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ABSTRACT The model uncertainties and the heterogeneous energy states burden the effective aggregation
of electric vehicles (EVs), especially coupling with the real-time frequency dynamic of the electrical grid.
Integrating the advantages of deep learning and reinforcement learning, deep reinforcement learning shows
its potential to relieve this challenge, where an intelligent agent fully considers the individual state of
charge (SOC) difference of EV and the grid state to optimize the aggregation performance. However,
existing policies of deep reinforcement learning usually provide deterministic and certain actions, and it
is difficult to deal with the increasing uncertainties and randomness in modern electrical systems. In this
paper, a probability-based management strategy is proposed with continuous action space based on the deep
reinforcement learning, which provides fine-grained energy management and addresses the time-varying
dynamics from EVs and electrical grid simultaneously. Moreover, an optimization based on the proximal
policy is further introduced to clip the policy upgradation speed to enhance the training stability. The
effectiveness of proposed energy management structure and policy optimization strategy are verified on
various scenarios and uncertainties, which demonstrates advantageous performance in the SOCmanagement
and frequency maintenance. Besides the performance merits, the training procedure is also presented
revealing the evolution reason for the proposed approach.

INDEX TERMS State of charge (SOC), deep reinforcement learning, hybrid framework, electric vehicle
aggregator, multiple-input and multiple-output.

NOMENCLATURE
απ Learning stepsizes of policy network
αv Learning stepsizes of value function network
β Bias factor
1f Frequency variation of electrical grid
1SOCi SOC variation of Aggregator i
1Pg Turbine power variation
1PL Load imbalance
1Pm Reheat power variation
1Xg Valve position
γ Discount factor
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Â Advantage estimator
Sgrid Observed grid vector
Sin Observation vector
SEVi Observed vector of Aggregator i
Uin Policy vector
H Trajectory storage
µ Mean value
π Management policy
π∗ Optimized policy network
πθ Current policy
πold Old policy
θ Network parameter of policy network
σ Variance value
ψ Network parameter of policy network
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ε Clipping degree
at Action at timestep t
ACE Area Control Error
D Grid damping coefficient
DQN Deep Q-Network
DRL Deep reinforcement learning
EV Electric vehicle
Fr Fraction of total turbine power
J Expected return
KI Integral coefficient of frequency control
KP Proportional coefficient of frequency control
KEV
i Charging/discharging efficiency of

aggregator i
L Episode number
M System inertia
MDP Markov decision process
N Episode step
PEVi Power output of Aggregator i
PPO Proximal policy optimization
R Droop coefficient
Rt Cumulative reward at timestep t
rt Reward at timestep t
st Observation at timestep t
SOC State of charge
SOC initial

i SOC initial value of Aggregator i
Tc Turbine constant
Tr Reheat constant
T EVi Battery time constant of Aggregator i
ugrid Grid operator command
uEVi Power command for Aggregator i
V Value function
V2G Vehicle-to-grid
w Likelihood radio

I. INTRODUCTION
Growing electric vehicles (EVs) and their uncertainties
are reconstructing the conventional electrical system. Due
to the consumption of fossil fuel and the emission of
carbon dioxide, vehicle electrification is extending in many
countries. Less than a year from the factory announcement,
Tesla’s Shanghai plant delivered its first electric vehicle
on 30 December 2019 [1]. The production rate of this
Gigafactory is expected to reach 500,000 per year [2].
According to the CNNBusiness report, the affordable version
of Model 3 and Model Y will be made in this Chinese
factory. [3]. Along with Tesla, local brands such as NIO
and BYD are also thriving. From the official report [4] of
NIO, more than 30,000 EVs have been delivered since 2018.
The NIO ES6 has been consecutively occupying first place
among the premiummidsize sport utility vehicle (SUV).With
the batteries manufactured by itself, BYD covers the global
EV business from passenger cars, buses, utility vans, and
trucks [5]. With the goal of vehicles-consumed fossil fuel
reduction, a large number of EVs are irreversibly penetrating
the electrical grid operation.

