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ABSTRACT Estimation of black-box functions often requires evaluating an extensive number of expensive
noisy points. Learning algorithms can actively compare the similarity between the evaluated and unevaluated
points to determine the most informative subsequent points for efficient estimation of expensive functions in
a sequential procedure. In this paper, we propose an active learning methodology based on the integration of
Laplacian regularization and active learning - Cohn (ALC)measure for identification of the most informative
points for efficient estimation of noisy black-box functions using Gaussian processes. We propose two
simple greedy search algorithms for sequential optimization of the tuning parameters and determination
of subsequent points based on the information from the previously evaluated points. We also enhance the
graph Laplacian with the information of both the predictor and response variables to capture the similarity
between the points more effectively. The proposed methodology is particularly suited for problems involving
estimation of expensive black-box functions with a high level of noise and plenty of unevaluated points.
Using a case study for analysis of the kinematics of pitching in baseball as well as simulation experiments,
we demonstrate the performance of the proposed methodology against existing methods in the literature in
terms of estimation error.

INDEX TERMS Active learning, Gaussian process regression, kernel ridge regression, Laplacian
regularization.

I. INTRODUCTION
In many real-world problems, we encounter situations involv-
ing estimation of expensive noisy black-box functions. These
problems typically require a large number of evaluations that
could take hours or days for evaluating one single point
[1], [2]. Traditional response surface methods [3], which
are based on simple parametric models, may not properly
approximate these expensive black-box functions. Surrogate
modeling based on Gaussian process (GP), which can be
viewed as an extension of standard regression models, is one
of the most popular non-parametric probabilistic models for
estimating black-box functions [4]. GP has key advantages
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over most estimation methods, which includes: (1) ability
to fit highly nonlinear functions with minimal risk of over-
fitting, (2) built-in capability for uncertainty estimation and
quantification, and (3) small estimation bias [5], [6]. GP is
widely used in a variety of fields. It was first used for
time series analysis in the 1880s by astronomer Thiele [7]
and then in 1940s in Wiener-Kolmogorov prediction theory
[8], [9]. The use of GP in geo-statistics where it is referred to
as Kriging dates back to 1960s, where it is used to approx-
imate the function to determine the optimum location for
mining exploration [10]. Since then, it has been applied to
address statistical problems and widely being used in spatial
statistics. In statistics, it is one of the well-known approaches
for modeling and optimization of expensive functions like
complex computer models or codes [11]. In the machine
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learning community, the usage of GP is first explained by
Williams and Rasmussen [4]. Neal [12], shows that the neural
networks with infinite hidden units converge to GP. Various
aspects of GP, including model selection and adaptation of
hyperparameters, applications in regression and classification
problems, and relationship with other estimation models are
extensively discussed in the literature [13], [14].

A common application of GP is to emulate a physical sys-
tem when experiments are too costly to perform or infeasible,
i.e. wind tunnel testing [11], [15]. For such applications with
high experimentation cost generally the labeled/evaluated
data is very scarce. GP is typically built in a sequential
process, starting with a small number of initial points based
on a space-filling design, such as Latin hypercube design
(LHD) [16], sphere packing [17], uniform designs [18], and
then using a strategy to select the most promising points for
the next iteration, until some convergence criterion is met.
The selection of points should be in a way that additional
points shall improve the information content of the data that
describe the design space. Semi supervised learning approach
is one area of research that seeks to exploit the information
from both labeled and unlabeled data to improve the estima-
tion of the underlying function [19]. This approach assumes
the labeled data is given and fixed [20]. Then, active learning,
a subsection of semi supervised learning came into play to
use in conjunction with semi supervised learning to pick the
next evaluation point that augments the evaluated data. Active
learning, which uses both labeled data (evaluated points) and
unlabeled data (unevaluated points) for efficient estimation
of statistical models have been successfully applied to many
problems and received a lot of attention in machine learning
community during last few years [21]–[23]. Using the active
learning scenario with GP, the selection process of evaluation
point is such that it incorporates as much new information
into the model as possible, after seeing the training data [24].
Assuming that the given model is correct, active learning -
Mckay (ALM) and active learning - Cohn (ALC) are two pop-
ular algorithms for selecting the next evaluation points. ALM
measure is based on entropy (or cross entropy) for selecting
a point that maximizes the expected information gain [25].
It is similar to maximum entropy measure that is based on
selecting the points with highest uncertainty. The entropy
criterion tends to pick the points near to the boundary of the
area of interest as the high uncertainty points are the ones that
are far away from each other [26]. ALC on the other hand,
tries to minimize the generalization error. It selects a point
that reduces the average predictive variance at unevaluated
points [24]. Seo et al. [27] show that Cohn’s criterion of min-
imizing the average variance performs well with GP. Pasolli
and Melgani [28] propose two active learning strategies for
GP regression, one based on the distances in kernel space
from samples in the training set and the other one is based on
the variance. There are several other methods based on max-
imum entropy [29], integrated mean square error, maximum
mean square error [11] that guide in selecting the promising
subsequent evaluation point. Wu et al. discuss two active

learning based greedy sampling approaches, greedy sampling
on the output (GSy) that selects samples to increase the diver-
sity of output space and improved greedy sampling approach
(iGS) that selects sample to increase the diversity in both
input and output spaces [30]. To our knowledge, GSy and
iGS are the only approaches that consider the output space
information in selecting the next evaluation point. However
as the name suggests, these two approaches do not consider
the model uncertainty and only select the samples greedily,
which may result in high predictive variance (discussed in
Section IV). Recently, Zhang et al. propose a graph based
active learning (GBAL) approach to select the next evaluation
point based on the uncertainty information using L1 measure,
which enables it to use any surrogate model [31].

