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ABSTRACT Segmentation of 2D images is a fundamental problem for biomedical image analysis. The most
widely used architecture for biomedical image segmentation is U-Net. U-Net introduces skip-connections to
restore the spatial information loss caused by down-sampling operations. However, for some tasks such as
the retinal vessel segmentation, the loss information of structure can not be fully recovered since the vessels
is merely a curve line that can not be detected after several convolutions. In this paper, we introduce a deep
guidance network to segment the biomedical image. Our proposed network consists of a guided image filter
module to restore the structure information through the guidance image. Our method enables end to end
training and fast inference (43ms for one image). We conduct extensive experiments for the task of vessel
segmentation and optic disc and cup segmentation. The experiments on four publicly available datasets:
ORIGA, REFUGE, DRIVE, and CHASEDB1 verify the effectiveness of our method.

INDEX TERMS Biomedical image segmentation, semantic segmentation, guided filter.

I. INTRODUCTION
Deep neural networks especially convolutional neural net-
works (CNNs) outperform the state-of-the-art in many visual
recognition tasks. Such as image classification [1], image
segmentation [2], object detection [3]. The success of CNNs
is mainly due to the higher levels of abstraction [4]. The
mid-level and high-level abstractions extracted from the
image are quite effective. For biomedical image segmenta-
tion, the most popular architecture is U-Net [5]. U-Net has
shown great performance for many biomedical image seg-
mentation tasks such as optic disc and cup segmentation [6],
vessel segmentation [7], tumor segmentation [8]. U-Net intro-
duces skip-connections to fuse multi-level features and these
skip connections have been shown to help recover the full
spatial resolution at the network output which is essential for
biomedical image segmentation [9].

In this paper, we focus on the segmentation of optic disc,
optic cup and vessels in fundus image as shown in Figure.1.
A fundus image mainly consists of retinal blood vessels,
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FIGURE 1. A fundus image and corresponding retinal vessel
segmentation ground truth. The fundus image consists of an optic disc
and an optic cup for each person.

an optic disc (OD) and an optic cup (OC). The retinal vessels
in fundus images help doctors to diagnose many retinal dis-
eases such as diabetic retinopathy, hypertensive retinopathy,
solar retinopathy, retinal vein or artery occlusion [10]. The
vessel widths range from one pixel to twenty pixels depend-
ing on both the width of the vessel and the image resolution.
The shape of OD and OC can assist doctors to diagnose glau-
coma, which is one of the leading causes of blindness [11].
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The early detection and treatment for glaucoma often protect
the eyes against serious vision loss. Clinically, the vertical
cup to disc ratio (CDR) is a popular optic nerve head (ONH)
assessment that is widely adopted by trained glaucoma spe-
cialists to screen glaucoma. The CDR is the comparison of
the diameter of the optic cup to optic disc, which partially
represents disease status. The normal CDR is 0.3 to 0.4.
A larger CDR may indicate glaucoma or other diseases such
as neuro-ophthalmic diseases. Previous studies showed that
larger vertical (not horizontal) CDR is closely associated with
the progression of glaucoma. Although not accurate enough,
CDR is very useful in clinical practice and evaluation of
glaucoma. Accurate optic disc and cup segmentations are
essential for CDR measurement.

The biomedical images are collected by different types
of sensors and they are contaminated by different types of
noises. Such as additive white Gaussian noise (AWGN) [12],
speckle noise [13], salt and pepper noise [14], rician
noise [15], etc. The fundus images are also often corrupted
by clouding [16]. The human eye is an optical system and the
light received by the fundus camera is often attenuated along
the path of the light. This can be serious when the lens of
the human eye is affected by diseases such as cataracts. Since
the cataract accounts for 33% of blindness worldwide [17]
and its global prevalence in adults over 50 years of age was
about 47.8% in 2002 [18], the clouding of retinal imaging
is ineligible. Otherwise, retinal fundus images also suffer
from both the additive and multiplicative noise [19]. The poor
quality of the fundus image is harmful for the segmentation.