As the interface between the EVs and the electrical grid,
various charging devices are installed worldwide. With the
wall connector from Tesla [6], the maximum power can reach
11.5kW at a home charging condition. In the meantime,
its supercharger stations have been allocated in Asia, North
America, and Europe. Empowered by the new architecture,
the V3 supercharging of Tesla can support the 250kW peak
rate [7], which significantly releases the range constraint.
The newly released charging station of NIO can also reach
the 105kW charging rate, requiring charging time less than
30minutes from 20% to 80% state [8]. For the BYD company,
it provides several options, such as 3.3kW, 7.0kW, and
40kW. The maximum charging speed can get to 80kW [9].
Considering the striking power and sale promotion, millions
of electric vehicles will form a huge energy system interacting
with the electrical grid.

Through the widespread electricity charger, the coalition of
the EV system and power system is formulated, which fosters
various research topics from the electronic power implemen-
tation, dispatch strategy design, and market optimization.

As the spotlight, the vehicle-to-grid (V2G) attracts numer-
ous attention discussing the possibility of grid support with
EVs [10]–[13]. From the network stability and individual
preferences, the report in [10] proposed industrial and market
incentives for V2G development. For an EV fleet, [11]
designed a distributed coordination in the regulation services,
which satisfied the daily energy demand and day-ahead
aggregator schedule. Through the conditional value-at-risk
constraints, the bidding strategy was developed in [12] to
formulate a decision-making tool in day-ahead and real-time
markets. To sufficiently utilize the EV capacity and establish
the regulation service, the non-cooperative and cooperative
games were developed to stimulate the EV interaction and
compress the grid fluctuation [13]. Those reports indicate the
financial potentials for the implementation of V2G.

In the real-time dispatch aspect, different model-based
strategies have been studied to boost regulation performance.

Through the fixed structure mixed H2/H∞ control,
the robustness of the V2G system is enhanced facing the
time-varying delays and uncertainties [14].

With the help of fractional order controller, the faster
setting time and overshoot reduction are achieved in the
frequency regulation of [15]. A fuzzy controller was carried
out by [16] to reduce the frequency deviation considering
the state of charge (SOC) difference, but the aimed SOC
is pre-designed around a certain value. If the SOC goal is
different, the original fuzzy rule of the 5*7 table should be
re-designed, changing fuzzy regions. Besides, relying on the
system model, these algorithms have to re-optimize all the
control parameters. Due to the variation of EV devices as
well as the time-varying uncertainties of their SOCs, it is
necessary to design an energy management strategy free from
the complicated model derivation.

In the past years, the rapid development has been
witnessed in the field of deep reinforcement learning (DRL)
technology, which combines the perception capability of
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deep learning and the intelligent decision-making ability
of reinforcement learning. Advanced DRL algorithms were
developed to achieve remarkable performance on various
artificial intelligence takes, e.g., Go [17], robotics [18], video
games [19], [20]. Unlike traditional reinforcement learning,
the DRL algorithms use powerful deep neuron networks
to approximate their value function (such as Q-table),
enabling automatic high-dimensional feature extraction and
end-to-end learning. Recently, the advantages of DRL were
recognized by the community and some attempts were
made to leverage DRL in various applications for electrical
grid, including operational control [21]–[24], electricity
market [25], [26], demand response [27] and energy man-
agement [28]. Although these applications presented advan-
tageous results in their respective fields, several challenges
were encountered. Some early works [21], [22], [25] adopted
deep Q-network as the agent’s policy, which could only deal
with control problems with discrete action spaces. These
applications were not practical for physical regulation tasks
in power systems, requiring continuous action spaces. Several
works [23], [24], [26]–[28] addressed the continuous control
problem by using the deep policy gradient method. However,
the policies of these applications directly output deterministic
action ignoring the uncertainties and randomness in the
electrical grid. The random fluctuations in electrical grids
and the incomplete modeling of the control system burden
the application of deterministic method. On account of
the continuous action space and complicated environment
disturbances, it is more practical to use a probabilistic
control policy rather than a deterministic one in the
integration management of electric vehicles and electrical
grid.

To mitigate the uncertainties and randomness in the
EV-grid energy management, a probability-based energy
management structure is developed for the EV aggregation.
The proposed schemes regulates the EV charging/discharging
power according to the energy difference in the continuous
action space, enabling more flexible and fine-grained con-
trol for the system dispatch. Our algorithm framework is
integrated with state-of-art deep reinforcement learning algo-
rithms, which effectively elevates the training efficiency and
boost the management performance. The main contributions
of this work are summarized below.