Apart from estimation of expensive black-box functions,
the sequential approach using GP is similar for optimization
of the black-box functions as well. For optimization, although
the objective is to find the global minimum or maximum of
the function, after each functional evaluation the GP model
is updated to improve the estimate of the underlying black-
box function. One of the popular global optimization algo-
rithms is efficient global optimization algorithm (EGO) that
uses expected improvement (EI) acquisition function to effi-
ciently explore and exploit the design space and find global
optimization point of expensive black-box functions [32].
Similar to EI, there are several other acquisition functions
to find the global optimum point by estimating the black-
box function using GP [33]–[37]. GP is generally used as
it represents the prediction and uncertainty of true function
which is utilized in building the strategy for selection of
subsequent evaluation point. Chen et al. [38] propose an over-
complete basis surrogate method (OBSM) which uses linear
combinations of over-complete bases to globally approximate
the surface. Chen et al. [39] also develop a stochastic search
variable selection (SSVS) method to derive the prediction
uncertainty by specifying some priors on the coefficients of
OBSM and generating the posterior samples followed by
an algorithm similar to EGO for selecting the subsequent
points. Vu et al. [1] discuss iterative construction of the
surrogate models to reach the global solution of expensive
black-box functions. There also exist a group of algorithms
in sequential decision making for multi-armed bandit prob-
lem. Thompson sampling (TS) [40] and upper confidence
bound (UCB) [41] algorithms are popular algorithms in solv-
ing exploration versus exploitation problems. Given a multi-
armed bandit problem, TS selects an arm randomly according
to its probability of being optimal [42], [43]. Kullback -
Leibler upper confidence bound is one of the UCBmethods in
which informational upper confidence bounds are computed
using Kullback-Leibler (KL) divergence [44]. Other popular
bandit strategies and their empirical evaluation can be found
in [45]. While TS and UCB methods provide considerable
performance for problems with simple information struc-
tures, information direct sampling (IDS) is another approach
to address complex information structure problems using
mutual information measure [46]. Krause et al. [47] propose
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various algorithms based on mutual information criterion to
actively select best possible locations over the design space
that is modeled as GP. When the hyperparameters of the
covariance of the model are approximately known, the algo-
rithm selects the set of locations, whichmaximizes themutual
information between evaluated points and unevaluated points.
Ben-Gal and Caramanis propose a sequential design of exper-
iments via dynamic programming that also uses the mutual
information measure to optimize the location and the number
of points to evaluate [48].

Later, semi supervised learning algorithms based on man-
ifold regularization have been widely utilized to effectively
exploit the information from unevaluated points [49]–[53].
Laplacian regularization is one of the popular manifold regu-
larization techniques that uses graph Laplacian to determine
the information of underlying manifold [54]–[57]. Laplacian
regularization has been successfully applied to many clas-
sification and regression problems [58]–[61]. Specifically,
Laplacian regularized optimal design of experiments has been
successfully used for image retrieval and interactive video
indexing [21], [22], [62]. The graph Laplacian uses similar-
ity matrix for constructing the Laplacian matrix. Recently,
Liu et al. [63] has proposed a structured optimal graph based
sparse feature extraction method in which they replace the
similarity matrix used in constructing the Laplacian matrix
with structured optimal graph, to capture the local manifold
information by adaptively modifying the graph. When the
labeled data is scarce, Zhu et al. [20] proposes combining
the semi supervised and active learning methodologies using
Gaussian fields and harmonic functions. Later, they show
how the Gaussian random fields and harmonic energy min-
imizing framework can be viewed as GP with covariance
matrix derived from graph Laplacian [64]. Alaeddini et al. [2]
propose an active learning methodology based on sequential
Laplacian regularized V-optimal design of experiments for
efficient estimation of the black box functions.

All the Laplacian regularized methods discussed above use
classical graph Laplacian that only considers the informa-
tion from input space. In our study, we propose to extend
classical graph Laplacian to incorporate the information of
both input and output space. We expect the proposed graph
Laplacian to be suitable for most of semi-supervised graph-
based learning algorithms that use classical graph Laplacian.
We provide a sample result of comparing the classical graph
Laplacian with the proposed graph Laplacian measure in the
Appendix. The main goal of this study is to develop an active
learning methodology based on sequential Laplacian regular-
ized Gaussian process (SLRGP) for efficient estimation of
expensive noisy black-box functions, which uses the infor-
mation from not only evaluated points but also (abundant)
cheap unevaluated points to determine the most informative
settings to evaluate subsequently. The proposed methodology
has two major contributions. First, it considers the intrinsic
manifold structure of evaluated and unevaluated points based
on a novel similarity measure which considers both predictor
and response variables. Second, it provides a unified active

learning framework for identification of the most informative
points for the construction of GP in a principled manner.
In many applications, the resources are usually limited, or the
cost of evaluating the points is very high. Thus, the selection
of informative points is very crucial for training a good
statistical model. This framework increases the efficiency of
the learning process which consequently reduces the number
of required points and improves the estimation accuracy. The
proposed methodology is most suited for applications involv-
ing efficient estimation of expensive black-box functionswith
a high level of noise and plenty of unevaluated points.

The organization of this paper is as follows. Section II
presents the related works and preliminaries to the proposed
methodology. Section III explains the proposed SLRGP for
efficient estimation of expensive noisy black-box function
and its core components. Section IV discusses a case study
for analysis of the kinematics of pitching in baseball as
well as simulated experiments evaluating the performance
of SLRGP in comparison to some of the existing methods
in the literature. Finally, Section V provides a summary and
concluding remarks.

