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ABSTRACT Train positioning is the core function in the application of Global Navigation Satellite
Systems (GNSS) in Railway Transportation. However, the use of the differential GPS (DGPS) along the
Qinghai-Tibet Railway is expensive and difficult to maintain. Thus, a novel single-frequency algorithm
based on the divergence-free Hatch filter is proposed, and no real-time augmentation correction input is
required. The classical Hatch filter is severely affected by the divergence problem due to the ionospheric
variation. In our algorithm, a novel decomposition-ensemble model is proposed for denoising and modeling
the ionospheric variation, where theVariationalModeDecomposition (VMD)method is applied.With the aid
of a sliding ionospheric variation fitting window, the divergence-free Hatch filter is constructed. The entire
method is a so-called self-modelingmethod, but more efficient than recent studies. Besides, the Kalman filter
is used for keeping continuous positioning accuracy. Finally, a static experiment in Tibet and a kinematic
field test on the Qinghai-Tibet Railway is performed. In the ionospheric variation calculation-experiment,
the experimental results show that the sliding window of our method can be shortened to 5 minutes with
the data of 1s sampling rate, which basically meets the requirements of train positioning. In terms of train
positioning accuracy, only the horizontal accuracy is concerned. In the static experiment, our method satisfies
the accuracy requirements of the sub-meter level with a RootMean Square Error (RMSE) value of better than
0.5m. In the kinematic test, the accuracy of our method is basically at the sub-meter level, with an RMSE
value of approximately 0.6m.

INDEX TERMS Train positioning, Hatch filter, single-frequency, sub-meter positioning, self-modeling,
variational mode decomposition (VMD), decomposition-ensemble model.

I. INTRODUCTION
Global Navigation Satellite Systems (GNSS) have been dif-
fusely applied in the domain of railway transportation, such
as train control systems, railway fleet management [1], [2].
Train positioning, as precisely as possible, is the core require-
ment for the above GNSS applications. It should be noted
that in train positioning, horizontal accuracy is mainly con-
cerned [3]. At present, the differential GPS (DGPS) tech-
nology has been widely used in train positioning [4]–[7].
However, train positioning with the DGPS requires the
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support of a customized data network and a large num-
ber of base stations along the track. Therefore, the DGPS
application leads to high construction costs and requires a
lot of maintenance work, which is challenging to imple-
ment in harsh environments, such as the area along the
Qinghai-Tibet Railway. All in all, a low-cost non-differential
GNSS positioning algorithm is urgently required for train
positioning. Appreciably, it is of considerable significance
to attain sub-meter positioning through an inexpensive
GNSS single-frequency receiver and a relatively simple
algorithm.

In general, GNSS provides two kinds of fundamen-
tal observations, called pseudo-range observations and
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carrier-phase observations. The pseudo-range observation is
the pseudo-distance between a satellite and GNSS receiver,
which is biased and coarse-ranged with a relatively large
noise. Thus, its accuracy is reduced. However, the accuracy of
the carrier-phase observation can attain the millimeter level.
But it needs to fix ambiguities [8], [9].

Previous studies have demonstrated that by smoothing
the pseudo-range observations with carrier-phase observa-
tions, it can lower the pseudo-range noise and enhance
positioning accuracy [10]. Indeed, the phase-smoothed
pseudo-range algorithm combines the advantage of these two
observations, whereas significantly improving the accuracy
of pseudo-range observations without introducing ambigu-
ity. Among the existing smoothing algorithms, the Hatch
filter algorithm is a classical method [11]. Yet the accu-
racy of the Hatch filter is seriously affected by the diver-
gence in smoothed pseudo-range, which is caused by
ionospheric variation. In view of the shortcomings of
the Hatch filter, scholars have proposed several improve-
ment strategies. An important strategy is to adjust the
width of the smoothing window adaptively. For exam-
ple, Park and Kee [12] introduced the Klobuchar iono-
spheric model to the calculation of the smoothing window.
Zhang and Huang [13] applied external differential informa-
tion from the satellite-based augmentation system (SBAS)
rather than the Klobuchar model. Zhenggang et al. [14] com-
prehensively used satellite elevation angle, external augmen-
tation information, and the distance change from the user
to the base station to calculate the width of the smoothing
window for a ground-based augmentation system (GBAS).
Geng et al. [15] proposed the Three-Thresholds and Single-
Difference (TT-SD) Hatch filter to achieve sub-meter posi-
tioning with Android devices. Zhou and Li [16] suggested
using the Doppler phase difference observations rather than
the carrier-phase observations to estimate the window width
in kinematic positioning. Kim et al. [17] calculated the opti-
mal window based on the ionospheric gradient estimation.
However, the above approaches not only require frequent
adjustment of the smoothingwindow, but the ionospheric bias
is still included in the Hatch filter inevitably. Another strategy
is to use external differential information for ionospheric cor-
rection to avoid divergence problem [18]–[22]. However, this
strategy is challenging to implement under harsh conditions
due to the reasons mentioned at the beginning of this paper,
and the related correction algorithms are cumbersome. The
authors are also inclined to solve this problem without any
real-time augmentation correction input to reduce the cost
and difficulty of implementation. Thus, this strategy is no
longer discussed in detail. In fact, this problem can be solved
easily with the GNSS dual-frequency receiver. Because
the ionospheric variation can be easily calculated by dual-
frequency observations, and the divergence-free Hatch filter
model can be easily constructed with the calculated rate of
ionospheric variation [23]–[25]. Of course, the above meth-
ods applicable to dual-frequency users don’t apply to single-
frequency users.