1. Energy management structure. With the detailed
derivation of EV and electrical grid dynamics, a gen-
eral management structure is established for the aggre-
gation of heterogeneous EVs. In the proposed structure,
deep reinforcement learning is deployed, coordinating with
the traditional automatic generation control to meet the
multiple-inputs and multiple-outputs requirement of the
electrical grid-electric vehicle system. Besides, the advantage
of the deep neural network is sufficiently utilized to observe
the high-dimensional grid and EV dynamics. The established
structure can provide a unified strategy for the tests of various
optimization approaches through the flexible adjustment of
the observation and the objective function.

2. Probabilistic continuous management. To support
continuous control based on reinforcement learning, a prob-
abilistic model with continuous action space is developed to
represent the intelligent dispatch center. Instead of outputting
the control signals directly, the proposed policy model
solves the control problem by approximating the optimal
probability distribution of the control signals. The proposed
approach can achieve better performance when dealing with
the randomness of the electrical grid.

3. Improved gradient-based policy optimization. To
improve the optimization stability of the training process,
an optimization algorithm based on a clipped surrogate
objective is employed for energy management optimization.
Through the probability ratio between old and new policies,
an upgrading constraint is set to guarantee the policy evolu-
tion within a specific interval. The proposed algorithm shows
stable training performance during the learning process.

The reminder of this paper is organized as follows.
Section II provides a detailed literature review regarding
deep reinforcement learning and its application in power
systems. Section III reviews the dynamics of electric
vehicles and the electrical grid, respectively. On account
of the modelling difficulty and the time-varying feature,
a probabilistic energy reinforced management structure is
then proposed in response to the EV dispatch challenge. For
the implementation of the management structure, the Markov
decision process is introduced in Section IV, which bridges
the EV aggregation problem and the deep reinforcement
learning. The training algorithm is then detailed to achieve
the self-regulation assessment and the policy evolution.
The demonstration of energy management performance is
shown and analyzed in Section V with a typical electrical
grid-electric vehicle system, which reveals the advantageous
properties and the improvement reasons. The conclusions
are provided in Section VI to summarize this work and
results.

II. RELATED WORKS
A. DEEP REINFORCEMENT LEARNING
Reinforcement learning is research filed onmachine learning,
where the goal is to train an agent to maximize its reward
by interacting with the environment. Recently, deep learning
has started to play an essential role in reinforcement learning.
Researchers used deep neuron networks as ideal function
approximators for reinforcement learning algorithms from
high dimensional signals for building informed action deter-
mination process. DRL is considered a promising artificial
intelligence method that is close to human thinking. Many
advanced DRL algorithms have been developed in recent
years. As an early work, Deep Q-network (DQN) [29]
is introduced by using a multi-layer neuron network as
the approximation of Q function. To support continuous
control, paper [30] proposed the deep deterministic policy
gradient (DDPG) algorithm in continuous action spaces by
extending DQN to policy gradient method.
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TABLE 1. The comparison of related studies.

Based on the powerful algorithms, DRL has shown
advantageous performance in various decision-making tasks.
Trained by a novel combination of supervised learning
from human expert games, and reinforcement learning from
games of self-play, a 99.8 % winning rate was achieved
by AlphaGo [17]. Through the deep convolutional neural
network and the partial observation, [18] developed a method
to learn policies that map raw image observations directly
to robot torques. Without human competitive, intelligent
support, deep reinforcement learning was performed on
advancing automated game testing [20]. Extending the
Bayesian personalized rankingwith a neural network, the pol-
icy detection had been improved against non-stationary
agents [19].

B. DRL-BASED POWER SYSTEM MANAGEMENT
In recent years, some pioneering studies have been imple-
mented related to the applications of DRL in the electrical
grid. These applications cover some control and optimization
problems in different application fields, including operational
control, electricity market, demand response, and energy
management. To cope with the emergency control in the
power system, a novel adaptive strategy and an open-source
platform were designed for the grid control [21]. Ref-
erence [25] proposed a deep Q-learning based algorithm
for local energy trading to optimize the decision-making
processes of prosumers. In [22], a novel two-timescale
voltage regulation scheme was introduced for smart grids by
coupling deep Q-learning with physics-based optimization.
The aforementioned works focused on the employment of
DQN for grid optimization. However, DQN can only handle
discrete and low-dimensional action spaces, which can not
meet the requirement of continuous management.