II. RELATED WORKS
In this paper, we develop an active learning methodology
for identification of the most informative points for GP
regression [4]. The proposed algorithm is based on the inte-
gration of several components: (1) space-filling design of
experiments [65] for identifying the initial set of points,
(2) an extension of active learning - Cohn (ALC) [24] cri-
terion for identification of the subsequent points to evaluate,
(3) active learning [24] regularization for leveraging the infor-
mation of unevaluated points (4) GP regression for fitting the
evaluated data, and (5) an extension of bilateral kernel for
formulating the similarity between evaluated and unevaluated
points. In this section, we provide a brief description of the
major components of the proposed algorithm. Throughout
the paper, we use z to denote the design vector of evaluated
points, and x to denote the design vector of any (either
evaluated or unevaluated) point. We also use m to denote
the number of evaluated points, q to denote the number of
unevaluated points, n to denote the number of all (evaluated
and unevaluated) points, and d to denote the dimensionality
of predictor variables (X ).

A. SPACE-FILLING DESIGN OF EXPERIMENTS
Space-filling designs are often used in computer experiments
because there is no cost for changing the factor levels and
the focus can be on good coverage of the region instead
of the number of levels it might produce [65]. Space-filling
designs may also help to avoid the localized effects as they
sample throughout the design space [66]. Latin hypercube
design (LHD) is one of the most popular space filling designs
first introduced by [67]. For creating a m point LHD, each
of the d dimension in the design space D is divided into
m equal intervals such that the design space consists of md

identical cells. Then, the m points are assigned to the centers
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of md cells [1]. Some of the other popular space filling
designs include maximin distance design [17], and uniform
design [18].

B. ACTIVE LEARNING PROBLEM
The generic problem of active learning is the following:
Given a set of points X = (x1, x2, . . . , xn) in Rd , we would
like to find a subset of points Z = (z1, z2, . . . , zm) ⊂
X which contains the most information about the response
variable. In other words, the points zi(i = 1, . . . ,m) can
improve the estimation the most, if they are evaluated and
used as training points [22]. In the remainder of the paper
we consider Z to represent the set of evaluated points, U to
represent the set of unevaluated points, and X to represent the
set of all points including evaluated and unevaluated points
(X = Z + U ).

C. GAUSSIAN PROCESS REGRESSION
Having some observed input-output pairs ( zi, yi ) where yi
might be corrupted by some noise εi, GP defines a prior over
an unknown link function f , and gives the posterior after
seeing some data [14]. More specifically, the GP regression
is defined as yi = f ( zi ) + εi for i = 1, ..,m, where ε is the
additive independent identically distributed Gaussian noise
with variance σ 2

m. The functional evaluation at the test point
x ⊂ U is denoted as f∗. Y = (y1, y2, .., ym)T is the observed
outputs at training points Z = ( z1, z2, . . . , zm ). According
to the joint distribution of observed outputs and test output
we have:[

Y
f∗

]
∼ N

(
0 ,

[
K (Z ,Z )+ σ 2

m I K (Z , x)
K (x,Z ) K (x, x)

])
(1)

where K (Z ,Z ),K (Z , x),K (x,Z ),K (x, x) are the covariance
between the training and training points, training and test
points, test and training points, test and test points respec-
tively, andK (., .) is an appropriate kernel function to evaluate
the covariance. Here, we consider the squared exponential

kernel K ( zi, zj) = σ 2
f exp(−

‖ zi− zj‖
2

2l2
) where σ 2

f the signal
variance, and l the characteristic length scale are two hyper-
parameters of the kernel. Let, K (Z ,Z ) = KZZ , K (Z , x) =
KZx , K (x,Z ) = KxZ , K (x, x ) = Kxx , and by conditional
distribution, we get:

E(f∗) = KxZ a, where a = (KZZ + σ 2
mI )
−1y (2)

cov(f∗) = Kxx − KxZ [KZZ + σ 2
mI ]
−1KZx (3)

The predicted variance σ 2(f (U )) of all unevaluated points
U is the diagonal of cov(f (U )) calculated from (3) using the
measured data Z .

D. ACTIVE LEARNING - COHN (ALC)
Active learning - Cohn (ALC) algorithm selects the next
evaluation point that maximizes the expected reduction in the
squared error averaged over input space for each xi ∈ U

added to the training set (Z ) [27], [68]:

argmaxxi∈U

∑q−1
j=1 (σ

2
Z f (xj)− σ

2
Z+xi f (xj))

q− 1
(4)

where σ 2
Z f (xj) = Kxjxj − KxjZ [KZZ + σ 2

m I ]−1KZxj ,
σ 2
Z+xi f (xj) = Kxjxj − Kxj,Z+xi [KZ+xi,Z+xi + σ

2
m I ]
−1KZ+xi,xj ,

and q is the number of unevaluated points (q = n− m).

III. PROPOSED ACTIVE LEARNING CRITERIA FOR
SELECTING THE MOST INFORMATIVE POINTS
We begin with extending the ALC measure by adding a
penalty term to integrate the information of both evaluated
and unevaluated points. This penalty term is regularized to
achieve the right balance for selecting the most informa-
tive point without increasing the uncertainty of the model.
We then propose a novel formulation for calculating the
similarity between evaluated and unevaluated points to fur-
ther improve the proposed method. Finally, we discuss the
relationship between the proposed measure and the Laplacian
regularized Kernel ridge regression.

A. LAPLACIAN REGULARIZED ACTIVE LEARNING (LR-AL)
Different from the classical criteria for selecting the next most
informative points which makes use of only evaluated points,
i.e. classical ALC, the Laplacian regularized active learning
(LR-AL) makes use of both evaluated and unevaluated points
to learn the underlying geometrical structure in the data. It is
assumed that if two points (xi, xj), are sufficiently close to
each other, then their responses (f (xi), f (xj)) are close as well.