Thus, Zhang et al. [26], Zhengsheng et al. [27]
recently proposed an improved Hatch filter suitable for
single-frequency users and didn’t need any real-time aug-
mentation correction input. In their studies, the concept
of self-modeling was first proposed, that is, without any
external information, only the fundamental single-frequency
observations were used to model the ionospheric variation
rate. Then a divergence-free Hatch filter model is built on
this basis. However, there are still several shortcomings in
this method. In particular, only a rough polynomial fitting
method was used in the process of modeling and denoising
the ionospheric variation rate. Thus, the width of the sliding
ionospheric variation fitting window is long, and a 20-minute
initialization time is required in real-time positioning to
achieve the desired accuracy, which is unbearable for train
positioning. Besides, this study used the ordinary least square
method for parameter estimation, which makes it challenging
to keep continuous positioning at the desired accuracy when
the data quality is poor [15].

In order to improve the above method, this paper pro-
posed an improved algorithm with a novel model to denoise
and model the ionospheric variation, which is a type of
decomposition-ensemble model [28]. Besides, the Varia-
tional Mode Decomposition (VMD) method [29] was intro-
duced to construct this model, which has many advantages
over empirical mode decomposition (EMD) or wavelets. The
entire method is still a self-modeling method but more effi-
cient. After the above improvements, the sliding ionospheric
variation fitting window width can be shortened to 5 minutes,
which basically meets the requirements of train position-
ing. Meanwhile, the Kalman filter model was introduced
to maintain the continuity of positioning accuracy. Finally,
a static experiment in Tibet and a kinematic field test on
the Qinghai-Tibet Railway will be performed to verify the
accuracy of our improved method and the effectiveness of the
novel model to denoise and model the ionospheric variation.

The remainder of this paper is constituted as follows:
Firstly, the classical Hatch filter with concise error analysis
is reviewed in brief. The divergence-free Hatch filter model
is discussed as well. Secondly, an improved algorithm is
proposed. In this chapter, some related concepts and knowl-
edge, i.e., the VMD method, the sliding window method,
the self-modeling method are reviewed at first. Then, the
improved model for denoising and modeling the ionospheric
variation is discussed in detail. Next, the Kalman filter model
for this algorithm is introduced. At the end of the chapter,
we conclude with a summary of the improved algorithm.
Thirdly, experimental results with real data are illustrated.
Lastly, concluding remarks are presented at the end.

II. OVERVIEW OF THE HATCH FILTER
A. THE CLASSICAL HATCH FILTER
The Hatch filter is a simple recursive filter using the current
observation and the former estimate without any extra sensors
or dynamic models [30]. Thus, it can be applied to the real-
time positioning with an inexpensive GNSS single-frequency
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receiver [22]. In the following, we will give a brief derivation
of its mathematical model.

Ignoring multipath, tropospheric delay, and clock bias of
the satellite and users’ receiver, the GNSS observation equa-
tion at the kth epoch is expressed as:{

Lk = ρk − Ik + N + εL
Pk = ρk + Ik + ερ

(1)

In the above equation, Lk expresses the carrier-phase observa-
tion (denoted by distance). Pk expresses the pseudo-distance
observation. ρk expresses the geometric distance between the
satellite and the receiver. Ik expresses the ionospheric delay
(denoted by distance). N expresses the ambiguity (denoted
by distance), which includes the hardware delay. εL and
ερ express the noise of observations.
First of all, it should be noted that ambiguity and the

ionospheric delay can be regarded as a constant within a
period (k epochs) in the classical Hatch filter. This is because
the ionospheric term varies very slowly with time [31].

The difference between the two observation formulas in
equation (1) can be obtained as:

Pk − Lk = 2Ik − N (2)

Then a new definition is proposed as:

A = 2I1 − N (3)

In the above equation, A expresses the sum of ambiguity and
twice the ionospheric delay in the starting epoch.

According to the previous assumptions, ambiguity and the
ionospheric delay can be regarded as unchanged. Thus, A can
be estimated by simple averaging. Define Ak as the average
of A in k epochs, which can be expressed as:

Ak =
1
k

k∑
i=1

(Pi − Li) (4)

On the basis of equation (2) and (4), the smoothed pseudo-
range on epoch k can be obtained as:

P̄k = Lk + Ak = Lk +
1
k

k∑
i=1

(Pi − Li) (5)

Thus, a recursive formula can be obtained simply by
subtracting the adjacent two epoch elements, which can be
expressed as:

P̄k = P̄k−1 + (Lk − Lk−1)+ (Ak − Ak−1) (6)

Substituting equation (4) into equation (6), the mathemat-
ical formula of the classical Hatch filter can be acquired: P̄k =

1
k
Pk + (1−

1
k
)(P̄k−1 + Lk − Lk−1)

P̄1 = P1
(7)

It should be noted that when cycle slips occur, the previous
basic assumption is no longer valid and the Hatch filter must
be reset.