There are many challenges in fundus image segmenta-
tion due to the low image quality, for example, retinal
fundus images suffer from the cataractous lens so that in
optic cup segmentation, the boundary between the optic cup
and optic disc may have a wide range of gradients and
in hemorrhage detection or vessel segmentation, the inten-
sity of the vessels may vary largely from one image to
another and the vessel boundaries might also be obscured.
The tiny vessels are obscure particularly in low contrast
regions [19]. Furthermore, the down-sample operation of the
U-Net results in the loss of the spatial information, some
of these information such as small vessels can not restore
through skip-connections or up-sampling [20].

Image filters such as bilateral filter [21] and guided image
filter [22] play an important role in medical image process-
ing [23]. Guided image filter is an efficient tool to denoise
the positron emission tomography (PET) image [24] and
fundus image [16]. The guided image filter (GIF) is an
edge-preserving filter and computes the filtering output by
considering the content of a guidance image. GIF can make
the filtering output more structured and less smoothed than
the input with the help of a guidance image. GIF is effective
in denoising the fundus image and helps improve the per-
formance for optic disc, optic cup segmentation and vessel
segmentation [16].

In this paper, we propose a simple and efficient mul-
tiscale guided filter based network. We design a guided

filter module to restore the spatial information loss of
tiny thin vessels in the retinal image caused by the
down-sampling operation and introduces more structure
information into the neural network. Furthermore, the guided
filter module also reduces the noise effect of the image.
The extensive experiments show the effectiveness of our
method.

The main contributions of our paper are listed below:

• We design a guided filter module to preserve the edge
information, the guided filter module introduces more
edge information to the feature map.

• The proposed network is simple and effective, it allows
end to end training and fast inference.

II. RELATED WORK
A. OPTIC DISC AND CUP SEGMENTATION
Automatic OD and OC segmentation methods are under
extensive research during the last decades [25], [26]. Early
attempts for OC and OD segmentation in fundus images
are based on hand-craft features such as color [27], con-
trast thresholding [28], level set approach [29], clustering
based methods [30] and others [31]. However, manually
designed features lack sufficiently discriminative power so
that the imaging conditions and the complexity of patholog-
ical regions highly effect the performance. On the contrary,
deep learning techniques learn comprehensively appearance
feature from the labeled training set and rapidly become a
popular methodology to analyze medical images [32]. In par-
ticular, convolutional neural networks show the compromis-
ing performance in many tasks such as segmentation, classi-
fication and soon become a popular method for OD and OC
segmentation [6], [33]–[36].

B. RETINAL VESSEL SEGMENTATION
Recently, deep learning (DL) has been adopted to perform
vessel segmentation and has reported encouraging results.
U-Net [5] introduces an encoder-decoder architecture with
skip connections, which demonstrates excellent performance
for detecting the boundaries of neurons. Gu et al. [37] pro-
pose a context encoder network to capture more high-level
information and preserve spatial information for 2D ves-
sel segmentation. Yan et al. [38] train the U-Net simul-
taneously with a joint-loss including a pixel-wise and a
segment-level loss. DEU-Net [39] introduces a feature fusion
module to combine a spatial path with a large kernel to
preserve the spatial information and a context path with
a multiscale convolution block to capture more seman-
tic information. DeepVessel [40] applies a multi-scale and
multi-level Convolutional Neural Network (CNN) with a
side-output layer to learn a rich hierarchical representa-
tion and model the long-range interactions between pix-
els by a Conditional Random Field. Compared with prior
methods, our approach introduces a guided filter mod-
ule to introduce more edge information from the guidance
image.
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FIGURE 2. The flowchart of our proposed network. A U-shape network takes a RGB image and multiscale grey-scale guidance images as input, for each
path, the output feature map is enhanced by a guided filter module. The guided filter module introduces more edge information from the guidance
image into the feature map. Finally, a side-output layer predicts the vessels for each decoder path using the enhanced feature map.

III. METHOLOGY
The proposed flowchart is shown in Figure. 2. The backbone
of our network is U-Net. We design a guided image filter
module to preserve edge information and reduce the noise
effect of the feature map. The guidance image is a grey-scale
image. We also adopt a side output layer for each decoder
path. Section III-A describes our flowchart and Section III-B
introduces the guided filter module.