To support continuous control, several researchers have
tried to apply the policy gradient method in the regulation
domain. In [23], a model-free method based on DRL
with continuous action space was introduced to replace
the traditional linear controller for load frequency control.
Reference [27] applied the deep deterministic policy gradient
algorithm to solve the joint bidding and pricing problems
of the load-serving entity. Similarly, the autonomous voltage
control strategies were proposed by [24] based on DQN and
DDPG to support grid operators in making effective control
actions. An online optimization was proposed for building
energy management systems [28]. Its learning algorithm

combined deep Q-learning and deep policy gradients, both
of which were extended to perform multiple control actions
simultaneously. Ye et al. [26] developed a multi-agent deep
reinforcement learning approach based on the deep policy
gradient to optimize the strategy of multiple self-interested
generation companies.

The comparison of related works is summarized in Table 1.
The policy type means the mapping from state space to action
space, which can be deterministic (outputting action directly)
or stochastic (outputting the probability of choosing an
action). Our work is different from the above works in several
aspects. Firstly, compared with DQN-based methods [21],
[22], [25], our work supports continuous action space and
can be used to solve a wide range of control problems.
Secondly, different from other works, our work realizes a
probabilistic policy. Instead of outputting a deterministic
action directly, the policy in our work solves approximates the
desired probability distribution of the optimal control signals,
enabling better flexibility and robustness as increasing
uncertainties and randomness in power systems. Thirdly,
the training of our approach is based on the proximal
policy optimization (PPO), which is proven to have more
stable training convergence properties [31] than other DDPG
methods [30].

III. ELECTRIC VEHICLE SYSTEM ENERGY FLOW
The rising sales of electric vehicles boost the coupling of
vehicles and the electrical grid. To investigate this hybrid
system, the EV feature and interaction channel with the power
system are reviewed to reveal the energy flow and state
dynamics.

A. ELECTRIC VEHICLE DYNAMICS
In parallel with the control center of the power system,
distributed EV aggregators regulate the EV fleets based on
their battery states. According to [32], an EV aggregator
including a large number of EVs can be modeled as the
following first-order transfer function:

GEV (s) =
KEV
i

1+ sT EVi
(1)

where KEV
i , i = 1, 2, . . . ,N are the charging and discharging

efficiencies of the ith EV aggregator, and T EVi , i =
1, 2, . . . ,N are the corresponding time constants of the EV
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battery system. For the simplification, the charging and
discharging efficiencies are set the same coinciding with [32].

Denoting the power command uEVi from the aggregation
center, the energy dynamic of ith EV aggregator can be
described with the consideration of SOC variation [33].

[
ṖEVi
1SȮCi

]
=


−1

T EVi
0

−1
3600

0

[ PEVi
1SOCi

]
+

[
KEV
i
0

]
uEVi

(2)

Since the battery capacity is usually quantified with the
unit of Ah, the time constant −13600 is involved in (2) to unify
the time unit. Through the calculation of SOC increment,
the aggregator SOC is then obtained adding on the initial
SOC [34].

SOCi = 1SOCi + SOC initial
i (3)

The SOC of each aggregator varies with diversified
traveling schedules, driver behaviors, and battery devices,
which form a heterogeneous system with different SOC
values. Besides the SOC, the location of EV and the efficiency
of the charging station may also be uncertain. Therefore,
the generation of power commands uEVi , i = 1, 2, . . . ,N
should comprehensively take all these factors into account.

B. ELECTRIC GRID DYNAMICS
In addition to the EV dynamics, the growing number of charg-
ing stations and the increasing speed of charging/discharging
powermake themutual energy transmission possible between
aggregated EVs and the electrical grid. Since the absorption
and release of EV power directly influence the active power,
the grid frequency deviation of 1f is then affected [35].

1ḟ = −
D
M
1f +

1
M
1Pg+

1
M

N∑
i=1

1PEVi −
1
M
1PL (4)

where D is the grid damping coefficient, M refers to the
system inertia. The real-time power imbalance is determined
by the power difference among the turbine 1Pg, the electric
vehicle 1PEVi , and the fluctuated load consumption 1PL .
With the turbine constant Tc and the mechanical strength

1Pm, the turbine power 1Pg is generated to compensate the
frequency variation [16]

1Ṗg = −
1
Tc
1Pg +

1
Tc
1Pm (5)

Considering the reheat type of stream turbine [16],
the relationship between the valve position 1Xg and 1Pm is
then derived to reflect the reheat dynamic.