B. HATCH FILTER ERROR CAUSED BY IONOSPHERIC
VARIATION
According to the analysis in the previous section, the Hatch
filter is a very concise method that can be easily implemented
under general conditions. However, due to the influence of
the ionospheric propagation delay, there will be a divergence
problem when the ionosphere changes violently or after a
long period of smoothing [22]. Thus, the influence of the
ionosphere will be discussed in detail in this section.

In fact, unlike the previous assumption, the ionospheric
delay isn’t constant. Define 1Ii,1 as the ionospheric delay
difference between epoch i and epoch 1. The equation (4) can
be converted into the following equation:

Ak =
1
k

k∑
i=1

(Pi − Li) = A+
2
k

k∑
i=1

1Ii,1 (8)

According to the equation (8), There is an inherent bias
between the estimated value Ak and the actual value A. The
ionospheric variation between epochs which take part in the
smoothing leads to this bias. Thus, a divergence-free Hatch
filter can be easily established on the basis of the correction
of ionospheric variation, which can be expressed as:

P̄k =
1
k
Pk + (1−

1
k
)(P̄k−1 + Lk − Lk−1 + 21Ik,k−1) (9)

Now, the crux of the above problem is the calculation of
the ionospheric variation rate.

C. CALCULATION OF THE RATE OF IONOSPHERIC
VARIATION WITH DUAL-FREQUENCY OBSERVATIONS
As mentioned earlier, the ionospheric variation rate can
be estimated with high accuracy by using dual-frequency
carrier-phase observations.

Define L1 and L2 as the carrier-phase observations on two
carrier frequencies (represented by distance). According to
the equation (1), the difference between L1 and L2 can be
obtained as:

L1 − L2 = [(b1r − b2r )− (b1s − b2s)]c+ (N1 − N2)

− 40.28cTEC (
1

f 21
−

1

f 22
)+ εL1−L2 (10)

In the above equation, Lk expresses the carrier-phase obser-
vation (represented by distance). b1r , b2r , b1s, b2s express the
hardware delay on different frequencies of receiver/satellite,
respectively. cTEC expresses the total electron contents (TEC)
on the signal propagation route. f1 and f2 express the fre-
quencies of the two carries. N1 and N2 express the ambiguity
without hardware delay (represented by distance).

Then several new definitions are given as follows:

1L = L1 − L2
1br = b1r − b2r
1br = b1r − b2r
1N = N1 − N2

1IL1,L2 = 40.28cTEC (1/f 21 − 1/f 22 ) = IL1 − IL2

(11)
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In the above equation, IL1 , IL2 represent the ionospheric delay
on different carriers.

Then the equation (10) can be simplified as:

1L = (1br −1bs)c+1N −1IL1,L2 + εL1−L2 (12)

Let1B = (1br−1bs)c+1N , then the equation (12) can
be simplified as:

1L = 1B−1IL1,L2 + εL1−L2 (13)

In addition, the inter-frequency carrier-phase difference
can be expressed as:

1IL1,L2 = 1B−1L + εL1−L2 (14)

1B can be considered as a constant within a period
(i.e., within the visible range of the satellite) [26], [27]. Then,
both sides of the equation (14) are multiplied by the same
coefficient. A new equation can be obtained as:

f 22
f 22 − f

2
1

1IL1,L2 =
f 22

f 22 − f
2
1

1B−
f 22

f 22 − f
2
1

× (1L − εL1−L2 ) = IL1
f 21

f 22 − f
2
1

1IL1,L2 =
f 21

f 22 − f
2
1

1B−
f 21

f 22 − f
2
1

× (1L − εL1−L2 ) = IL2

(15)

For the GPS L1 signal:

1IL1,k = IL1,k − IL1,k−1

= −
f 22

f 22 − f
2
1

(1Lk −1Lk−1 − ε1L1−1L2 ) (16)

In the above equation, 1IL1,k expresses the difference of
ionospheric delay between the epochs.

The difference between the carrier-phase observations on
the two frequencies can eliminate the majority of the errors.
Thus, the rate of ionospheric variation can be accurately
determined through equation (16) with high sampling rate
data, which can be used as the reference values for subsequent
experiments [22], [26].

III. THE IMPROVED ALGORITHM
In order to help readers to understand the improved algorithm
in this paper, this section will first briefly review some related
concepts and knowledge, i.e., the VMD method, the slid-
ing window method, and the self-modeling. Next, we will
introduce the improvement points of the proposed algorithm
in detail and, finally, conclude with the summary of the
algorithm. The relevant experimental results and analysis will
be given in Section IV.

A. VARIATIONAL MODE DECOMPOSITION
The VMD method is a novel signal decomposition method
that decomposes a non-linear and non-stationary signal into
discrete numbers of modes [32]. In essence, this method is
substantially related to the generalized Wiener filter [29].

Compared with the widely used EMD method and wavelets,
it has the following advantages:

1) Its theoretical basis is complete and has been strictly
mathematically deduced.

2) It overcomes the mode mixing problem of the EMD
method.

3) It overcomes the drawbacks of the end effect in the
EMD method.