Assuming there is a set of pre-specified unevaluated points
(U ) from which the next evaluation point should be selected
from, we introduce a graph Laplacian penalty term to the
ALC measure to incorporate the information of unevaluated
points as well as evaluated points to identify the points with
most information content. Specifically, the proposed LR-AL
measure selects the next point that minimizes the regularized
predicted variance that is averaged over all unevaluated points
U − xi, when xi ∈ U is added to the training set (Z ). The
selection of points follows (4) where

σ 2
Z f (xj) = Kxjxj − KxjZ [σ

2
mI + KZZ

+ λK(ZX )LK(XZ )]−1KZxj (5)

σ 2
Z+xi f (xj) = Kxjxj − Kxj,Z+xi [σ

2
mI + KZ+xi,Z+xi

+ λK(Z+xi,X )LK(X ,Z+xi)]
−1KZ+xi,xj (6)

where K(Z ,X )LK(X ,Z ) is the graph Laplacian penalty for (5),
K(Z+xi,X )LK(X ,Z+xi) is the graph Laplacian penalty for (6),
and λ ≥ 0 is the tuning parameter which should be set to a
small number. Thematrix L is called graph Laplacian in spec-
tral graph theory [69] and is calculated as L = D− S, where
D is a diagonal matrix withDii =

∑
j Sij, and S is a similarity

to quantify the similarity between points (X ). An appropriate
choice of similarity matrix should contain symmetric weights
Sij(Sij = Sji) which imposes a heavy penalty if neighboring
points xi and xj are mapped far apart, i.e. nearest neighbour
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(Alaeddini, Craft et al. 2019). In Section III-B we propose
a novel formulation for constructing graph Laplacian which
considers similarity of both predictor and response variable
spaces. For the tuning parameter, we propose to set λ =
λ∗σ

2
m K−1(Z ,Z ) for (5), and λ = λ∗σ

2
m K−1(Z+xi,Z+xi)

for (6) to
automatically adjust the significance of the graph Laplacian
penalty with respect to the other components of the inverse
term, namely K and σ 2

m I , as well as the hyperparameter λ∗.
Therefore, whenever there is an update in the variance of
the Gaussian noise (σ 2

m), or the covariance between the set
of points (K ), the tuning parameter will be automatically
updated. Such formulation has an intuitive relation with the
tuning parameter of the Laplacian regularized ridge regres-
sion which is briefly discussed in Section III-C. Setting
λ∗ = 0, simplifies the equations (5) and (6) to the variance
of regular GP using training set Z and Z + xi respectively.
We propose to select the λ∗ value such that it maximizes the
expected reduction in squared error averaged over the input
space. In Section III-D we provide a simple greedy algorithm
for optimizing λ∗ ≥ 0 parameter.

B. PROPOSED GRAPH LAPLACIAN
Let SX and SY denote the similarity matrices of the data
points in the predictor variables (input) space (X ) and the
response variable (output) space (Y ), where SXij and SYij are
measured using squared Euclidean distance, namely SXij =∥∥(xi − xj)∥∥2, and SYij = ∥∥(yi − yj)∥∥2. We propose to define
the graph Laplacian as

L =
LY
LX
=
DY − SY
DX − SX

(7)

where DXii =
∑

j SXij , DYii =
∑

j SYij . The proposed graph
Laplacian utilizes the information of both the predictor and
response variables over the hypothetical line between each
pair of points. Using extensive simulation studies, we found
the proposed graph Laplacian in (7) outperforms the classical
graph Laplacian, where S is defined as

Sij =


1 if [i, j] are among p nearest

neighbors of each other
0 otherwise,

where p can be set using cross-validation, and D is the
degree matix with diagonal elements as Dii =

∑
j Sij

[70], [71]. We provide a sample result of comparing the
classical graph Laplacian with the proposed graph Laplacian
in the Appendix. We also compared the performance of the
proposed Laplacian with other intuitive forms including LX ,

LY ,
√

LY
LX

,
√

LX
LY

, LXLY and LXLY and found the proposed mea-

sure has the most competitive performance.
Fig. 1 provides a graphical representation of the proposed

graph Laplacian measure over the contour plot of a nonlinear
function with three evaluated and three unevaluated points.
In the space of predictor variables, we can see that x4 and x6
are the two points that are almost equidistant from the eval-
uated point x3. By using the kernels without the information

FIGURE 1. Graphical representation of the proposed graph Laplacian
measure.

from responses, we tend to pick either x4 or x6 as our next
evaluation point. However, by incorporating the information
from the responses, we can see that the unevaluated point x4
is more similar to x3 (compared to x6). Thus, it helps picking
x6 which provides more information.

C. RELATIONSHIP WITH LAPLACIAN REGULARIZED
KERNEL RIDGE REGRESSION
Suppose there are a total of n possible points out of which m
points are already evaluated. Also, let S be a similarity matrix.
Then, the Laplacian regularized ridge regression solves the
following optimization problem:

J [f ] =
λ1

2
‖f ‖2H +

λ2

2

n∑
i,j=1

(f (xi)− f (xj))2Sij

+
1
σ 2
m

m∑
i=1

(yi − f (zi))2 (8)

where the first term is the ridge penalty in the form of squared
Euclidean norm of the vector of regression coefficients in
Hilbert space with λ1 denoting the weight of ridge regu-
larization term, the second term is the Laplacian penalty
with λ2 denoting the weight of the Laplacian regularization
term, and the third term is the standard least square loss
function. Substituting f (x) =

∑m
i=1 aik(x, zi) and using

〈 k(·, xi), k(·, xj)〉H = k(xi, xj), and setting λ1 = 1, result
in the following kernel Laplacian regularized least squared
problem.

J [a] =
1
2
aTKZZa+

λ2

2
aTKZXLXXKXZa

+
1

2σ 2
m
|y− KZZa|2 (9)

The Laplacian regularized least squaredmodel in (9) can be
minimized by solving the system of equations resulting from
differentiating J with respect to the vector of coefficients a

∂J
∂a
=

∂

∂a
(
1
2
aT (KZZ +

1
σ 2
m
K 2
ZZ + λ2KZXLXXKXZ )a

−
1
σ 2
m
yTKZZa+

1
2σ 2

m
yT y) = 0 (10)

a = (σ 2
mI + KZZ + σ

2
mλ2K

−1
ZZ KZXLXXKXZ )

−1y (11)
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The inverse term in (11) is very similar to the one in (5).
In fact, setting λ = λ2σ 2

m K
−1
ZZ in (5), makes the inverse terms

identical in both equations.