A. NETWORK ARCHITECTURE
The architecture of our network consists of a U-shape net-
work, multiscale guided filter modules, and side-output lay-
ers. The input of the architecture is the RGB image.

1) U-SHAPE NETWORK
The original U-Net architecture is an efficient fully convo-
lutional neural network for biomedical image segmentation.
Themain body of our deep architecture is similar to the U-Net
that consists of the encoder path (left side) and the decoder
path (right side). Each encoder path performs convolutions
with the element-wise rectified linear unit (ReLU) activation
function to produce encoder feature maps. The decoder path
also generates a decoder feature map using the convolution
layers. The skip connections transfer the corresponding fea-
ture map from the encoder path and concatenate them to
up-sampled decoder feature maps.

2) MULTISCALE GUIDED FILTER MODULE
The down-sample operation of the U-Net results in the spatial
information loss especially for the tiny thin vessels in the
retinal image, which ultimately cannot be restored through
skip-connections or up-sample operation. For optic disc and

cup segmentation, the boundary between the optic cup and
optic disc is also weak. To solve this problem, we design a
guided filter module to preserve the edge information from
the grey-scale guidance image. The guided filter module
takes the feature map and a guidance image as the input. The
output is a feature map that contains the structure information
from the guidance image. We add the guided filter module
after every down-sample operation and up-sample operation
in order to restore the spatial information loss caused by
the down-sample operation. Furthermore, the guided filter
module also reduces the noise effect.

3) SIDE-OUTPUT LAYERS
The side-output layer acts as a classifier that produces a
companion local output map for early layers. There are M
side-output layers in the network. The loss function of all the
side-output layers is given as:

Lside−output =
1
M

M∑
m=1

Lcross−entropy(y, y′), (1)

Lcross−entropy is the cross entropy loss for each side-output
layer:

Lcross−entropy = −
∑
i

(y′i log(yi)), (2)

yi is the predicted probability value for class i and y′i is the true
probability for that class. We employ 4 side-output maps and
an average layer to combine them all. The final loss function
is the sum of these 5 side-output losses. The side-output layer
relieves the gradient vanishing problem and helps the early
layer training by backpropagating the side-output loss to the
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FIGURE 3. The computation graph of the guided image filter module. Guided filtering module takes feature map F and guidance grey-scale image G as
inputs, generating the output O. The proposed layer is fully differentiable.

early layer in the decoder path.We adopt themultiscale fusion
since it has been demonstrated to achieve high performance.
The side-output layer also adds supervises information for
each scale to output the better result. The final classifier treats
the segmentation as the pixel-wise classification to produce
the probability map at each pixel.

B. GUIDED FILTER MODULE
In a guided filter, the guidance imageG can be identical to the
input image I . The output image O is computed by a linear
transform of the guidance image G in a windowWp centered
at the pixel p:

Oi = apGi + bp,∀i ∈ Wp. (3)

Here, i is the index of pixel of G. The linear transform coef-
ficients ap and bp are calculated by minimizing the objective
function:

E = (Oi − Ii)2 + εa2p. (4)

Here, ε is a regularization parameter. The solution of equa-
tion (4) is:

ap =
1
|Wp|

∑
i∈Wp

GiIi − µpIp

σ 2
p + ε

, (5)

bp = Ip − apµp. (6)

Here, Ip represents the mean of I in Wp, |Wp| denotes the
cardinality of Wp. σ 2

p and µp denote the variance and mean
of G in Wp respectively. However, a pixel i is involved
in all the overlapping windows Wp that covers i and the
the output of equation (8) from different windows is not
identical. The general solution is to average all the possible

values of ap and bp:

Oi = ap′Gi − bp′ . (7)

Here, ap′ and bp′ are the mean values of ap and bp in Wp:

ap′ =
1
|Wp|

∑
p∈Wp

ap. (8)

bp′ =
1
|Wp|

∑
p∈Wp

bp. (9)

With this average strategy, the abrupt intensity changes in G
can be mostly preserved in O and the above averaging also
reduce the noise. Motivated by this, we design a guided filter
module based on the guided image filter. The guided filter
module introduces more edge information from guidance
image and restores the spatial information loss caused by
down-sampling layers. Furthermore, the guided filter module
also reduces the noise effect due to the average operation.
The guided filter module can be formulated as a fully dif-
ferentiable layer and we jointly training the guided filter
module with backbone network to get direct supervision from
side-output layers.