1Ṗm =
−Fp
RTg

1f −
1
Tr
1Pm +

Tg − FpTr
TrTg

1Xg (6)

where Tr is the reheat constant, Fp indicates the fraction of
total turbine power. The valve position is determined by the

droop feature of turbine with R.

1Ẋg = −
1
RTg

1f −
1
Tg
1Xg +

α0

Tg
ugrid (7)

It can be seen from (7) that the command ugrid from the grid
operator and the allocation ratio α0 determines the regulation
value of the governor. As a practical approach, the area
control error (ACE) [32] is usually formulated to present the
frequency deviation severity.

ACE = β1f (8)

where β is the bias factor for the frequency-response
characteristic. Through the linear proportional integral (PI)
controller, the ugrid in (7) is constructed to guide the governor
output.

ugrid = −KPACE − KI

∫
ACE (9)

Different from the original electrical system, the participa-
tion of EV energies and their SOC constraints would directly
influence the frequency variation in (4). Moreover, by (5)-(9),
the frequency variation couples with the sequential dynamics
in the governor and turbine, which affects the energy flow of
EV and grid system.

C. ENERGY REINFORCED MANAGEMENT STRUCTURE
Shown from the (9), the electrical grid has already built
mature pattern dealing with the frequency fluctuations, but
for the EVs, the formulation of aggregation commands uEVi ,
i = 1, 2, . . . ,N still face a number of challenges. On account
of the time-varying characteristic of the EV system and
the feature of the multiple observation inputs, an energy
reinforced management structure is proposed in Fig. 1.

FIGURE 1. Energy reinforced management structure for the EV
aggregation.

Considering the multiple state variables 1f , 1Pg, 1Pm,
1Xg, ACE in the electrical grid, as well as the EV dispatch
power PEVi , SOCi, i = 1, 2, . . . ,N , the energy management
problem is shown as a multiple-input multiple-output pattern,
which is suitable for the deployment of a policy network
in Fig. 1. From the grid and EVs, the energy reinforced
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management observes the environment variables define as
follows.

Sin = [Sgrid ,SEV1 , . . . ,SEVi , . . . ,SEVN ]

= [1f ,1Pg,1Pm,1Xg,ACE,

PEV1 , SOC1, . . . ,PEVN , SOCN ] (10)

According to the high-dimensional inputs (10), without
disturbing the original automatic generation control 1Xg,
the policy network generates the aggregation commands for
EVs with various SOC conditions.

UEV = [uEV1 , . . . , uEVi , . . . , uEVN ] (11)

By this structure, the dynamics from both electrical grid
and EVs can be fully detected by the policy network, and
the decision-making advantages of complex network is able
to manage the continuous energy variations of EVs. For the
electrical grid-electric vehicle system, the main concern is to
minimize the frequency deviation defined as:

min ‖1f ‖ (12)

In the meantime, instead of the static commands, the EV
SOCs are regulated to make the aggregator with higher SOC
provides more power than the aggregator of lower SOC. For
instance, the other objective is formulated as:

min
N∑
i=1

∥∥∥∥SOCi − SOC1 + · · · + SOCN
N

∥∥∥∥ (13)

Integrating these two objectives (12)-(13), an energy
management objective can be generated as an example:

min ‖1f ‖ +
N∑
i=1

∥∥∥∥∥∥∥∥∥SOCi −
N∑
i=1

SOCi

N

∥∥∥∥∥∥∥∥∥ (14)

As a general structure, it should be mentioned that
the inputs and the objective function of the EV energy
management can be flexibly changed to meet the different
requirements of EV aggregation and grid operation.

IV. ENERGY REINFORCED MANAGEMENT PROCESS
To implement the designed management structure in
Section II.C, the establishment of the proposed policy
network is further mapped to a Markov decision process to
optimize the real-time aggregation commands in (11).

A. MARKOV DECISION PROCESS FOR THE EV
MANAGEMENT
In our proposed energy reinforced management strategy,
an agent learns how to achieve the control objectives by inter-
acting with the power grid through the control commands.
The control problem could be modeled as a Markov decision
process (MDP), which provides a common framework for
the sequential decision-making process. Normally, the MDP
is formulated as a tuple (S,A,P, r, γ ), where S is the

state space, A is the action space, P : S × A × S →
[0, 1] is the transition probability, r(s, a) ∈ R is the reward
function and γ ∈ [0, 1) is the discount factor. In this
paper, we consider the frequency control problem of EV
charging as a partially observable MDP. According to the
energy reinforced management structure in Section II, The
components of agents, states, actions, and rewards in the
MDP are defined as follows.