D. PROPOSED ALGORITHMS
In this section, we provide the pseudo codes of the proposed
sequential Laplacian regularized Gaussian process (SLRGP)
algorithm and the sequential algorithm for optimizing the
tuning parameter of graph Laplacian used in SLRGP. The
implementation of the proposed algorithms can be found in
https://github.com/rajithameka/SLRGP.

Algorithm 1 Sequential Laplacian Regularized Gaussian
Process (SLRGP)

Input: Set of n pre-specified points (X )
Output: Design vector for the

m evaluated points (Z )
Estimated GP (f (x))

Step 1. Determine Z by selecting m points from X
using a space filling design

Step 2. Until satisfying some desired stopping criteria
Step 2.1 Optimize the tuning parameter using

Algorithm 2
Step 2.2 For each xi ∈ U select x∗ such that

argmaxxi∈U

∑q−1
j=1 (σ

2
Z f (xj)−σ

2
Z+xi

f (xj))

q−1
using (5) and (6)

Step 2.3 Z ← Z + x∗

Step 2.4 f (x) = KxZ (σ 2
n I + KZZ )

−1y
Calculate MSE
Go to Step 2.1

1) SEQUENTIAL LAPLACIAN REGULARIZED GAUSSIAN
PROCESS (SLRGP)
Algorithm 1 illustrates the proposed sequential Laplacian reg-
ularized Gaussian process (SLRGP). The algorithm essential
input includes a set of pre-specified settings (X ) from which
the evaluation points should be selected. The outputs of the
algorithm include the matrix of design vector for the selected
points (Z ), and the estimated GP (f (x)). The algorithm begins
with determining a set of m points (Z ) from all feasible
settings (X ) using a space filling design such as LHD and
obtaining their response values (y) (Step 1). Next, it optimizes
the tuning parameter of the proposed sequential Laplacian
regularized Gaussian process (SLRGP) using Algorithm 2
(Step 2.1), and uses (4) to sequentially identify the most
informative unevaluated points to be evaluated until a desired
stopping criterion is met (Step 2.2). Each selected setting
(x∗) is then evaluated and moved to the evaluated points (Z )
before checking the stopping criterion for initiating another
iteration (Step 2.3). The stopping criterion can be based on
a pre-specified number of design points, reduction in MSE,
etc. After each evaluation, the set of evaluated points (Z ),
which are expected to have themost information content of all

settings (X ), are used to update the GPmodel fit and calculate
the associated error (Step 2.4).

2) OPTIMIZATION OF THE TUNING PARAMETER
Algorithm 2 demonstrates the proposed sequential algorithm
for optimizing the tuning parameter of the graph Laplacian
regularization. The algorithm input includes the set of m
existing evaluated (Z ) and q unevaluated points (U = X−Z ),
and a set of candidate values (λc) for the tuning parameter
λ. We consider a prespecified finite set of candidate val-
ues of the tuning parameter λ to reduce the computational
complexity of the optimization algorithm. The output of the
algorithm is the optimal value of the tuning parameter, λ∗.
The algorithm begins with initializing the vectorP to store the
LR-AL values for different choices of the tuning parameter,
i.e. λc = 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102 (Step 1).
Next, for each choice of the tuning parameter in λc, it uses
(4) to select the most informative point from the unevaluated
set (Step 2.1). Adding the selected point for each λc to
the set of evaluated points, it then calculates the maximum
variance of the remaining unevaluated points using (3) and
store it in vector P (Step 2.2). Finally, it selects the optimal
tuning parameter λ∗ which corresponds to the minimum of
the maximum variances stored in P (Step 3).

Algorithm 2 Optimization of the Tuning Parameter of the
Laplacian Regularization Penalty (λ∗)
Input: Set of m evaluated points (Z ),

Set of q unevaluated points (X − Z ),
Set of candidate values for
tuning parameters (λc)

Output: Optimized value of the tuning parameter (λ∗)
Step 1. Initialize, P[i] = 0, i = 1, .., size(λc)
Step 2. For each λ ∈ λc , select x* such that

Step 2.1

x∗ = argmaxxi∈U [max[K(U−xi,U−xi)

− K(U−xi,Z+xi)[σ
2
m I + K(Z+xi,Z+xi)

+ λK(Z+xi,X )LK(X ,Z+xi)]
−1

× K(Z+xi,U−xi)]]

Step 2.2 P[i] =

∑q−1
j=1 (σ

2
Z f (xj)− σ

2
Z+x∗ f (xj))

q− 1
where,
σ 2
Z f (xj) = Kxjxj − KxjZ [KZZ + σ

2
m I ]
−1KZxj

σ 2
Z+x∗ f (xj) = Kxjxj − Kxj,Z+x*

[KZ+x*,Z+x* + σ
2
m I ]
−1KZ+x*,xj

i← i+ 1
Step 3 λ∗ = argmaxλ∈λc (P)

IV. CASE STUDY AND SIMULATED EXPERIMENTS
In this section, we validate the performance of the proposed
methodology along with a number of existing methods in
the literature including expected improvement (EI), maxi-
mum entropy (ME), integrated mean square error (IMSE),
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maximum mean square error (MMSE), Gaussian random
field (GRF), active learning - Cohn (ALC), sequential Lapla-
cian regularized V-optimal (SLRV), improved greedy sam-
pling (iGS) and graph based active learning (GBAL) methods
using both case study and simulated experiments. In our
paper, we use MATLAB for coding and GPML library [72]
for optimizing the hyperparameters of the GP model. While
there are several possible choices of kernel functions to
build the GP model, i.e. squared exponential, Matern, etc.
we consider the squared exponential kernel for all of our
experiments, as it is widely used and has the capacity to learn
any well behaved function with infinite data [4]. We begin
with a brief discussion of each of the comparing methods and
the performance metric chosen for the analysis of the results.
Next, we illustrate the result of a case study on kinematics
of pitching in baseball. Finally, we describe the result of a
simulation study based on eight nonlinear response models
of 2 to 10 dimensions with different levels of noise.

