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ABSTRACT The reasonable control of the grate cooler is the key factor to ensure the heat exchange and
cement clinker quality during the clinker cooling process. In this paper, the cement grate cooler pressure
of the grate cooler is taken as the research object and a cement grate cooler pressure prediction model
is proposed based on the analysis of the current status of the automatic control of the grate cooler. This
model uses a multi-model fusion neural network algorithm that combines a BP neural network, a support
vector machine and classification and regression trees with a neural network structure. Furthermore, the
multi-model fusion quality characteristics are proposed, and the root mean square error and Pearson linear
correlation coefficient of the multi-model fusion quality characteristics are used as the evaluation indicators
for the prediction results of the multi-model fusion neural network. After the analysis of the cooling process
of the cement clinker, we select seven input variables, and then complete the data preprocessing and model
parameter selection. Finally, we predict the cement grate cooler pressure using a multi-model fusion neural
network, a BP neural network, a support vector machine and classification and regression trees with three
training sets to test sets ratios. Through the comparison of the root mean square error and the Pearson linear
correlation coefficient evaluation indicators and their change trends, as well as the display and analysis of the
final modelling results, it is found that the multi-model fusion neural network algorithm can greatly improve
the accuracy of the prediction of the grate pressure, and at the same time it has good practicality for the
accurate prediction of the cement grate cooler pressure in the industry.

INDEX TERMS The grate cooler pressure, multi-model fusion neural network, multi-model fusion quality
characteristics.

I. INTRODUCTION
The cement cooling process is an essential process in cement
production. The stability of this process will directly deter-
mine the quality of the produced cement and the heat
exchange efficiency. Because the cement cooling process
has nonlinearity, strong coupling, a large time lag and other
characteristics, it is essential to control the cement cooling
process. The cement cooling process technology is shown as
follows in Fig.1.

The cement grate cooler is the main equipment of the
cement cooling process. As process equipment, it undertakes
the task of cooling the high temperature clinker and crushing
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FIGURE 1. The cement cooling process diagram.

it to meet the requirements of clinker transportation, stor-
age and cement grinding. At the same time as cooling the
clinker, the thermal equipment undertakes the task of heating
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the secondary air that enters the rotary kiln and the tertiary
air that enters the decomposing furnace. The heat recovery
equipment undertakes the task of recovering a large amount
of waste heat from the kiln clinker, which is used for waste
heat power generation and coal mill drying. In addition,
the clinker conveying device undertakes the task of conveying
the high temperature clinker. Keeping the cement grate cooler
pressure within a certain range is a prerequisite for the normal
operations of the cement cooling process. Due to the four
generations of grate coolers used in most modern cement pro-
duction lines, the cooling fan speed is generally maintained
at a relatively stable state. The cooling air device speed is
adjusted only under special conditions, and so the air to vol-
ume ratio of the cooling air is rarely adjusted at the industrial
site. Therefore, the cement cooling process usually maintains
the cement grate cooler pressure by adjusting the idle speed
of the grate cooler. When the cement grate cooler pressure
is too high, the material layer of the rotary kiln clinker is
thicker, and the cooling air device cannot easily blow through
the material layer. At this time, the secondary air temperature
of the air that enters the rotary kiln, the tertiary air temperature
of the air that enters the decomposing furnace and the electric
hot air temperature of the air that enters the waste heat power
generation system are higher, and the energy utilization rate
is improved; however, the clinker cooling effect is not good,
and the energy utilization rate is increased at the cost of the
cooling effect. In addition, the thickness of the clinker layer
entering the grate cooler is thin. Although the cooling effect
of the clinker is guaranteed, the secondary air temperature
and the tertiary air temperature cannot meet the requirements,
which will directly affect the pre-decomposition effect of the
cement raw material and the stable operations of the burning
process. Hence, keeping the cement grate cooler pressure
within a certain range can definitely guarantee the normal
operations of the cement cooling process.

Combined with the cement cooling process technology,
it can be seen that the cement grate cooler has an important
role in the cement production process. It is the key equipment
for heat exchange and guaranteeing the quality of the cement
clinker in the production process. However, fewer control
points for the cement grate cooler in a domestic cement
factory results in difficulties modelling the cement grate
cooler. The cement grate cooler is still controlled manually,
and so the cement grate cooler is controlled by the control
short board in the cement production process. Aiming at the
current situation of cement grate cooler control, a parameter
prediction model of the cement grate cooler is proposed to
achieve the automatic control of the whole cement production
process and save energy and reduce the costs of cement
enterprises [1].