However, the guided filter is not optimal for retinal image
processing due to it often smooth away some fine structures
close to flat [16]. In our guided image filter module, the
guided image filter is performed on the feature map in order
to incorporate more fine structure information from the guid-
ance image to the feature map. Specially, we concatenate the
output of the guided filter module O with the origin feature
map F to form amore powerful representation since the origin
feature map may contain some fine structures that filtered out
by the guided filter module.
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Algorithm 1 Computation Graph of Guided Filtering
Module
Input: Feature Map F .

Guidance Image G.
Radius r and Regularization term ε.

Output: Feature Map F ′.
1: F = fµ(F, r)
2: G = fµ(G, r)
3: G2 = fµ(G. ∗ G, r)
4: GF = fµ(F . ∗ G, r)
5:

∑
G = G2 − G. ∗ G

6:
∑

GF = GF − G. ∗ F
7: a =

∑
GF ./(

∑
G+ε)

8: b = F−a ∗ G
9: a = fµ(a), b = fµ(b)
10: O = a ∗ F + b
11: Concatenate F with O.
12: Perform a convolution to fuse the feature and change the

channel size of the feature.
13: F ′ = convolution([F |O])
14: return F ′

The computation graph of the guided filtering layer is
shown in Figure. 3 and the details are shown in Algorithm 1.
The input of the guided filter module is the feature map F and
the guidance imageG. For simplify, we choose the grey-scale
image as the guidance image. For some biomedical image
segmentation tasks, the RGB image is not available, such as
computed tomography (CT) and MRI. The grey-scale image
can be easily obtained. a and b are computed with mean filter
fµ with radius r . O is finally generated with a linear layer
taking a and b as inputs. ε is the regularization term, we set
r and ε to 2 and 1e-8 respectively. We concatenate O with F
to construct a more powerful feature representation and then
the feature is processed by a convolution layer to fuse the
feature and change the size of channels of the feature map.
The guided filter can be conveniently added into deep net-
works and the equations for propagating the gradients through
the guided filtering module are shown in Algorithm 2. The
gradient of output O could back-propagate to input F . The
guided filter module restores the information loss caused by
the down-sampling operation. The final feature maps are sent
to side-output layers for final prediction.

IV. EXPERIMENTS
We evaluate the model for two tasks: Optic disc and cup
segmentation and retinal vessel segmentation. Section IV-A
describes the dataset used for experiments. Section IV-B
describes the implementation details. Section IV-D intro-
duces the evaluation criteria. Section IV-D2 evaluates the
performance. Section IV-E perform ablative studies.

A. DATA PREPARATION
The experiments are performed on four public available
dataset: DRIVE [41] and CHASEDB1 [42] datasets for
retinal vessel segmentation. ORIGA [43] and REFUGE [44]

Algorithm 2 Gradients for Guided Filtering Module.
Input: Feature Map F .

Guidance Image G.
Radius r and Regularization Term ε.
Derivative for Output ∂O

Output: Gradients for the Input Feature Map ∂F .
1: ∂b = ∂O · ∇bfµ
2: ∂a = ∂O ∗ F · ∇afµ − ∂b ∗ G
3: ∂

∑
GF = ∂a/(

∑
G+ε)

4: ∂
∑

G = −∂a ∗
∑

GF /(
∑

G+ε)
2

5: ∂F = ∂b− ∂
∑

GF ∗G
6: ∂F = ∂

∑
GF ·∇G∗F fµ ∗ G− ∂F · ∇F fµ

7: return ∂F

dataset for optic disc and cup segmentation. The statistics of
the dataset is shown in Table 1:

TABLE 1. Dataset statistics.

