
estingly, this is due to the fact that the decoding across the
subcarriers is not decoupled for this single-carrier system,
unlike these multi-carrier systems whose performance has
been shown in earlier figures. Finally, the BER performance
of the optimal pilot design once again shows an improvement
over that of the random pilot sequence.

VI. CONCLUSION
This work has successfully developed a general framework
for the construction of optimal pilot signals that is appli-
cable in single as well as multi-carrier systems with cyclic
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prefix and zero padding redundancies for block transmis-
sion. Since the proposed algorithm is based on minimizing
the BCRB that represents a lower bound on the MSE of
channel estimation, it yields the best possible performance.
Subsequently, analysis was carried out to present compact
closed-form expressions for the output BER of all the four
major classes of block transmission systems, viz. SC-ZP,
MC-ZP, SC-CP and MC-CP, incorporating also the effect
of CSI estimation error, with linear as well as non-linear
equalization techniques employed at the receiver. In the end,
a comprehensive Monte-Carlo-based simulation study was
carried out to demonstrate the improved MSE and BER
performance resulting from the proposed pilot signalling
techniques over that of random pilot sequence. The results
that emerged from this study not only explicitly demonstrated
the improved MSE and BER of the optimal pilot designs but
also validated the analytical results for the BER.
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