After reading the relevant documents, it is found that much
research, domestic and foreign, has been done on the con-
trol and optimization settings of the cement cooling process.
For example, Hu [2], set up a cement grate cooler pressure
optimal setting model based on cement technology to realize
the optimal control for cement grate cooler optimization. The

model consists of the cement grate cooler pressure presetting
model based on an LS-SVM and the cement grate cooler
pressure setting correction model based on a Fuzzy system.
Kang [3] used the improved BP neural network algorithm to
establish the control model of the cement grate cooler system
and proposed a new control algorithm. After reading a large
number of documents, it is found that scholars usually use
multiple algorithms to build models, then make a comprehen-
sive comparison of the results, and finally select the best algo-
rithms for predictive modelling. However, this method cannot
overcome the problem that the prediction model parameters
are not fixed, many experiments are needed to select the best
model parameters for Predictive modelling, the parameter
adjustment process is cumbersome and the modelling takes
a long time; therefore, the actual application effect is not
good. In response to these problems, some scholars have
overcome the problems by adding optimization algorithms
in the model building process For example, Zhang [4] used
an IGA-MK LS-SVM algorithm and an adaptive multi-group
NSGA-II genetic algorithm to model and optimize the key
parameters of a cement grate cooler. Kumar et al. [5] used the
modified entropy yields caused by heat transfer and viscous
dissipation as the objective functions, and used a genetic
algorithm to optimize the multi-objective parameters of the
cement grate cooler to improve the heat transfer efficiency.
After adding the optimization algorithm, the accuracy of the
parameter selection of the model algorithm is improved and
the prediction error is reduced. However, the whole process
needs to encode and decode the problem, and most of the
parameters of the optimization algorithm still depend on
experience, which will affect the model prediction results.

To conquer the above problems, this paper proposed a
new prediction method for the cement grate cooler pressure
in the cooling process. In this paper, the root mean square
error (RMSE) and the Pearson Linear Correlation Coeffi-
cient (PLCC) are used as the comparative evaluation indexes
of the model prediction quality and the multi-model fusion
quality characteristics (MFQCs),and a multi-model fusion
neural network are proposed. Based on a large number of
experiments, the BP neural network (BP), the support vec-
tor machine (SVM) and Classification and Regression Trees
(CART) [6], which are commonly used in cement industry
prediction model modelling, are selected and fused into an
algorithm. Next, the fused algorithm is used in the prediction
model of the cement grate cooler pressure in the cement
production cooling process, which provides the parameter
target for realizing the automatic control of the grate cooler.

II. PROCESS MECHANISM ANALYSIS AND SELECTION OF
MODELLING VARIABLES
A. GRATE COOLER PROCESS MECHANISM ANALYSIS
1) MECHANISM ANALYSIS OF THE HEAT BALANCE PROCESS
OF A GRATE COOLER
The selection of the modelling variables has an insepara-
ble relationship with the prediction accuracy of predictive
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FIGURE 2. Heat balance process mechanism of the cement grate cooler.

TABLE 1. Table of the cement grate cooler heat balance parameters.

models. Since the cement industry is a typical process indus-
try, the production process is closely related and coupled.
The selection of the modelling variables cannot be limited
to a single process. According to the heat balance process
mechanism of the cement grate cooler, the burning process
is closely related to the cooling process. The heat balance
process of the cement grate cooler is shown as follows
in Fig.2.

According to the parameters in table 1, the heat balance
formula of the grate cooler can be obtained [7]:

Q1+ Q2+ Q3 = Q4+ Q5+ Q6+ Q7+ Q8+ Q9 (1)

The heat balance of the grate cooler is a steady-state bal-
ance, which determines the heat exchange efficiency between
the grate cooler and the rotary kiln. It has a certain influence
on the temperature of the rotary kiln and the grate cooler
pressure of the cement grate cooler. In the production of the
cement industry, when no special working conditions occur,
the operator usually controls the rotary kiln and grate cooler
according to this equation so that the temperature of the rotary
kiln and the grate cooler pressure are stabilized within a rea-
sonable range, and then the production process is stabilized.
According to the mechanism of the heat balance process
of the cement grate cooler, it is found that the influencing
factors of the grate cooler pressure are closely related to the
burning process and cooling process. Therefore, the variables
required for the modelling of the grate cooler prediction

model need to be selected from the burning and cooling
sections.

2) ANALYSIS OF THE EFFECT OF THE ROTARY KILN ON THE
COOLING EFFECT OF THE GRATE COOLER
The calcination of the clinker is mainly done by the rotary
kiln. The formation of high-quality clinker is closely related
to the rotary kiln. The formation of high-quality clinker
must maintain a certain high temperature in the rotary kiln
and ensure that the material stays in the rotary kiln for
a set amount of time. When the temperature of the firing
zone in the rotary kiln is suitable and the residence time
of the clinker is reasonable, the granules of the clinker in
the rotary kiln are uniform and the temperature is suit-
able. At this time, by reasonably controlling the grate down
pressure, a better cooling effect can be ensured. When the
rotary kiln temperature is too high, it is difficult to ensure
a uniform clinker particle size, which results in caking of
the rotary kiln clinker, blocking of the grate holes, and the
special ‘‘snowman’’ condition, which affects the cooling
effect.