1) DRIVE
DRIVE consists of 40 images (7 with pathology). It is divided
into 20 training images and 20 testing images along with two
manual segmentations of the vessels. The first segmentations
serve as ground truth while the second segmentations serve
as a human observer reference for performance comparison.
The images are of size 768 × 584 pixels and are captured in
digital form from a Canon CR5 non-mydriatic 3CCD camera
at 45◦ field of view (FOV).

2) CHASEDB1
The CHASEDB1 database [42] consists of 28 images of size
960× 999 pixels. These images are captured from 14 school
children by a handheld Nidek NM-200-D fundus camera at
30◦ field of view. The segmentation results of the first of the
two observers are deployed as the ground truth. We select the
first 20 images as the training set and the rest 8 images as
testing set [45].

3) ORIGA
The Online Retinal Fundus Image Dataset for Glaucoma
Analysis and Research (ORIGA) [43] consists of 650 images
acquired through the Singapore Malay Eye Study (SiMES)
and are annotated with the critical signs for glaucoma. The
dataset includes 168 glaucomatous and 482 non-glaucoma
images. The 650 images withmanual ground truth boundaries
are divided into 325 training images (including 73 glaucoma
cases) and 325 testing images (including 95 glaucoma cases)
as same as that in [6].

4) REFUGE
The REFUGE database [44] consists of 1200 images. The
dataset includes 120 glaucomatous and 1080 non-glaucoma
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images and provides pre-defined partitions into training and
test.

B. IMPLEMENTATION DETAILS
In this section, we introduce the experimental settings, the
implementation details and the data augmentation techniques
we adopted for the paper.

1) SETTINGS
For retinal vessel segmentation, we train the network
for 150 epochs, the initial learning rate is 0.001 and
decays 10 times every 50 epochs. For optic disc and cup
segmentation, we also train the network for 150 epochs
and the initial learning rate is 0.0001 and decays 10 times
every 50 epochs. The entire network is trained from scratch
and do not use extra training data. We train the network on the
training set and evaluated on the respective validation set for
each dataset. The experiments are conducted on an NVIDIA
GeForce RTX 2080 Ti GPU.

2) IMPLEMENTATION
The guided image filter has two parameters: the radius r and
the regularization term ε. For all the experiments, we set r =
2 and ε = 1e− 8. The input and output size of the network is
512× 512.

3) DATA AUGMENTATION
The network takes a whole fundus image as input and the
output is the same size as input. The data augmentation helps
the network conquer the over-fitting issues. The augmen-
tation techniques including random horizontally flip with
probability 0.5, random rotation within the range [0, 20◦]
and gamma contrast enhancement.We select gamma between
[0.5, 2]. We observe that data augmentation help increase the
performance.

C. OPTIC DISC AND CUP SEGMENTATION
1) EVALUATION CRITERIA
To evaluate our method for optic disc and cup segmentation,
we adopt the overlapping error (E) as the evaluation metric
for OD and OC segmentation:

E = 1−
Area(S

⋂
G)

Area(S
⋃
G)
. (10)

Here, S and G denote the predicted mask and corresponding
ground-truth.

2) EXPERIMENT PERFORMANCE
We compare our network with several state-of-the-art mod-
els including R-Bend [46], ASM [47], LRR [48], U-Net
[5], Superpixel [30], M-Net [6], Mask-RCNN [49] and
PM-Net [50].

Table 2 shows the performance of OD and OC
segmentation on ORIGA dataset. Our network outperforms
the baseline U-Net for a large margin. Especially for the OC

TABLE 2. Performance evaluation on ORIGA dataset.

segmentation. The boundary between OD and OC is weak.
The guidance filter module introduces more edge information
from the guidance image and improves the OC segmentation
performance. We do not perform any post-processing such as
a conditional random field or eclipse fitting. Figure 4 shows
the segmentation result of our model compared to U-Net. Our
model can accurately perform segmentation even under low
image quality as shown in the last two rows of the Figure 4.
Table 3 shows the performance of OD and OC segmenta-

tion on REFUGE dataset. We train on the training dataset and
evaluate the model on the validation dataset. Our method also
outperforms baseline U-Net for a large margin.