4) It has better noise and sampling robustness.
5) It overcomes the drawbacks of hard band-limits in

wavelet methods.
The procedure of using this method are mainly introduced

below, and its detailed theory can be found in reference [29].
In the VMD method, the Intrinsic Mode Functions (IMF)

are redefined as the amplitude-modulated-frequency-
modulated (AM-FM) signals, which can be expressed as:

uk (t) = Ak (t) cos(8k (t)) (17)

In the above equation, the phase 8k is a monotone increas-
ing function, and the envelope Ak is non-negative. Both the
envelopeAk and the instantaneous frequency8′k changemore
gently than the phase 8k .

The VMDmethod is aimed to decompose a complex signal
into an ensemble of modes (IMFs) which are mostly compact
around the corresponding center pulsations and to make the
sum of the estimated bandwidth minimized. We can con-
vert this problem into a constrained variational problem as
follows:

min
uk ,ωk

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)× uk (t)]e−jωk t
∥∥∥∥2
2

}
s.t.

∑
k

uk = f
(18)

In the above equation, the uk (k = 1, 2, . . . ,K ) and ωk (k =
1, 2, . . . ,K ) are the set of modes and their center pulsations.
The f expresses the original signal.

In order to resolve the problem shown in equation (18),
a quadratic penalty term α and Lagrange multiplier λ are
applied to reconstruct the problem. In essence, this is a gen-
eralized Lagrange method, which can be represented as:

L(uk , ωk , λ)

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)× uk (t)]e−jωk t
∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(19)

In order to resolve the above non-constrained varia-
tional problem, the alternate direction method of mul-
tipliers (ADMM) is applied to the VMD method.
The steps of the ADMM algorithm for VMD are as
follows:

initialize u1k , ω
1
k , λ

1, The iterative variable n is initialized
to 0
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repeat

n← n+ 1

for k = 1 : K do
update un+1k with:

argmin
uk

L(un+11 , · · · un+1k−1, uk , u
n
k+1, · · · u

n
K , ω

n
1, · · · , ω

n
K , λ

n)

end for
for k = 1 : K do

update ωn+1k with:

argmin
ωk

L(un+11 , · · · , un+1K , ωn+11 , · · ·ωn+1k−1, ωk , ω
n
k+1,

· · ·ωnK , λ
n)

end for
Dual ascent:

λn+1← λn + τ (f −
∑
k

un+1k )

until threshold
∑
k

∥∥∥un+1k −u
n
k

∥∥∥2
2

‖unk‖
2
2

≤ ε

output K modes and their center frequencies
However, there are still two sub-problems in the above

which need to be explained in detail.
First, the update process of the modes uk (k = 1, 2, . . . ,K )

in the above can be rewritten as:

un+1k = argmin
uk

α
∥∥∥∥∂t [(δ(t)+ j

π t
)× uk (t)]e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
i

ui(t)+
λ(t)
2

∥∥∥∥∥
2

2

 (20)

Equation (20) describes a type of quadratic optimization
problem. It is solved by the Parseval/Plancherel Fourier isom-
etry under the L2 norm as follows:

ûn+1k =

f̂ (ω)−
∑
i6=k

ûi(ω)+
λ̂(ω)
2

1+ 2α(ω − ωk )2
(21)

Second, the update process of the center frequencies
ωk (k = 1, 2, . . . ,K ) in the above steps can be rewritten as
the following relevant problem:

ωn+1k = argmin
ωk

{∥∥∥∥∂t [(δ(t)+ j
π t

)× uk (t)]e−jωk t
∥∥∥∥2
2

}
(22)

The optimization of this problem will be performed in the
Fourier domain by the following equations (23) and (24):

ωn+1k = argmin
ωk


∞∫
0

(ω − ωk )2
∣∣ûk (ω)∣∣2 dω

 (23)

ωn+1k =

∫
∞

0 (ω − ωk )2
∣∣ûk (ω)∣∣2 dω∫

∞

0

∣∣ûk (ω)∣∣2 dω (24)

It should be noted that the estimated ωk is located at the
power spectrum of the relevant mode, right in the center of
gravity.

B. SELF-MODELING OF IONOSPHERIC VARIATION WITH
SINGLE-FREQUENCY OBSERVATIONS
As discussed in Section II, the divergence problem
of the classical Hatch filter is mainly caused by the
ionospheric variation. The key to the divergence-free algo-
rithm is modeling and denoising the ionospheric varia-
tion rate. For single-frequency users, this is challenging
without any external information. As mentioned in the
Introduction, the concept of self-modeling has recently
been proposed to model and denoise ionospheric variation
using only single-frequency observations. It was used to
build an improved divergence-free Hatch filter suitable for
single-frequency users without any real-time augmentation
correction input [26], [27]. This significant concept will be
reviewed in detail below.

According to equation (2), a new definition is proposed as:

IN =
Pk − Lk

2
= Ik −

N
2
+
ερk

2
(25)

In the above equation, ερk expresses the noise in pseudo-range
observations. N expresses the ambiguity, which includes
hardware delay (represented by distance). As discussed in
Section II, the hardware delay can be considered as a con-
stant. Therefore, when no cycle slips occur, the ionospheric
variation is straightly synchronous with the variation of
the IN . Consequently, we can calculate the ionospheric vari-
ation roughly by equation (25).