3) ANALYSIS OF THE EFFECT OF THE GRATE COOLER
COOLING EFFECT ON THE ROTARY KILN TEMPERATURE
The cold air blown by the cooling fan penetrates the high-
temperature clinker to cool the clinker and generate sec-
ondary air. The main function of the secondary air is to
enter the rotary kiln to provide enough heat for the rotary
kiln. The secondary air can affect the combustion state of
the flame in the kiln, which affects the temperature change
of the burning zone of the rotary kiln; and the rational use
of secondary air can reduce coal consumption and reduce
energy waste. The temperature of the secondary air not
only reflects the heat exchange effect between the high-
temperature clinker and the cooling air but also reflects
how much heat the rotary kiln receives from the grate
cooler.

When the secondary air temperature is too high, the heat
exchange efficiency between the rotary kiln and the grate
cooler is high, the flame of the coal injection pipe of the
kiln head is shortened and drifts upward, and the combustion
of pulverized coal accelerates, which will cause local high
temperatures and easily damage the kiln skin and refractory
brick. This affects the safe operation of the rotary kiln. When
the secondary air temperature is low, the heat exchange effi-
ciency between the rotary kiln and the grate cooler is low.
At this time, the black fire head of the kiln head coal injection
pipe is longer, the flame becomes longer, and the heat is
dispersed. The calcination in the rotary kiln occurs at a lower
temperature.

B. SELECTION OF MODELLING VARIABLES
To ensure the effect of the related functions of the clinker
cooling process, the working state of the grate cooler needs
to be monitored. Through the above analysis of the related
processes of the grate cooler, it is found that the grate cooler
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FIGURE 3. The modelling variables relationship diagram.

is closely related to the production process of the rotary
kiln. Through the coordinated control of the grate cooler
and the rotary kiln, the clinker can be quickly cooled during
the cement cooling process, and the thermal efficiency of
the grate cooler can be improved, which improves the quality
of the clinker. Therefore, the working state parameters of
the grate cooler and the rotary kiln need to be set. This
part involves many parameters, but many parameters are
not used as the basis for regulation in the industrial site.
When the operating conditions of the grate cooler and the
rotary kiln change, the operator of the central control room
often makes judgements and adjustments based on several
fixed parameters. According to the above analysis of the
grate cooler related process and the summary of an excellent
operator’s operating experience in the central control room,
the following 8 process parameters are selected as the main
modelling variables, and these 8mainmodelling variables are
used as the input variables for the grate pressure prediction
model. The relationship diagram of the model input variables
is shown in Fig.3.

The graph in Figure 3 illustrates the closed-loop relation-
ship between the partial modelling variables and the cement
grate cooler pressure. Due to the complex mechanism and
strong coupling of the burning and cooling process, the spe-
cific mathematical functional relationship cannot be found
between the modelling variables in the actual production
process. The approximate relationship between themodelling
variables is as follows.

The hoist entering kiln electric current reflects the amount
of raw material in the rotary kiln during a period of time.
As the amount of raw material that enters the rotary kiln
increased, the hoist entering kiln electric current becomes
larger. Because of the evaporation of water during the drying
process of the raw meal, water vapour is formed and carbon
dioxide is released. Therefore, the temperature of the exhaust
gas in the rotary kiln first decreases. When the raw material
reaches the burning zone in the rotary kiln, the rotary kiln
burning zone temperature is decreased, the amount of clinker
from the rotary kiln is increased, and the cement grate cooler
pressure becomes larger.

When the cement grate cooler pressure is too high,
the rotary kiln clinker layer is too thick for the cooling air
to blow through the material layer, which leads to the rise of
the secondary air temperature. The increase of the secondary
air temperature adversely affects the temperature of the rotary
kiln burning zone, and then it changes the amount of injected
coal.

When the amount of injected coal increases, in the oxi-
dation stage, the temperature of the rotary kiln burning
zone increases, and the temperature of the clinker out
of the rotary kiln increases. At this time, the idle speed
of the cement grate cooler increases, the heat dissipation
accelerates, and the pressure of the cement grate cooler
decreases. When overburning, the combustion enters the
reduction phase, the air in the rotary kiln is consumed
and the carbon dioxide increases, Then, the temperature of
the rotary kiln is reduced the temperature of the clinker
in the rotary kiln is lowered, the idle speed of the grate
cooler is reduced, and the cement grate cooler pressure is
increased.

The changes in the rotary kiln electric current reflect the
burning conditions in the rotary kiln. When the amount of
raw material entering the rotary kiln increases or the tem-
perature of the rotary kiln burning zone increases, the min-
erals added to the liquid phase increase and the viscosity
also increases, which will cause the load to increase when
the rotary kiln rotates and the rotary kiln electric current
becomes larger. In both cases, the cement grate cooler pres-
sure will be changed, and so the rotary kiln electric cur-
rent is also an indirect indicator of the cement grate cooler
pressure. When the idle speed of the grate cooler is too
fast, the clinker comes out of the cement grate cooler with-
out being completely cooled. At this time, the secondary
air temperature and the temperature before the rotary kiln
are reduced, and the pulverized coal cannot be burned as
soon as possible; therefore, the rotary kiln burning zone
temperature decreases and the rotary kiln electric current
drops.