TABLE 3. Performance evaluation on REFUGE validation dataset.

D. RETINAL VESSEL SEGMENTATION
1) EVALUATION CRITERIA
The vessel segmentation process is a pixel-based classifica-
tion that any pixel is classified either as a vessel or surround-
ing tissue. We employ Specificity (Spe), Sensitivity (Sen),
Accuracy (Acc) and Area Under ROC (AUC) as measure-
ments. Sensitivity (Sen) reflects the ability of the algorithm
to detect the vessel pixels. Specificity (Spe) is the ability to
detect non-vessel pixels. The accuracy (Acc) is measured by
the ratio of the total number of correctly classified pixels (sum
of true positives and true negatives) to the number of pixels
in the image field of view (FOV):

Acc =
TP+ TN

TP+ FN + TN + FP
. (11)

Sen =
TP

TP+ FN
. (12)

Spe =
TN

TN + FP
. (13)

Here, TP represents the true positive where a pixel is iden-
tified as the vessel in both the segmented image and ground
truth, TN represents true negative where a non-vessel pixel
of the ground truth is correctly classified in the segmented
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FIGURE 4. The example results of our methods for optic disc and cup segmentation, (A) is the origin image and (B) is the corresponding
ground truth. (C) and (D) are the predictions using U-Net and our method respectively.

image. False negatives (FN) are the misclassifications where
a vessel pixel in the ground truth image is classified as
non-vessel in the segmented image and the false posi-
tives (FP) are the misclassifications where a non-vessel pixel
in the ground truth image is marked as the vessel in the
segmented image.

A receiver operating characteristic (ROC) curve plots the
fraction of vessel pixels correctly classified as vessel versus
the fraction of non-vessel pixels wrongly classified as the
vessel. The closer the curve approaches the top left corner,
the better is the performance of the system. The value of
the area under the curve (AUC) is the most frequently used
performance measure extracted from the ROC curve which
is 1 for an optimal system.

2) EXPERIMENT PERFORMANCE
We compare our network with several state-of-the-art models
including VesselNet [55], U-Net [5], DU-Net [39], Ladder-
Net [53], Bo Liu et al. [54]. CE-Net [37]. Fan et al. [56]
Our network achieves the best performance on DRIVE and
CHASEDB1 dataset as shown in Table 4, and Table 5. The
performance for each image on DRIVE and CHASEDB1
dataset are shown in Table 6 and Table 7, respectively.
We only calculate the pixels inside the field of view for these
two datasets.

For DRIVE and CHASEDB1 dataset, our network outper-
forms all the state-of-the-art methods and achieves the best
ACC, AUC, and SPE. The experiment result shows that our
method can effectively identify vessel pixels. Our method is
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FIGURE 5. The example results of our methods for retinal vessel segmentation, (A) is the origin image and (B) is the
corresponding ground truth. (C) and (D) are the predictions using U-Net and our method respectively.

TABLE 4. Segmentation performance for DRIVE inside FOV.

built upon U-Net and the performance outperforms U-Net for
a large margin. For DRIVE and CHASEDB1 dataset.

For the DRIVE dataset, ACC and AUC rank first, with a
significant improvement of 0.0026 and 0.0025 comparedwith

TABLE 5. Segmentation performance of CHASEDB1 inside FOV.

the previous highest score in the work of VesselNet [55]. The
SPE shows an increment of 0.0017 compared with U-Net.
Table 6 shows the segmentation performance for each image.
We observe that our method is robust to the pathology cases.

The CHASEDB1 dataset has nonuniform background illu-
mination, poor contrast of blood vessels as compared with
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TABLE 6. The performance for each image of DRIVE dataset inside FOV
predicted by side output layer 1.