A. COMPARING METHODS
Here we provide a brief discussion of the comparingmethods,
except ALC which has been presented earlier in Section II.

1) EXPECTED IMPROVEMENT (EI)
EI selects the next evaluation point xi ∈ U that maximizes
the expected improvement given the training set (Z ) [32]:

argmaxxi∈UE(I (xi)) = (fmin − ŷ)8(
fmin − ŷ

s
)

+ sφ(
fmin − ŷ

s
) (12)

where fmin is the current best value of the estimated function,
φ(.) is the standard normal density function, and 8(.) is the
standard normal distribution functions. Here, ŷ = f∗ is the
predicted value at xi ∈ U given Z .

2) MAXIMUM ENTROPY (ME)
ME selects the next evaluation point xi ∈ U that maximizes
the entropy given the training set (Z ) [47]:

argmaxxi∈U [
1
2
logσ 2

xi | Z +
1
2
(log(2π)+ 1)] (13)

3) INTEGRATED MEAN SQUARE ERROR (IMSE)
IMSE selects the next evaluation point that minimizes the
trace of thematrix of the predicted variance of the (remaining)
unevaluated points U − xi, when xi ∈ U is added to the
training set (Z ) [11]:

argminxi∈U [
q∑
j=1

[K(xjxj) − K(xj,Z+xi)

× [σ 2
mI + K(Z+xi,Z+xi)]

−1K(Z+xi,xj)]] (14)

4) MAXIMUM MEAN SQUARE ERROR (MMSE)
MMSE selects the next evaluation point that minimizes the
maximum predicted variance of the (remaining) unevaluated

points U − xi, when xi ∈ U is added to the training
set (Z ) [11]:

argminxi∈U [maxxj∈U−xi [K(xjxj) − K(xj,Z+xi)

× [σ 2
mI + K(Z+xi,Z+xi)]

−1K(Z+xi,xj)]] (15)

5) GAUSSIAN RANDOM FIELDS (GRF)
GRF is a semi-supervised learning method which represents
evaluated (labeled) and unevaluated (unlabeled) data points
using a weighted graph, where the graph weights are calcu-
lated based on a similarity function like radial basis func-
tion (RBF) [73]. As the Gaussian field conditioned on the
evaluated data points is a multivariate normal distribution
y ∼ N (0,1−1), it can be seen as GP, where 1 is the
Laplacian matrix calculated as 1 = D − W . W is an edge
matrix calculated using any kernel function K , and D is a
diagonal matrix with entriesDii =

∑
jWij. Here, we consider

yu ∼ N (0, (β(1+ 1
σ 2
)−1) for construction of the GRF, where

β controls the sharpness of the distribution, and σ 2 controls
the amount of regularization as described in [64].

6) SEQUENTIAL LAPLACIAN REGULARIZED
V-OPTIMAL (SLRV)
SLRV selects the next evaluation point that minimizes the
Laplacian regularized V-optimality criterion based on the
locally weighted regression (LOESS) using both evaluated
and unevaluated points [2]:

argminxi∈U [
q∑
j=1

avg(XT∗ (Z∗(xi)
TW (xi)Z∗(xi)

+ λ1XTLX + λ2I )−1X∗)] (16)

where

Z∗(xi) =

1 (x1 − xi)T
...

...

1 (xm − xi)T


is the transform matrix of evaluated points,

X∗ =

1 (x1)T
...

...

1 (xn)T


is the transform matrix of all points, W (xi) is a weight
matrix based on the scaled distances between the target
point xi and the evaluated points xj, j = 1, . . . ,m,
namely W (xi) = diag(Kh(xi, x1), . . . ,Kh(xi, xm)). While
there are several choices for calculating the scaled distances,
the tricube weight function is usually used in practice, with

Kh(xi, xj) =


(1−

∣∣∣∣xi − xjh

∣∣∣∣3)3 if

∣∣∣∣xi − xjh

∣∣∣∣ < 1

0 if

∣∣∣∣xi − xjh

∣∣∣∣ ≥ 1.

111466 VOLUME 8, 2020



R. Meka et al.: Active Learning Methodology for Efficient Estimation of Expensive Noisy Black-Box Functions

The Laplacian matrix is calculated as L = Dx − Sx , where

SXij =

{
SXij = 1 if i, j are among p nearest neighbors
SXij = 0 otherwise,

and DXii =
∑

j SXij . As opposed to the proposed Laplacian
matrix in (7), the Laplacian matrix of SLRV is developed
using only the information from the input variables.