The rotary kiln head negative pressure is a reaction indi-
cator of the balance of the air volume in the cement cooling
process. It mainly includes the volumes of the cooling air,
the secondary air, the tertiary air and the residual air of
the grate cooler, which can indirectly reflect the underarm
pressure during this period.

III. DATA PREPROCESSING
This paper take a 5000 t/d production line in a cement
factory in Shandong Province as its background, and this
model is only suitable for the automatic control of the grate
cooler pressure when no special working conditions occur.
Our collection of modelling data uses the OLE for Process
Control (OPC) protocol to read the on-site production data
from the distributed computer system (DCS) to the on-site
database. Then, we extract the data on continuous and stable
production from the on-site database and send them to a local
computer for grate cooler pressure prediction model mod-
elling. Considering the data have large fluctuations andin-
stability, if the amount of data is too large, the speed of the
analysis will become slower; conversely, less data are not
enough to prove the correctness of the analysis. Therefore,
the data extracted in the field are first subjected to data
preprocessing in order to reduce the modelling effect caused
by the data.
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TABLE 2. Leyte criteria data sample.

A. ELIMINATION OF LARGE DEVIATION DATA BASED ON
LEYTE CRITERION
We use the following equation to find the mean value of the
field data of the modelling variables:

x =
n∑
i=1

xi (2)

We find the data deviation Vi as follows:

Vi = xi − x (3)

We calculate the standard deviation of themodelling variables
and the target vectors σ as followsčž

σ =

√√√√√ n∑
i=1

V 2
i

n− 1
(4)

If the absolute value of the deviation is greater than three
standard deviations, which is |Vi| > 3σ , it is considered that
xi is abnormal datum and should be excluded. The averages
and standard deviations are shown in Table 2.

B. ELIMINATION OF ABNORMAL DATA BASED ON THE
PROCESS INDEX AND FIELD PRODUCTION INDEX
After the elimination of data with large deviations, we need
to avoid the impact of data with large deviations on the
modelling predictive models. Due to the differences in the
main components of the rawmaterials for cement production,
the automation level of the production equipment, the age of
the production equipment and the operating experience of the
field operators, many production parameters will fluctuate,
and process parameters will also fluctuate; however, the pro-
cess parameters fluctuate less and the production parameters
will fluctuate more due to different advanced levels of pro-
duction equipment. Table 3 shows the specifications of the
process parameters related to the 5000 t/d production line
under normal conditions.

According to the fluctuation range of the technologi-
cal indexes during the long-term stable operations of the
on-site production line, combined with the process indexes
in Table 3, the comprehensive indexes suitable for the relevant

TABLE 3. Technological indexes and reference indicators.

TABLE 4. Technological indexes and comprehensive indicators.

process parameters of the production line are given again,
as shown in Table 4.

According to the comprehensive indicators, the collected
production data have been standardized, and some unquali-
fied indicators have been eliminated. Finally, the remaining
5118 sets of data are used as the experimental data in this
paper.

C. DATA NORMALIZATION
Different modelling variables have different dimensions
and dimensional units. This situation will affect the data
analysis results. To eliminate the dimensional influence
between modelling variables, data standardization needs to
be performed. This paper normalizes the modelling vari-
ables after data normalization, and normalizes the mod-
elling variables to 0-1 so that the indicators are on the same
order of magnitude, which is suitable for the comprehen-
sive comparative evaluation. The normalization formula is as
follows:

Xi =
xi −min (x)

max (x)−min (x)
(5)

Here, Xi (1 ≤ Xi ≤ 5118) is the number of modelling
variables; max (x) and min (x) are the maximum and
minimum values of the modelling variables, respectively;
and Xi (1 ≤ Xi ≤ 5118) is normalized data. After three
data processing steps, the modelling variables are shown
in Fig.4.
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FIGURE 4. Modelling variables are normalized to 0-1.

IV. QUALITY EVALUATION METHOD OF THE FUSION
MODEL BASED ON THE MFQCs
A. PROPOSED QUALITY EVALUATION METHOD FOR A
FUSION MODEL BASED ON THE MFQCs
At present, the prediction of the cement grate cooler pressure
is mostly conducted using a single model. Different models
have different abilities to express data, and so the predicted
results are also inconsistent. For example, an SVM uses an
inner product kernel function instead of nonlinear mapping
to a high-dimensional space. The final result is determined
by a small number of vectors, which can capture the main
samples; however, the SVM itself has a drawback that it
is difficult to implement for large data sets. A BP neural
network can conduct large-scale data set training, it can per-
form nonlinear mapping, and it has a strong generalization
ability. However, when using the gradient descent method,
the convergence speed is slow, and it is easy to fall into
the local optimum value, resulting in training failure. The
prediction effect evaluation for a single model can be com-
pared with the original data using a single model prediction,
and it can be used to evaluate the quality of the model
prediction [8].