Obviously, under the influence of the pseudo-range noise,
the ionospheric variation calculated by this method is not
accurate. To solve this problem, Zhang et al. used a second-
order least-square polynomial fit method to estimate it with
the observations of multiple epochs. Meanwhile, a sliding
window was used to select the observations for estima-
tion, that is, the sliding ionospheric variation fitting window.
The entire method is named as the sliding window fitting
method [26], [27]. It should be noted that the extrapolated
value of the fitted polynomial is usedwhen a cycle slip occurs.

The schematic diagram for the slidingwindow is illustrated
in Figure 1.

As shown in Fig. 1, each small cell denotes the data of an
epoch. Meanwhile, the cell filled with green represents the
data of the current epoch. The sliding window is a data block
for fitting, which consists of a fixed number of small cells.
In data processing, the window keeps moving forward to pro-
cess the entire data. For post-processing positioning, the cur-
rent epoch is at the center of the window, and there is overlap
between windows, which is called the segmented sliding
window with overlap. For real-time positioning, the current
epoch is at the end of the window, called the epoch sliding
window [26], [27].

According to the studies of Zhang et al., on the basis of
the above method, the size of the sliding window should be
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FIGURE 1. The schematic diagram of the sliding window method.

at least 20 minutes to achieve positioning towards sub-meter
accuracy at the sampling rate of 1s [26], [27]. As men-
tioned in the Introduction, it is unacceptable in real-time train
positioning. Thus, in the next subsection, we will propose
an improved model to denoise and model the ionospheric
variation.

C. IMPROVED MODEL TO DENOISE AND MODEL THE
IONOSPHERIC VARIATION
As mentioned above, an improved model is proposed in
this subsection, which is a typical decomposition-ensemble
model. This concept has recently been used to explain why
multi-scale complexity decomposition can improve fitting
and predictions [28]. The framework of the decomposition-
ensemble model for fitting is shown in Figure 2.

As mentioned in the former subsection, a second-order
least-square polynomial fit method was used to fit the
ionospheric variation. Based on it, the VMD method whose
superiority has been fully confirmed in existing studies is
introduced to construct the improved model, which is a typi-
cal decomposition-ensemble model.

As shown in Fig.2, the improved model in this study is
composed of three main components, i.e., multi-scale decom-
position, individual fitting and ensemble fitting, which are
described in detail as follows:

1) Multi-scale decomposition: In this study, the VMD
method is employed to decompose the complex orig-
inal data into several relatively simple modes, which is
a multi-scale analysis technique.

2) Individual fitting: all modes obtained can be fitted by
a specific fitting algorithm, which is the second-order
least-square polynomial fit algorithm in this study. Sev-
eral individual results are obtained.

3) Ensemble fitting: combine the individual results and
reconstruct them into the ensemble result.

The reason why the decomposition-ensemble model intro-
duced above can improve the fitting accuracy is that it can

mitigate modeling difficulty [33]. More specifically, the com-
plex original data are converted into relatively simple modes
through this model. Thus, the modeling complexity of orig-
inal data can be reduced. According to the complex system
theory, a system that has a lower complexity is more inclined
to follow a deterministic process. Thus, it can be captured
and modeled more easily [34]. As shown in Fig.2, it converts
a difficult fitting task for original data with high complexity
into several manageable fitting subtasks with low complexity.
Thereby, the ensemble fitting result with higher accuracy
can be obtained. On the other hand, the inherent driving
factors in complex non-linear systems can be captured using
the VMD method (in terms of IMF), which can make the
obtained modes simpler and more meaningful (in terms of
low complexity) [29], [35]. Besides, the VMD method is
greatly related to Wiener filter denoising. It can perform a
few denoising effects by setting a sizeable quadratic penalty
term and shutting off the Lagrange multiplier.

All in all, this improved model is one of the significant
improvement points compared to previous researches. It is
used to model and denoise the ionospheric variation rate with
the sliding window method introduced in the former subsec-
tion. The entire method is still a self-modeling method. Thus,
the divergence-free Hatch filter suitable for single-frequency
users can be constructed based on the ionospheric varia-
tion rate calculated above. After the above improvements,
the width of the sliding ionospheric variation fitting window
can be shortened to 5 minutes. The relevant experimental
results and analysis are given in Section IV.

D. KALMAN FILTER
As mentioned above, in the process of smoothing
pseudo-range with the proposed improved Hatch filter, when
cycle slips occur, the Hatch filter must be reset. Thus, the con-
tinuity between epochs will be destroyed in terms of the
position parameters. However, in the studies of Zhou et al.,
only the ordinary least-square method was used for parameter
estimation. Therefore, it is challenging to guarantee con-
tinuous positioning accuracy in harsh environments or with
imperfect data.

Thus, the Kalman filter is introduced for our algorithm.
It is another improvement point compared to the studies of
Zhou et al., and a cycle slip detection should also be consid-
ered in our algorithm. Refer to the reference [22], the time-
difference of the code-minus-carrier can be used to detect the
cycle slip. In particular, since the noise of pseudo-range has
been smoothed, the combination of the filtered pseudo-range
and carrier-phase is an excellent cycle slip indicator [22].
It should be noted that the filter must be reset once the cycle
slip occurs.