Agents. To leverage the advances of artificial intelligence,
we model the EV aggregators as intelligent agents who can
learn an optimal control policy for the unified management of
electric vehicles and the electrical grid. The agent regulates
the EV fleets of the system based on the battery states as well
as the observable grid metrics.

States. The time-varying environmental states SEVin defined
in (10) are imported to describe the internal agent dynamics.
The states of the agents are composed of the multiple state
variables Sgrid in the electrical grid and the power, energy
states SEV1 , . . . ,SEVi , . . . ,SEVN of EVs.

Actions. To enhance the robustness of the management
strategy, the agents formulate the probability distribution of
optimal dispatch action instead of generating deterministic
control signals. The policy network outputs the distributions
of optimal actions, and actual actions are then sampled from
the established distribution, which bids the power commands
uEVi , i = 1, . . . , i, . . . ,N of different EVs.
Rewards. To participate in the auxiliary frequency service

without disturbing the customized energy requirement of
EVs, the opposite of energy management objective in (14)
is deployed as a rewarding example, which can also adjust
according to the real-time scenario.

According to the policy π , the frequency aggregation agent
receives the observation st and chooses an action at ∼ π (st )
at each time t , which can be represented as the stochastic
policy π (a|s) ∼ [0, 1] outputting the possibility distribution
of actions. The reward function is an incentive measurement
to guide the agent to achieve its goal. The immediate reward
of at at state st is noted as r(st , at ) and Rt =

∑
i=0...∞ γ

irt+i
indicates the cumulative reward.

B. PROBABILISTIC MANAGEMENT FOR
ROBUSTNESS ENHANCEMENT
Like most real-world control tasks, EV energy management
is also a continuous control problem, which is generally
more challenging. Previous work [36] straightforwardly
apply Deep Q-Network (DQN) by leveraging discretization
over the continuous action space to bypass this challenge.
However, the discrete action space cannot provide precise
control actions as the control system needs fine-grained
discretization. For example, Yang et al. [36] configure the EV
charging actions as [−100%, −50%, 0%, 50%, 100%] with
respect to the maximum charging rate, and it is not possible
to set the charging rate to 25%. Furthermore, the optimization
over the large discrete action space is impractical as the
number of actions increases exponentially with the number
of control signals. It is impossible to straightforwardly apply
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value-based reinforcemelearning (e.g., Deep Q-Network,
DQN) in the continuous action space because there is an
infinite number of actions to estimate the values, which
requires expensive computational effort.

To support continuous control, we introduce a policy net-
work to model and optimize the policy directly. Specifically,
the proposed algorithm maintains a parameterized policy
function πθ (st ), which specifies the control policy. To learn
more flexible and intelligent control strategies, the actor
function in our work learns the distribution of optimal control
instead of outputting the desired control signals directly,
which establishes a probabilistic management approach to
enhance the performance robustness. Here, we deploy a
Gaussian policy as an instance, which is defined as:

πθ (a|s) =
1

√
2πσ

exp(−
(a− µ)2

2σ 2 ) (15)

where the means and standard deviations are the outputs of
πθ (st ), which is the policy network in our implementation.
The policy network approximates the distribution, and actual
control signals are sampled from this distribution.

C. PROXIMAL POLICY OPTIMIZATION FOR THE
MANAGEMENT GRADIENT
We follow the policy gradient method to optimize our policy
network. The algorithm tries to maximize the expected return
J (πθ ) by leveraging the gradient concerning the parameters of
its policy πθ :

∇θJ (πθ ) = Ea∼πθ [∇θ log(πθ (at |st ))Â(st , at )] (16)

where Â(st , at ) is an estimator of the advantage function at
the timestep t . Â(st , at ) represents the advantage of taking an
action at at a given state st .

Â(st , at ) = Rt − V (st ) (17)

where Rt denotes the return received by the aggregator after
running a particular trajectory starting from st at time step t ,
V (st ) is a value function which is used to estimate the return
of starting in st and following the policy for subsequent steps.