TABLE 7. The performance for each image of CHASEDB1 dataset inside
FOV predicted by side output layer 1.

the background. Different from those of the adult retina,
the morphological characteristics of choroidal vessels in
retinal images taken from premature infants are more vis-
ible alongside the retinal vessels [42]. Our model achieves
the highest rank in ACC and AUC increased by 0.121
and 0.0009 respectively compared to the second highest
scores of VesselNet [55]. SPE is also the first place and
increases by 0.0032 compared to the previous highest scores
of Liskowski et al. [26].
The specificity values for the algorithm are the highest for

all of the two image databases that indicate the low false
positive rate of the methodology as compared with the other
methods including the second human observer. This, in turn,
indicates that the algorithm has identified less numbers of
background pixels or pathological area pixels as part of a
vessel than the other methods.

The best case accuracy, sensitivity, specificity, and AUC
for the DRIVE database are 0.9709, 0.8510, 0.9916, and
0.9917, respectively, and the worst case measures are 0.9531,
0.6830, 0.9776, and 0.9917, respectively. The best case ves-
sel segmentation result for the CHASEDB1 database has

TABLE 8. Ablative Studies on DRIVE inside FOV, GFM represents the
guided filter module.

an accuracy of 0.9862; sensitivity, specificity, and AUC are
0.8894, 0.9924, and 0.9907, respectively. The worst case
accuracy is 0.9710, sensitivity and specificity are 0.6398 and
0.9786, respectively.

For the DRIVE dataset, the sensitivity of our method is
0.7614 while U-Net is 0.7537. For the CHASEDB1 dataset,
the sensitivity of our method is 0.7993 while U-Net is 0.8288.
For the CHASEDB1 dataset, our method achieve compa-
rable sensitivity to other methods, such as LadderNet and
DU-Net. The over-segmentation problem occurs when the
network receives additional wrong edge information from
the guide filter module such as the pathology area. In our
model, we concatenate the feature map of the guided filter
module with the origin feature map. This design eases the
over-segmentation problem since the prediction is performed
not only depends on the feature map of the guided filter
module.

Among these methods, Yan et al. [38] is a multiscale
method and also tackles the issue of thin versus thick vessels
by employing a segment level loss function jointly with a
pixel-level loss function. Our method tangle the thin versus
thick vessels by adding additional edge information by multi-
scale guided image filter models and our method outperforms
Yan et al. [38] on two datasets.

E. ABATIVE STUDIES
Table 8 lists the performance by adding each module to our
network. Table 8 shows that the side-output layer and our
guided image filter module help improve the performance.
Especially, our guided image filter module improves the AUC
for a large margin.

1) SIDE OUTPUT LAYERS
Different side output layer predicts vessels with different size
and resolution. The side output layer increases Acc, AUC and
Spe by 0.0017(p<0.05), 0.0032(p<0.05) and 0.0038(p<0.05)
respectively. We also observe that our network is not affected
by the pathological area.

2) GUIDED FILTER MODULE
General object edges in natural images separate two regions
of different appearance, which allows the boundary to be
detectable even at deeper layers. However, retinal vessels
in fundus images appear merely as a curved line, which
is too thin to respond in the higher stride layers. The
guided filter module incorporates the edge information from
guidance image to the feature map of a deep neural net-
work, which is a benefit for vessel segmentation and optic
disc and cup segmentation. Furthermore, the guided filter
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module also reduces the noise effect. The guided image filter
module increases Acc, AUC, Sen, Spe by 0.0029(p<0.01),
0.0058(p<0.01), 0.0251(p<0.01), 0.0013(p<0.05) respec-
tively.

3) TIME COMSUMPTION
It only takes 44ms for our model to make a prediction with
image size 512×512 using a GPU. The entire model enables
end to end training and very fast inference due to the fast
implementation of the guided image filter. The guided image
filter module increases the model size by 0.418M

V. CONCLUSION
In this paper, we propose a multiscale network with guided
filter modules for vessel segmentation and optic disc and
cup segmentation. The network incorporates a guided image
filter module to introduce more edge information from the
guidance image to the neural network and restores the spatial
information loss caused by the down-sample operation. The
extensive experiments on two tasks verify the effectiveness
of our method. Furthermore, our method enables end to end
training and fast inference.
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