In this paper, a variety of algorithms are used to form a
fusion model. The results of a single model prediction cannot
evaluate the prediction effect of the fusion model. According
to analysis the characteristics of the proposed model fusion
algorithm, the results predicted by a single algorithm are
fused, and the fusion results are compared with the original
data. Then, its RMSE or PLCC is calculated to evaluate the
quality of themodel prediction. To facilitate the recording and
evaluation, the results of the fusion of the single algorithm
prediction results are named the multi-model fusion quality
characteristics, and the quality of the fusion model is evalu-
ated by using the RMSE and PLCC of the multi-model fusion
data quality features.

B. DESIGN MFQCs
The formation of the MFQCs mainly adopts a combination
strategy. As shown in formula (6), fi (x) models node i, and
Wi is the weight corresponding to the model [9].

F (x) =
m∑
i=1

Wif (x) (6)

The weights are obtained in two ways: the PLCC and the
RMSE .

1) Use the RMSE to get the weight. RMSE is the root
mean square error, and its calculation formula is shown
in formula (7). The smaller the value is, the higher
the prediction quality of the model and the higher the
accuracy of the algorithm. is the raw data and is the
forecasted data.

RMSE =

[
1
n

n∑
i=1

(xi − yi)2
] 1

2

(7)

Theweight calculation formula is shown in formula (8).
RMSEi is the RMSE value of node i’s model prediction
data. 

Wi =
RMSE−1i
n∑
j=1

RMSE−1i

F (x) =
m∑
i=1

Wifi (x)

(8)

2) Use the PLCC to get the weight. PLCC is the Pearson
coefficient and is an indicator of the linear correlation
between two results. The higher the value is, the higher
the linear correlation. Its calculation formula is as
shown in formula (9), where xi is the raw data and yi
is the forecasted data.

PLCC =
1

n− 1

n∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
(9)

The weight calculation formula is shown in for-
mula (10). PLCCi is the PLCC value of the model of
node i’s prediction data.

Wi =
PLCCi
n∑
j=1

PLCCj

F (x) =
m∑
i=1

Wifi (x)

(10)

C. INTRODUCTION TO SCORING MODEL
After reading many documents, this paper decides to use
the BP neural network algorithm (BP), the support vector
machine algorithm (SVM) and the classification and regres-
sion trees algorithm (CART) to construct the predictivemodel
of the underarm pressure.
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FIGURE 5. BP neural network structure.

1) NEURAL NETWORK MODEL
The BP neural network algorithm is the most widely used
neural network algorithm. The algorithm has two major fea-
tures: forward propagation of the input signal and backward
correction of the weight threshold. The structure of the BP
neural network is shown in Fig.5.

The input of the BP neural network is x = [x1x2 · · · xn] and
the output is y = [y1y2 · · · ym]. The weights between neurons
areWij andWjk , φ (x) is the implicit layer activation function,
and ψ (x) is the output layer activation function [10].

1) Forward propagation of signals
Input neti of node i in the implicit layer:

neti =
n∑
j=1

Wijxj + θi (11)

Output neti of node i in the implicit layer:

yi = φ (neti) = φ

 n∑
j=1

Wijxj + θi

 (12)

Input netk of node k in the output layer:

netk =
q∑
i=1

Wki + αk

=

q∑
i=1

Wkiφ

 n∑
j=1

Wijxj + θi

+αk (13)

Output yk of node k in the output layer:

yk = ψ (netk) = ψ

( q∑
i=1

Wki + αk

)

= ψ

 q∑
i=1

Wkiφ

 n∑
j=1

Wijxj + θi

+ αk
 (14)

2) Reverse correction of the of errors
The quadratic error criterion function for each sample
p is Ep:

Ep =
1
2

m∑
k=1

(Tk − yk)2 (15)

The total error criterion function of the system for
training samples with the number p is as follows:

E =
1
2

p∑
1

m∑
k=1

(
T pk − y

p
k

)2 (16)

According to the error gradient descent method, the correc-
tion amount 1Wki of the output layer weight value, the cor-
rection amount 1αk of the output layer threshold value, the
correction amount 1Wij of the implicit layer weight value
and the correction amount1θi of the implicit layer threshold
value are sequentially corrected.

1Wki = −η
∂E
∂Wki
; 1αk = −η

∂E
∂αk

1Wij = −η
∂E
∂Wij
; 1θi = −η

∂E
∂θi

(17)

Output layer weight value adjustment formula:

1Wki = −η
∂E
∂yk

∂yk
∂netk

∂netk
∂Wki

= η

p∑
p=1

m∑
k=1

(
T pk − y

p
k

)
· ψ ′ (netk) · yi (18)

Output layer threshold adjustment formula:

1αk = −η
∂E
∂yk

∂yk
∂netk

∂netk
∂αk

= η

p∑
p=1

m∑
k=1

(
T pk − y

p
k

)
· ψ ′ (netk) (19)

Implicit layer weight adjustment formula:

1Wij = −η
∂E
∂yi

∂yi
∂neti

∂neti
∂Wij

= η

p∑
p=1

m∑
k=1

(
T pk − y

p
k

)
·ψ ′ (netk) ·Wki · φ

′ (neti) · xj (20)

Implicit layer threshold adjustment formula:

1θi = −η
∂E
∂yi

∂yi
∂neti

∂neti
∂θi

= η

p∑
p=1

m∑
k=1

(
T pk − y

p
k

)
· ψ ′ (netk) ·Wki · φ

′ (neti)

(21)

2) SUPPORT VECTOR MACHINE MODEL
The core of a support vector machine is to find a non-
linear function. Through this function, the given sample
D =

{(
x1,y1

)
,
(
x2,y2

)
, . . . ,

(
xm,ym

)}
is mapped from a low-

dimensional space to high-dimensional space F , the original
non-linear problem is converted into a linear problem, and the
following regression model formula is obtained:

f (x) = ωT x + b (22)
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ω is the weight vector of space F ; and b is the intercept,
which determines the position of the hyperplane.

The SVM problem is formalized as formula (23):

min
ω,b,e

J (ω, e) =
1
2
ωTω +

1
2
C

N∑
i=1

e2i

s.t.yi = wT x + b+ ei i = 1, 2, . . . ,N (23)

where ei is the error variable andC is the penalty factor, which
represents the tolerance for errors. The largerC is, the smaller
the tolerance for errors, and the easier it is for the model to
be overfit. The smaller C is, the easier it is for the model to
be underfit. If C is too large or too small, the generalization
ability of the model will deteriorate. In the SVM program, C
is represented by gamma.

The conditional problem under the priority constraint is
transformed into an unconstrained optimization problem by
Lagrange function, and the output after grouping according
to the radial basis function is expressed as formula (24).

y = f (x) =
N∑
i=1

λi · exp

(
−
(x − xi)2

2 · σ 2

)
+ b (24)

Among them, the input quantity is x, the output quantity is
y, λi is the Lagrange multiplier, and σ 2 is a parameter of the
kernel function [11].

3) CLASSIFICATION AND REGRESSION TREES
The overall flow of the regression tree is similar to the classi-
fication tree. When branching, it exhausts every threshold of
every feature to find the optimal segmentation feature j and
the optimal segmentation point. The goal is to minimize the
squared error. Branches do not stop until a preset termination
condition (such as the upper limit of the number of leaves) is
reached [12].

Using the minimum squared difference criterion, the input
of the training data set is

D =
{(
x1,y1

)
,
(
x2,y2

)
, . . . ,

(
xm,ym

)}
(25)

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2


ĉm =

1
Nm

∑
xi∈R2(j,s)

yi x ∈ Rm, m ∈ 1, 2 (26)

where c1 and c2 are the average output values in intervals
R1 and R2, respectively. To minimize the squared error, we
need to traverse each value of each feature in turn, calculate
the error of each possible segmentation point at present, then
select the point with the smallest segmentation error to divide
the input space into two parts, and finally recursively perform
the above steps until the segmentation is finished to form the
regression tree f (x) [13].

f (x) =
M∑
m=1

cmI (x ∈ R) (27)

FIGURE 6. Multi-model fusion neural network structure.

V. MULTI-MODEL FUSION NEURAL NETWORK
The multi-model fusion neural network is an evolution of
the traditional neural network, and it has the structure of
a neural network. The 1-n middle layer of the multi-model
fusion neural network is similar to the hidden layer of the
traditional neural network. The middle layer neurons of the
multi-model fusion neural network are a single BP neural net-
work, an SVM and CART. The structure of the Multi-model
fusion neural network is shown in Fig.6 [14]. While the tradi-
tional neural network models are signal forward propagation
and error back propagation, the multi-model fusion neural
networks only have signal forward propagation, and the error
back propagation is adjusted in the middle layer neurons.

The multi-model fusion neural network’s input is x =
[x1x2x3x4x5x6x7]T , the output is y, the weight between neu-
rons is 1, φ (i) is the middle layer algorithm, the BP algorithm
is named 1, the SVM algorithm is named 2 and the CART
algorithm is named 3.

The input of the middle layer neuron is neti (i = 1, 2, 3).
The output of the middle layer neurons is yi:

yi = φ (neti) (28)

The outputs of the three neurons in the middle layer of the
first layer are y1, y2 and y3, respectively. The MFQCs feature
combination is performed according to the RMSE indicators,
and the output is y:

y = yi
RMSE−1i
3∑
i=1

RMSE−1i

(29)

The MFQC feature combination is performed according to
the PLCC indicators, and the output is y:

y = yi
PLCCi
3∑
i=1

PLCCi

(30)

VI. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
A. MODELLING PARAMETER SELECTION
Because the weight of each algorithm neuron in each mid-
dle layer of the multi-model fusion neural network is 1,
the parameter selection of the entire fusion model is divided
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FIGURE 7. Model parameter selection process.

into two parts: the selection of the algorithm neuron parame-
ters for each middle layer and the selection of the number of
middle layers.

1) THE SELECTION OF THE ALGORITHM NEURON
PARAMETERS FOR EACH MIDDLE LAYER
As seen from Fig.6, the number of input variables of each
algorithm neuron in the first middle layer and the 2-n middle
layer is different, and so the process needs to be divided into
two parts to select the relevant parameters.