V (st ) = E[Rt |πθ , st ] (18)

The value function V (st ) defined in (18) is estimated to
calculated the advantage function. Following the calculation
of the policy gradient defined in Equation (16), the parameter
update of πθ depends on the advantage function defined in
Equation (17). The policy gradient method can be interpreted
as trying to maximize the likelihood of actions that can result
in a higher expected return and to minimize the likelihood of
actions that can result in lower expected returns. However,
in practice, the estimation of policy gradient suffers from the
high variance, which may result in the algorithm instability
during training, i.e., the performance may vary dramatically
between different iterations. Although the problem caused by
the noise gradient can be alleviated by using a large amount
of data with each update, the policy gradient algorithm might

still be unstable. To address this issue, the proximal policy
optimization measures a probability ratio between old and
new policies which is defined as follows.

w(θ ) =
πθ (a|s)
πθold (a|s)

(19)

A constraint is then imposed by forcing the ratio to stay
within a small interval [1− ε, 1+ ε] as follows.

min
(
w(θ )Â(s, a), clip(w(θ ), 1− ε, 1+ ε)Â(s, a)

)
(20)

where ε is a hyperparameter that controls the clipping degree.
The likelihood radio w(θ ) can be interpreted as a measure

of the similarity between the current policy πθ and the old
policy πold . The clip function is used to discourage the
policies from deviating too far apart. Therefore, the goal
of the algorithm to improve the stability of policy gradient
algorithms.

FIGURE 2. Policy network and value function network for the EV
aggregation.

The overall learning process is shown in Fig. 2. We adopt
two neuron networks for approximating the policy and the
value function, respectively. The policy network observes
environment states and generates control signals. The value
function receives the reward signal and calculates target value
error to update its parameters. With the help of the value
function, the advantage function can be obtained by following
Equation (17). After that, the clipped advantage estimation
can be calculated by following Equation (20) to update the
parameters of the policy network for each update step.

As shown in Algorithm 1, the goal of our approach is to
learn the parameter θ of the optimized policy network π∗.
We first initialize the parameters for policy and value
functions. At each iteration of training, the agent first collects
the required information of a trajectory by running for
an episode of N steps. For each step, the agent observes
the current state st and calculates the output of the policy
network. In our case, the output of the network is the
mean and variance of the action distribution defined in (15).
The control signals are sampled from this distribution. The
historical information of one trajectory is stored in the
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Algorithm 1 Energy Reinforcement Management of EV
Aggregation for the Frequency Regulation
Input: the episode number L;

the maximum step number N of each episode;
Output: optimal control policy π∗θ
Initialize the policy network: θ ← random weights;
Initialize the value function: ψ ← random weights;
Set up the hyperparametes for network training;
Initialize the trajectory storage H;
for episode = 1, 2, . . . ,L do

Initialize state s0 for the EV and grid system;
for t = 1, 2, . . . ,N do

Calculate the output of the actor: (µ, σ ) = πθ (st );
Sample control signal at ∼ N (µ, σ );
Perform the control signal at and receive reward rt ,
new state st+1 and finish signal done
Store transition (st , at , rt , st+1) in H;
if done then

break;
end for
θold ← θ ;
for each update step do

Sample minibatch of D samples {(si, ai, ri, s′i)} from
H;
// Update the value function
for (si, ai, ri, s′i) do

yi← compute target values;
end for
ψ ← ψ + αv( 1n

∑
i ∇ψVψ (si)(yi − V (si)))

// Update the actor function
for (si, ai, ri, s′i) do

Âi← compute advantage using Vψ ;
wi(θ )←

πθ (ai|si)
πθold (ai|si)

;

end for
θ ← θ + απ

1
n

∑
i ∇θmin(wi(θ )Âi, clip(wi(θ ), 1 −

ε, 1+ ε)Âi)
end for

end for

trajectory storage H. The training starts at the end of each
episode. For each update step of training, the algorithm first
samples a batch of D samples from H. The target values
yi are used to update ψ with a stepsize of αv. For each
sample in {(si, ai, ri, s′i)}, the advantage Âi and the probability
radio w defined in (19) is calculated. The parameter θ of
policy network is updated following (20) with a stepsize
of απ . Finally, as the training goes on, the probabilistic
dispatch center πθ gradually converges to a robust control
policy. The complete implementation process for the energy
reinforcement learning of EV aggregation is displayed in
Algorithm 1.