Next, we will introduce the Kalman filter model used in
this paper. Since this method is commonly used and classic,
in order to make this paper concise, we only briefly introduce
the key part.

Considering the safety and comfort of the train, the speed
of the train changes relatively gently with a relatively
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FIGURE 2. Framework of the decomposition-ensemble model for fitting.

small acceleration [36]. Therefore, a relatively concise and
easy-to-implement eight-parameter model [37], [38] will
be applied to our algorithm. The recursive state equation
is:

Xk = φk,k−1Xk−1 + wk (26)

In the above equation, k expresses the kth observations.
X expresses the state vector of the user. φ expresses the state
transition matrix between epochs.w expresses the processing
noise vector. Then, define T as the sampling interval and Q
as the covariance matrix of w. The vector X is described as
follows:

X =
[
x y z ẋ ẏ ż δt δf

]T (27)

In the above equation, the vector X consists of position com-
ponents, velocities, clock bias δt and clock frequency drift δf .
The transition matrix φ is described as follows:

φ =


I3×3 T · I3×3 O3×1 O3×1
O3×3 I3×3 O3×1 O3×1
O1×3 O1×3 1 T
O1×3 O1×3 0 1

 (28)

The processing noise matrix Q can be described as fol-
lows (29), as shown at the bottom of the next page, In the
above equation, the variables Sv, St , Sf represent the spectral
density of velocities, clock bias, and clock frequency drift.

E. SUMMARY OF THE IMPROVED ALGORITHM
We will summarize our improved algorithm in this subsec-
tion. The flowchart of it is shown in Figure 3. In detail,
the processing procedures of the improved algorithm
includes:

1) Input the single-frequency original observations
data.

2) As mentioned in the C part of Section III, the slid-
ing ionospheric variation fitting window is estab-
lished for the self-modeling of ionospheric variation.
In order to accomplish it, an improved model using
the VMD method and the second-order least-square
polynomial method is constructed, which is a typical
decomposition-ensemble model for fitting. The entire
method is still a self-modeling method. Thus, the iono-
spheric variation rate is obtained.

3) As mentioned in the B part of Section II and the D part
of Section II, the divergence-free Hatch filter based on
the above results is constructed to smooth the pseudo-
range. And the filter must be reset when a cycle slip
occurs.

4) As mentioned in the D part of Section III, the Kalman
filter method is introduced for parameter estimation.

5) The above steps can be cycled for calculation.

According to the reference [26], [27], several pre-stored
precision correction products for other errors are used for
positioning solutions, such as the prediction products for
orbits, clock bias, and ionospheric delay, etc. It should be
noted that the above precision products are stored in advance
rather than real-time input precision correction information.
There is no need to set up additional channels to receive
them. Therefore, the application of these precision prod-
ucts is in line with our requirements. Thus, the Ultra-Rapid
orbits and clock bias products, the VMF1 forecast prod-
ucts [39], and the global ionosphere model prediction prod-
ucts (e.g.C2PG products) are used for error corrections in this
paper.
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FIGURE 3. Flowchart of the improved algorithm in this study.

IV. EXPERIMENT AND ANALYSIS
In this section, the data of a static experiment in Tibet and
a kinematic field test on the Qinghai-Tibet Railway are pro-
cessed and analyzed. Thus, the effectiveness of the improved
model for denoising and modeling the ionospheric variation
is verified. And the positioning accuracy of the proposed
improved algorithm is demonstrated.

The static experiment is a technical verification experiment
conducted in advance. Since this paper mainly focuses on the
area along theQinghai-Tibet Railway, the L1 band data of a 1s
sampling rate from the LHAZ station in Tibet are used for the

static experiment in this paper. We take a four-hour period of
data from 12:00 to 16:00 UTC with a satellite cutoff altitude
of 15 degrees as an example for analysis.

The kinematic experiment was carried out on
January 2, 2019. A test train for data collection started
from NaQu Railway Station and traveled northward along
the Qinghai-Tibet Railway, shown in Figure 4. A one-hour
period of data from 7:00 to 8:00 UTC with a 1s sampling
rate was collected for processing and analysis. The obtained
data are used for the simulated real-time train positioning
experiments.

Q =



Svx
T 3

3
0 0 Svx

T 2

2
0 0 0 0

0 Svy
T 3

3
0 0 Svy

T 2

2
0 0 0

0 0 Svz
T 3

3
0 0 Svz

T 2

2
0 0

Svx
T 2

2
0 0 SvxT 0 0 0 0

0 Svy
T 2

2
0 0 SvyT 0 0 0

0 0 Svz
T 2

2
0 0 SvzT 0 0

0 0 0 0 0 0 StT + Sf
T 3

3
Sf
T 2

2

0 0 0 0 0 0 Sf
T 2

2
Sf T



(29)
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FIGURE 4. Test train in the kinematic experiment.

FIGURE 5. The CHC N72 GNSS receiver used in kinematic experiment.

As shown in Fig.4, the receiver antenna was fixed on top
of the test train. And the CHC N72 GNSS receiver used in
our experiment was located in the compartment of the test
train, which is shown in Figure 5. To obtain the precise track
of the test train as the reference true value of the kinematic
experiment, we got it based on the digital tracking map and
information from several location sensors provided by the
relevant departments.