The main characteristics of the traditional BP neural net-
work are the forward propagation of the input signal and
the reverse correction of the errors. We use the ideas of the
traditional BP neural network signal forward propagation
and error direction correction to select the algorithm neu-
ron parameters of each middle layer by trial and error. The
process of selecting the algorithm neuron parameters of each
intermediate layer through trial and error is shown in Fig.7.

Usually, there is not a fixed formula and method to find the
number of neurons in the hidden layer of the neural network.
To ensure the accuracy of the modelling results and prevent
the occurrence of overfitting, in most cases, we usually set the
number of initial hidden layer neurons to 2n+ 1 based on the
number of input variables, and then we use a trial and error
method to adjust it to an ideal state. 2n + 1 is the number
of hidden layers in a single BP neural network neuron. For a
multi-model fusion neural network, the number of BP neuron
input variables in the first middle layer and the second to Nth
middle layers is different, and so the number of BP hidden

TABLE 5. Parameters of the neurons of the first middle layer.

layer neurons in the first middle layer is different from that of
the second to Nth middle layers.

After adjusting the number of BP hidden layer neurons
using the trial and error method and then modelling it many
times, it is found that the number of BP hidden layer neu-
rons has little influence on the modelling results of the
multi-model fusion neural network. Therefore, in order to
simplify the complexity of the parameter selection in the
modelling process without affecting the modelling results,
we uniformly set the number of BP hidden layer neurons as
2n + 1.
According to the above process, the relevant parameters of

the model are finally determined as shown in Tables 5 and 6.

2) THE SELECTION OF THE NUMBER OF MIDDLE LAYERS
Through the adjustment of the middle layer of the
multi-model fusion neural network, the prediction model of
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TABLE 6. Parameters of the neurons of the 2nd to 50th middle layers.

the cement grate cooler pressure is repeatedly modelled. The
modelling results are shown in Table 7.

According to the comparison of the data in Table 7, regard-
ing the accuracy of the model, when the number of middle
layers is 30, the model accuracy is low; when the number
of middle layers is 40, the accuracy increases; and after
50 layers, the accuracy tends to be gentle. Considering the
running time of the model, as the number of intermediate
layers increases, the running time of the model gradually
increases. Combining the two factors of model accuracy and
model running time, using 50 intermediate layers can obtain
higher efficiency, and so the number of intermediate layers is
fixed at 50 [15].

B. EXPERIMENTAL DESIGN
As being verified in the third chapter, as the evaluation
indexes of the prediction model, the results proved that the

TABLE 7. Comparison of the modelling results for different numbers of
middle layers.

RMSE and PLCC of the MFQCs are better than those of
a single algorithm. Therefore, the multi-model fusion neu-
ral network after fusion uses the RMSE and PLCC of the
MFQCs as the evaluation indexes of the model’s prediction
effect. After selecting the structure of the fusion model, this
paper verified the prediction ability of the fusion model. The
specific steps are as follows [16]:

1) Select 5118 data sets after data processing, and ran-
domly separate the 5118 data sets into training sets and
test sets at ratios of 6:4, 7:3, and 8:2;

2) Conduct proportional model modelling based on the
BP neural network, the SVM, the CART and the
multi-model fusion neural network;

3) Save the three proportional models established by the
BP, SVM, and the CART and the multi-model fusion
neural network, and then input the test data to test the
models’ accuracy;

4) Record the test results for the RMSE , the PLCC and
the calculation time of the test results for the mod-
els established by BP, SVM, CART and multi-model
fusion neural network;

5) Compare and analyse the RMSE , PLCC , and calcula-
tion time of the test results of the models established by
the four algorithms; and

6) Display and analyse the change trends of the RMSE
and PLCC of the middle layer MFQCs during the test
process of the model established by the multi-model
fusion neural network.

C. RESULT ANALYSIS
After experimental verification, all the results of the experi-
ment are recorded, as shown in Table 8.

Table 8 shows the following.
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TABLE 8. Fusion model prediction effect using verification data.

1) According to the calculation time, the BP, SVM and
CART are faster than the multi-model fusion neural
network, but the accuracy of the BP, SVM and CART
when predicting grate cooler pressure is much lower
than that of the multi-model fusion neural network.
After the analysis of the cement production process,
the cement production process has the characteristics
of a large time lag, and the grate cooler pressure does
not need to be predicted in real time during produc-
tion; therefore, for cement production, the prediction
accuracy is much more important than the calculation
time.

2) Under each training set to test set ratio, the differences
among the prediction results of the cement grate cooler
pressure prediction models established by the BP neu-
ral network, SVM and CART are not that much. Since
the data are randomly selected, when a new set of data
is extracted again, the prediction result will generate
small-scale fluctuations, Due to the influence of these
fluctuations, it is impossible to ensure which algorithm
is more advantageous for predicting the cement grate
cooler pressure.

3) Under the three ratios of the training set and test set,
the underarm pressure predicted by the fusion model
is significantly better than the model prediction results
generated by the other three algorithms.