7) IMPROVED GREEDY SAMPLING (IGS)
IGS initially calculates dxUZ =

∥∥xi − xj∥∥2 and dyUZ =∥∥f (xi)− yj∥∥2 for each xi ∈ U and xj ∈ Z , then selects
the next evaluation point that maximizes dxyU which is calcu-
lated as [30]:

dxyU = min(dxUZ d
y
UZ ) (17)

8) GRAPH BASED ACTIVE LEARNING (GBAL)
GBAL calculates the measure of uncertainty for each uneval-
uated point xi ∈ U as θ (xi) = minxz∈ZL1(xi, xz), then selects
the next evaluation point that maximizes Q(xi) when xi ∈ U
is added to the training set (Z) [31]:

Q(xi) =
∑
i∈U

θ (xi)−
∑

j∈U−xi

θxi (xj) (18)

B. PERFORMANCE METRIC
Since the main objective of the proposed SLRGP algorithm is
efficient estimation of expensive noisy black-box functions,
we choose to use the root mean squared error (RMSE) of
the estimated and true models for performance evaluation.
We also study the average predicted variance (APV) at test
points, as another performance metric, which shows simi-
lar general trend as RMSE and hence not reported in the
manuscript for the economy of space, except for one case
which is discussed in Section IV-D. To calculate the RMSE,
we use a randomly selected out-of-sample of size t = 1000
from the true response models and compare their associated
response values (yTrui , i = 1, . . . , t) against those provided by
the estimated model (yEsti ) using the RMSE metric, RMSE =√∑t

i=1(y
Est
i −y

Tru
i )2

t . In order to achieve a high level of confi-
dence over the results, all simulated experiments are repeated
hundred times and the average result is reported.

C. CASE STUDY
In this section, we illustrate the results of a case study for
analysis of the kinematics of pitching in baseball comparing
the proposed methodology with expected improvement (EI),
maximum entropy (ME), integrated mean square error
(IMSE), maximum mean square error (MMSE), Gaussian
randomfield (GRF), active learning - Cohn (ALC), sequential
Laplacian regularized V-optimal (SLRV), improved greedy
sampling (iGS) and graph based active learning (GBAL)
methods. The study is based on a secondary analysis of
the effect of 5 kinematic (explanatory) variables, includ-
ing (1) maximum axial shoulder external rotation angles,
(2) trunk forward flexion angle at ball release, (3) stride

FIGURE 2. Kinematic variables associated with ball velocity.

length, (4) release height, and (5) release distance, on the
velocity (response variable) of the baseball for 73 pitchers.
Fig. 2 gives the graphical representation of the kinematic vari-
ables. Ball velocity is one of the key performance measures
for baseball pitchers. The maximum axial shoulder external
rotation angle and trunk forward flexion angle at ball release
have been linked to ball velocity in studies using regression
analyses. Stride length and the position of the hand at ball
release are also considered to affect ball velocity, and thus
often evaluated by coaches.

To construct the design matrix of the comparing methods
from the available 73 data points (pitchers), we begin with
randomly selecting 15 points for testing. Next, from the
remaining 58 points, we randomly select 20 points for train-
ing the initial surrogate model. Finally, from the remaining
38 points, we select 10 augmenting points one-at-a-time using
each of the comparing methods. To increase the confidence
we repeat the procedure 100 times and report the the average
result.

FIGURE 3. RMSE performance of the EI, ME, IMSE, MMSE, ALC, SLRV, IGS,
GBAL and SLRGP - pitching case study.

Fig. 3 illustrates the performance of the comparing meth-
ods based on the RMSE of estimated and true response
model parameters using 100 replications of the procedure.
As shown in Fig. 3, the proposed SLRGP method outper-
forms all other methods by a significant margin across all
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TABLE 1. P-values of the Wilcoxon rank test - Case study.

FIGURE 4. Box plot of RMSE performance of the EI, ME, IMSE, MMSE,
ALC, SLRV, IGS, GBAL and SLRGP - pitching case study.

data points. The performance patterns also show the proposed
method improves the RMSE much quicker than the other
methods for the first few additional points before stabiliz-
ing. This can be attributed to the proposed graph Laplacian
measure and the sequential algorithm for selection of new
experiments. After the proposed method, SLRV and ALC
provide the best performance, followed by the MMSE and
iGS methods. Table 1 verifies the observation by providing
the result of the Wilcoxon rank test for the significance of
the difference between the RMSE of the comparing methods
(See also Fig. 4).

D. SIMULATED EXPERIMENTS: NONLINEAR
RESPONSE MODELS
In this section, we evaluate the performance of the pro-
posed SLRGP method along with EI, ME, IMSE, MMSE,
GRF, ALC, SLRV, iGS and GBAL methods over nonlinear
response models of two, three, six and ten variables at differ-
ent levels of noise including 1%, 3% and 5% of the mean
value of the response models. These response models are
presented in Table 2. All simulated experiments are repeated
hundred times and the average results are reported.

For each of the comparingmethods, we begin with creating
a LHD of 200 points for all the functions and then randomly
select 4d number of points as the initial set of evaluated
points. This gives 8, 12, 24 and 40 initial points for each of the
2, 3, 6 and 10 variable functions respectively. Next, each of

the comparing methods is used to select 40 additional points
to improve the initial prediction.

Fig. 5 illustrates the root mean squared error (RMSE) of
the estimated responses from each of the comparing methods
after adding each point at 1%, 3% and 5% noise levels.
As shown in the Fig. 5, the SLRGP method outperforms
almost all other methods in terms of RMSE performance.
Apart from few exceptions, the improvement made by the
proposed method is generally more evident in cases with
larger standard deviation of errors. Also, the performance of
the SLRGP for high dimensional response models improves
compared to lower dimensional models, indicating its robust-
ness towards increasing the number of variables. In addi-
tion, as the number of points increases, the proposed method
generally maintains or increases its advantage over other
methods, which demonstrates the effectiveness of both the
proposed LR-ALmeasure and SLRGP algorithm. Among the
other comparing methods, the result is mixed but IMSE and
SLRV provide relatively better performance for lower and
higher dimension functions respectively.

For low dimensional functions, most of the comparing
methods provide competitive performance, especially for the
initial set and the first few additional points. Meanwhile, for
some of the response models, i.e. 2.2, the proposed method
starts with a higher RMSE compared to other leading meth-
ods, i.e. IMSE and ALC, though it catches up after few
additional points. This may be attributed to requiring addi-
tional points for better prediction of unevaluated points in the
Laplacian matrix, and optimizing the tuning parameter. For
the higher dimensional functions, SLRGP method provides
a significant improvement over the comparing methods. Our
conjecture is that as the complexity of the response model
increases, the information of the unevaluated points provide
more contribution compared to lower dimension functions.
After SLRGP, SLRV is the next best performing methods
especially for higher dimensional functions, namely 6D and
10D, and low noise, namely 1%, 3%. We think this because
SLRV also utilized the information of the unevaluated points.