The reference motion trajectory of the test train is shown
in Figure 6.

As mentioned in the Introduction, in train positioning,
horizontal positioning accuracy is mainly concerned. Thus,
the train positioning deviation is given under a Gauß–Krüger
coordinate, denoted as δH [3]. A schematic diagram of this
deviation is illustrated in Figure 7.

In the remainder of this section, we will introduce
experimental results and relevant analysis in three parts,
respectively.

A. EXPERIMENTS ON IONOSPHERIC VARIATION
In this subsection, the results of experiments on iono-
spheric variation are shown and analyzed. As mentioned
in Section III, we proposed a novel model to denoise and
model the ionospheric variation. The improvement effect of
the proposed model is demonstrated through the following
experiments.

We use the four-hour period of data of the LHAZ station to
estimate ionospheric variation by different approaches men-
tioned above. According to the dual-frequency calculation
method in the C part of Section II, the ionospheric variation
(calculated by Eq. (16)) of different satellites during the

FIGURE 6. The reference motion trajectory of the test train.

FIGURE 7. The schematic diagram of the train positioning deviation.

experimental time is illustrated in Figure 8. It shows that the
ionospheric variation between epochs is small, which also
confirms with the previous conclusion.

As mentioned in the C part of Section II, the ionospheric
variation estimated by the dual-frequencymethod can be used
as the reference values of our experiments [22], [26].

Subsequently, the ionospheric variation is calculated by
three different approaches, i.e., calculating raw results
roughly by Eq. (25), the original self-modeling
method [26], [27], and the improved method in this paper.
As an example, we will show the result of the satellite
G01, which is visible during the whole experimental period.
Figures 9 and Figure 10 show the estimated residuals of
the above three methods under the 5-minute and 20-minute
sliding ionospheric variation fitting window, respectively.
We also calculated the RMSE of the above three methods
under the sliding ionospheric variation fitting window of
various widths, as shown in Figure 11. Meanwhile, the values
of them are given in Table 1.

According to the above results, we can find that the esti-
mated residuals of the improved method with a 5-minute
sliding ionospheric variation fitting window and the original
self-modeling method with a 20-minute window are basically
equivalent. That is to say, compared with the original method,
the improved method can shorten the width of the sliding
ionospheric variation fitting window to 5 minutes, which
basically meets the requirements of train positioning. This
shows that our method is very effective and practical.
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FIGURE 8. The ionospheric variation of different satellites.

FIGURE 9. Estimated residuals of the three methods under the 5-minute sliding ionospheric variation fitting window.

TABLE 1. RMSE values of the three methods under the sliding
ionospheric variation fitting window of various widths.

B. STATIC EXPERIMENTS
The configurations of the static experiment have been intro-
duced in detail at the beginning of this section. As mentioned
above, wewill focus on the horizontal accuracy of positioning
and the accuracy in the north and east directions. We will

use three methods for comparative experiments, i.e., posi-
tioning with raw observations, the classical Hatch filter, and
the improved method with a 5-minute window. In order to
carry out comparative experiments, it should be noted that the
above three methods use the same error correction configu-
rations (mentioned in the E part of Section III), except for
pseudo-range observations. In other words, the above three
methods all use pre-stored forecasting precision products to
correct the main error terms.

Firstly, compared with the positioning results of raw obser-
vations, the positioning errors of the improved method are
given. Figures 12 and Figure 13 show the positioning errors of
the two methods in the east and north directions, respectively.
Figure 14 shows the Horizontal positioning errors (i.e., the
deviation illustrated in Fig.7) of the twomethods varyingwith
time. Figure 15 shows the Horizontal positioning errors under
a Gauß–Krüger coordinate. Figure 16 shows the positioning
errors of the classical Hatch filter, which has an obvious
divergence problem.
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FIGURE 10. Estimated residuals of the three methods under the 20-minute sliding ionospheric variation fitting window.

FIGURE 11. RMSE of the three methods under the sliding ionospheric
variation fitting window of various widths.

FIGURE 12. Positioning errors of two methods in the east direction.

In addition, we calculated the RMSE values of the position-
ing errors with three methods, which can be used to evaluate
positioning accuracy. They are illustrated in Table 2.

According to the above results, we can find that the accu-
racy has been improved by our method compared to the

FIGURE 13. Positioning errors of two methods in the north direction.

TABLE 2. RMSE values of the positioning error with three methods.

positioning with raw observations. The horizontal accuracy
is better than 0.5m, which has significantly met the require-
ments of sub-meter positioning. And it shows that a 5-minute
window is enough. Meanwhile, the control experiment shows
significant noise effects. Of course, this is the conclusion
obtained when the environment is relatively ideal, and the
data quality is relatively good. After all, it is just a tech-
nically validating experiment. In addition, we can also find
that the accuracy of the classical Hatch filter is significantly
influenced by the divergence problem, which is caused by
ionospheric variation (discussed in Section III).

C. KINEMATIC EXPERIMENTS
The configurations of the kinematic experiment have been
introduced in detail at the beginning of this section. This is
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TABLE 3. RMSE values of the positioning error with three methods.