According to the results obtained in the above table, obvi-
ously, the fusionmodel prediction result is better than those of
the single models. To further prove that the fusion model has
better a prediction effect, the following is the trend graphs of
the RMSE and PLCC changes of the middle layer MFQCs of
the fusion model obtained through these three ratios. [17] In

FIGURE 8. Trends of the RMSE and PLCC in the middle layer of the fusion
model when the ratio of the training data to the test data is 6: 4.

FIGURE 9. Trends of the RMSE and PLCC in the middle layer of the fusion
model when the ratio of the training data to the test data is 7: 3.

FIGURE 10. Trends of the RMSE and PLCC in the middle layer of the
fusion model when the ratio of the training data to the test data is 8: 2.

FIGURE 11. The actual prediction results and the first 200 groups of
enlarged images when the ratio of training data to test data is 6: 4.

the figure, RMSE1 is the trend of the RMSE in the middle
layer during the training of the model. RMSE2 is the trend
of the RMSE in the middle layer during the fusion model
test, and PLCC1 is the trend of the PLCC in the middle layer
during the training of the model. PLCC2 is the trend of the
PLCC in the middle layer during the fusion model test.
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FIGURE 12. Actual forecasting error and the first 200 groups of enlarged
pictures when the ratio of training data to test data is 6: 4.

FIGURE 13. The actual prediction results and the first 200 groups of
enlarged images when the ratio of training data to test data is 7:3.

FIGURE 14. Actual forecasting error and the first 200 groups of enlarged
pictures when the ratio of training data to test data is 7: 3.

The following can be derived from the above three figures.
1) At each ratio, the RMSE of the MFQCs of each middle

layer gradually decreases, and the PLCC gradually
increases. The smaller the RMSE is, the better the
prediction effect. The larger the RMSE is, the better the
prediction effect.

2) The larger the amount of data in the training set is,
the more obvious the trend change, and the trends of
the two indicators are more obvious than those in the
test set.

Through the above experimental verification and com-
parison of the trend graphs, the accuracy of the cement
grate cooler pressure prediction model established by the
multi-model fusion neural network is higher than that of the
cement grate cooler pressure prediction model established by
a single algorithm.

Fig.11-16 show the actual prediction results. M represents
the original test data set, and Q represents the prediction data
of the grate cooler pressure using multi-model fusion neural
network. Due to the large amount of prediction data, the spe-
cific prediction effect cannot be displayed well. To better
judge the prediction effect, we enlarge the first 200 groups
of the comparison results between the prediction data and the
original data.

It can be seen from the error graph that the error fluctuation
range of the predicted cement grate cooler pressure compared
to the actual cement grate cooler pressure under the three
ratios of training data to test data is Mostly within ±40Pa.
Because there are many factors that affect the grate cooler
pressure in industrial production, the grate cooler pressure is

FIGURE 15. The actual prediction results and the first 200 groups of
enlarged images when the ratio of training data to test data is 8: 2.

FIGURE 16. Actual forecasting error and the first 200 groups of enlarged
pictures when the ratio of training data to test data is 8: 2.

unstable. In industrial production, the grate cooler pressure
fluctuates within a certain range, and the fluctuation range
is about ±300Pa. Therefore, when the predicted result of
the model is within ±300Pa of the actual value, it can truly
reflect the actual situation of the grate cooler pressure and has
no impact on the on-site regulation. Because the predicted
results of the grate cooler pressure from the model based
on the multi-model fusion neural network can be stabilized
within ±120Pa of the actual value, the prediction results can
reasonably reflect the actual cement grate cooler pressure and
can provide a basis for the control of the cement grate cooler
pressure on site.

VII. CONCLUSION
To improve the prediction of the cement grate cooler pressure,
this paper proposed a method for predicting the cement grate
cooler pressure based on information fusion. After record-
ing and analysing the two experimental results, it is found
that the fusion model can better predict the cement grate
cooler pressure than a prediction model generated by a single
algorithm. The prediction process of the fusion model is a
process of continuously optimizing the prediction results of
a single model. The greater the number of middle layers,
the higher the prediction accuracy, and the more obvious the
optimization effect. If the number of middle layers is set too
high, the predictive model will run for a long time. Thus, this
paper combined actual production with experiments. When
the number of middle layers is below 50, the model predic-
tion efficiency is high. The larger the amount of modelling
data is, the better the prediction effect for the fusion model.
Combined with the actual production on site, it is found
that the cement cooling process will generate a large amount
of production data, which meets the requirements for the
modelling data of the fusionmodel. Therefore, the production
data of the cement cooling process can be used for the fusion
model’s prediction of the cement grate cooler pressure. The
prediction results produced by the information fusion method
proposed in this paper are not accidental, which is why this
paper intends to improve the accuracy by balancing the pre-
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TABLE 9. English abbreviation definition.

diction advantages of single algorithms through a reasonable
design. This method is universal, it is easy to implement in
engineering practice and it has broad practical prospects.

APPENDIX
See Table 9.
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