Among comparing methods, the iGS is the only method
that does not use the uncertainty information for selecting the
next evaluation point. iGS shows competitive performance
for almost all low dimensional functions, namely 2.1, 2.2,
3.1 and 3.2. Specifically, for the response model 3.2, the iGS
method provides even better RMSE performance compared
to the proposed method. However, while iGS method pro-
vides competitive performance in terms of RMSE, there is
a good chance that the selected point might increase the
uncertainty of the updated/augmented model, which can be
shown using average predicted variance at test points.

Fig. 6 compares the RMSE and APV of the response
model 3.2. As shown in the Fig. 6, the average predicted vari-
ance of iGS is considerably larger than the proposed method,
even though their RMSE’s are comparable. The result shows
that SLRGP is overall a better performing method compared
to iGS, as the point selection process should not only improve
the performance of the model in terms of RMSE, but also it
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FIGURE 5. RMSE performance of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP.
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TABLE 2. Non-linear response models considered for the comparisons.

FIGURE 6. RMSE and APV of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP of response model 3.2.

should decrease or maintain the uncertainty of the model as
new information is added.

Fig. 7 complements the results of the earlier analysis by
providing the box plot of the RMSE performance of each of
the comparing methods for each of the response models over
all of their selected points (initial + 40 additional points).
As shown in the Fig. 7 the proposed SLRGP method gen-
erally provides the lowest quantiles, i.e. 25th, 50th, and 75th
compared to the others which demonstrate its superior perfor-
mance. Also, for most cases, SLRGP shows a larger variance
in the boxplot, which can be attributed to the greater RMSE
reduction over the selected points in comparison to the other
methods. This is due to the selection of more informative

points by the proposed SLRGP algorithm using the LR-AL
criteria. For high dimension models, with better quality of
prediction information, the proposed method converged very
fast compared to other models and due to the more evalua-
tions needed before next good approximation of the function,
the variance of the proposed method is small. Meanwhile,
other than few exceptions, the box plots show EI and GRF
provide the smallest changes in the RMSE performance from
the initial set of points.

Finally, Table 3 provides the result of the Wilcoxon rank
test for the significance of the difference between the RMSE
performance of the proposed method against other meth-
ods, where lower values show an increased probability of
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FIGURE 7. Box plot of RMSE of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP.
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FIGURE 8. Comparison between the classical and the proposed graph Laplacian based on response model 2.1 using
MMSE and ALC.

TABLE 3. P-values of the Wilcoxon rank test - simulated experiments.

difference in the RMSE performance. As shown in the
Table 3, the Wilcoxon rank test also signifies the improve-
ment by the proposed method which further validates the
earlier results.

V. CONCLUSION
We proposed an integratedmethodology for active learning in
Gaussian process regression to estimate black-box functions
with a fewer number of points. For this purpose, we intro-
duced a Laplacian regularization term to the popular active
learning - Cohn (ALC) criteria to explore the transfer of
information among evaluated and unevaluated points as well
as predictor variables in a dynamic setting. We also devel-
oped two simple greedy algorithms for optimizing the tuning
parameter, and sequential selection of the most informative
subsequent points to evaluate. In addition, we extended the
classical graph Laplacian matrix to consider the similar-
ity between points in both predictor variables (input), and
response variable (output) spaces to better capture the rela-
tionship between the points. For the development of the pro-
posed SLRGP method, we considered a common scenario,
in which evaluation points are to be selected from a set of
pre-specified points. We used a case study for analysis of the
kinematics of pitching in baseball and conducted a simulation
study to evaluate the performance of the proposed method-
ology against popular methods in the literature in terms of
root mean squared error (RMSE). The simulation results
suggest the SLRGP algorithm provides better performance
when there are plenty of unevaluated points available and the
standard deviation of error is large. The models developed
through this study can be used to reduce the number of points
for estimating expensive noisy black-box functions.

APPENDIX
COMPARISON BETWEEN CLASSICAL AND
PROPOSED GRAPH LAPLACIAN
In our study, we propose a sequential Laplacian regularized
Gaussian process (SLRGP) algorithm based on Laplacian
regularized active learning (LR-AL) by extending the active
learning - Cohn (ALC) measure. Meanwhile, the proposed
Laplacian penalty can be used to extend any measure that
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selects the next evaluation point based on the uncertainty
information, i.e. MMSE, maximum entropy, etc. We conduct
several simulation studies to test different forms of graph
Laplacian against classical graph Laplacian. Here, we provide
a sample result based on response model 2.1 to compare
the proposed graph Laplacian with the classical Laplacian
based on ALC and also MMSE measures. Figure 8 illustrates
the RMSE of the classical and proposed Laplacian using a
set of 8 initial points augmented with 100 additional points.
As shown in the Figure 8, the proposed graph Laplacian
generally provides a better performance compared to the
classical Laplacian for both MMSE and ALC measures and
across different levels of noise. For the MMSE, even though
the result is not as good as ALC, the proposed graph Lapla-
cian is outperforming the classical Laplacian after as little
as 20 additional points. For the ALC, when the number of
evaluated points and the noise level are both small, there is not
much difference between the classical and proposed Lapla-
cian. However, as the number of evaluated points and the
level of noise increase the proposed graph Laplacian performs
better. Meanwhile, it should be noted that the remarkable
performance of the proposed SLRGP is based on the com-
bination of the proposed LR-AL measure and the proposed
graph Laplacian.
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