FIGURE 14. Horizontal positioning errors varying with time.

FIGURE 15. Horizontal positioning errors.

a simulated real-time train positioning experiment with real
data, not a technical verification experiment. The procedure
of the comparative experiments in this subsection is similar
to the static experiment, which is not repeated anymore.

Similar to the previous subsection, in the comparative
experiments, compared with the train positioning results of
raw observations, the positioning errors of the improved
method are given. Figures 17 and Figure 18 show the posi-
tioning errors of the two methods in the east and north
directions, respectively. Figure 19 shows the Horizontal
positioning errors of the two methods varying with time.
Figure 20 shows the positioning errors of the classical Hatch
filter, which also has an obvious divergence problem.

Similarly, we calculated the RMSE values of the position-
ing errors with three methods, which can be used for evaluat-
ing positioning accuracy. They are illustrated in Table 3.

According to the above results, we can find that the accu-
racy has been improved by the improved method compared
to the results with raw observations in train positioning.
As shown in Fig.19, the horizontal accuracy can converge to
the sub-meter level in a very short time, and the overall errors
are less than 1m. By contrast, a lot of horizontal errors of
raw observations exceed 1m due to the noise, and the con-
trol experiment shows significant noise effects. In addition,

FIGURE 16. Positioning errors of the classical Hatch filter.

FIGURE 17. Positioning errors of two methods in the east direction.

FIGURE 18. Positioning errors of two methods in the north direction.

FIGURE 19. Horizontal positioning errors varying with time.

we can also find that the accuracy of the classical Hatch
filter is significantly influenced by the divergence problem.
All in all, our algorithm basically meets the requirements
of sub-meter positioning. However, when the environment is
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FIGURE 20. Positioning errors of the classical Hatch filter.

harsh, or the data quality is poor, there are still a small number
of outliers inevitably. Of course, this can be easily solved
by digital map matching, inertial navigation assistance, and
other mature technologies, which is not the focus of this
paper. Generally speaking, this method basically meets the
requirements for GNSS in train positioning.

V. CONCLUSION
In the domain of train positioning, a low-cost non-differential
GNSS positioning algorithm is urgently required. The
improved Hatch filter algorithm using an inexpensive single-
frequency receiver is a meaningful idea. The Hatch filter
has been one of the most frequently-used filters due to the
simplicity of construction and its effectiveness in reducing
noise. It combines the advantage of the pseudo-range and
carrier-phase observations, whereas significantly improving
the accuracy of pseudo-range observations without intro-
ducing ambiguity. However, the accuracy of the classical
Hatch filter is severely affected by the divergence problem
due to the ionospheric variation. In order to construct the
divergence-free Hatch filter, the key is to calculate iono-
spheric variation, which is challenging for single-frequency
users without any real-time augmentation correction input.

In this paper, we proposed a novel algorithm based
on the divergence-free Hatch filter using single-frequency
observations only, which does not need any real-time aug-
mentation correction input. To be exact, this method was
produced by further improvement on the basis of the original
self-modeling method proposed in recent studies. Compared
to the ordinary method, three innovations were included in
this method:

1) A novel model with the sliding ionospheric vari-
ation fitting window for denoising and model-
ing the ionospheric variation, which is a type of
decomposition-ensemble model for fitting. The entire
method is still a self-modeling method, but more effi-
cient than the ordinary method in recent studies.

2) The emerging VMD method for decomposition, which
is significantly related to the generalized Wiener filter.
It is also helpful for denoising.

3) The Kalman filter used for parameter estimation to
keep continuous positioning at the desired accuracy.

In this paper, a static experiment in Tibet and a kinematic
field test on the Qinghai-Tibet Railway was performed to ver-
ify the accuracy and the effectiveness to denoise and model
the ionospheric variation of our algorithm. The experimental
results show that the estimated residuals of our improved
method with a 5-minute sliding ionospheric variation fitting
window and the original self-modeling method proposed in
recent studies with a 20-minute window are basically equiv-
alent. It illustrated that the sliding window width could be
shortened to 5 minutes with the data of 1s sampling rate,
which basically meets the requirements of train positioning.

In the verification experiments of positioning accuracy,
three methods were conducted for comparative experiments,
i.e., positioning with raw observations, the classical Hatch
filter, and our method with a 5-minute window. It should be
noted that the above three methods use the same error correc-
tion configurations (mentioned in the E part of Section III),
except for pseudo-range observations. In the static exper-
iment, our method satisfies the accuracy requirements of
the sub-meter level with an RMSE value of less than 0.5m.
Meanwhile, the control experiment showed significant noise
effects. However, this conclusionwas obtainedwhen the envi-
ronment is relatively ideal, and the data quality is relatively
good. After all, it was only a technically validating experi-
ment. In addition, we found that the accuracy of the classical
Hatch filter is greatly influenced by the divergence problem.
In the kinematic experiment, the procedure of the compara-
tive experiments was similar to the static experiment. And the
accuracy of our method was basically at the sub-meter level
with an RMSE value of approximately 0.6m. Similarly, the
control experiment showed significant noise effects, and the
classical Hatch filter showed a serious divergence problem.
All in all, our method basically met the requirements for the
application of GNSS in train positioning.
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