V. MANAGEMENT CASE DEMONSTRATION
To demonstrate the performance of the proposed method,
a 5GWh electrical grid with two EV aggregators is employed

here as an example. The same structure of test system is
adopted in [16], [32], [35].

A. CONFIGURATION FOR THE SYSTEM TEST
1) PARAMETERS OF ELECTRICAL GRID AND EVs
The grid inertia M and damping D are set as 8.8 and 1,
respectively. With the time constants of governor Tg=0.2,
reheat Tr=12, turbine Tc=0.3, and turbine fraction Fp=1/6,
the governor power is transferred into the grid to maintain
the system frequency. According to the Tesla V3 super-
charging, the power range of each EV is assumed to vary
between [−250kW, +250kW]. The parameters in Table 2
for the EV aggregators are decided according to [32].
The charging/discharging coefficients KEV

1 , KEV
2 present

the battery efficiency, while the time constants T EV1 ,
T EV2 are the indicators of battery response speed. The
participation rates α1, α2 of aggregators are determined
based on the energy contribution ratio between the electrical
grid and the EV aggregator. In this study, the energy
capacity of the electrical grid is 5GWh, while the EV
Aggregator 1 contributes 0.125 GWh in the frequency
regulation service and the contribution from EV Aggregator
2 is 1.125 GWh. Hence, the participation ratio α1 =

0.125GWh/(5GWh+0.125GWh+1.125GWh)=0.02, α2 =
1.125GWh/(5GWh+0.125GWh+1.125GWh)=0.18. The
initial SOC of Aggregator 1 is 48%, while Aggregator 2 starts
with SOC2=52%. If 10000 EVs charge simultaneously,
the peak power is able to reach 10000*250kW=2.5GW,
which forms a relatively large energy integrated system.

TABLE 2. Electric vehicle aggregator parameters.

According to [16], the initial SOCs are randomly set
to verify the management performance of the proposed
strategy. The SOC changes of EVs are determined by the
power variation of EV aggregators. The changes of EV
SoCs are closely related with the power demand, systems
disturbances, initial SOC, configuration, renewable energy,
and charging/discharging time of EVs. All these uncertain
parameters can be classified into the external and internal
variations demonstrated in Section VC and Section VD of
the manuscript. In terms of the external disturbance, the PV
measurement data [37], system disturbance of power increase
are investigated. For the internal disturbance, the initial SOC
and system configuration of the participation ratio is taken
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into account. Through the lumped parameters T EV1 , T EV2 ,
the charging/discharging time of EV aggregators is also
included.

In the real-time application, the dynamics of power
systems and EVs are complex and nonlinear. However,
the electrical grid and electric vehicles are integrated through
the secondary frequency service, which operates in the
time-scale of 1-10 minutes in this study [38]. During this
time scale, the frequency regulation of the power system can
be approximately treated as a linear model [16]. Meanwhile,
instead of an individual EV, the EV aggregator with many
EVs is considered to participate in the auxiliary service
as a whole, which can also be simplified as a linear
model [32], [35]. Moreover, even for each battery, the power
output in the short time of 1-10 min is also the same as the
power commend. Therefore, through the power variation in
the electrical grid-electric vehicle system [16], [32], [35],
the EV SOC is analysed in this study. On account of the
renewable energy, the PV measurement data on June 17,
2012 from Electric Power Research Institute [38] is adopted
as the external power disturbance to verify the management
effectiveness.

2) PARAMETERS OF DESIGNED MANAGEMENT SYSTEM
Following paper [31], the discount factor γ for our training
algorithm is set to 0.99, and the clip parameter ε of PPO is 0.2.
There are two dense layers for both policy network and value
network, and each layer with 64 neurons. The learning rate
of policy and value network for PPO is set as 0.0003 and is
decayed linearlywith the learning episode. The value network
outputs expected accumulated rewards of the current input
state. The output layer of the policy network is the Gaussian
distribution (e.g., the outputs are mean µ and variance σ )
for continuous control. The output actions are stochastic and
sampled from these distributions.

The proposed reinforcement learning algorithms and
simulation environment are developed by Python. These
programs run on a server with 12-core Intel(R) Xeon(R) CPU
E5-1650 v3 @ 3.50GHz processors. The deep neuron net-
work training of deep reinforcement learning is accelerated
on 1 NVIDIA GTX 1080Ti GPU.

B. MANAGEMENT EVOLUTION
For the EVmanagement system, the discount factor γ of deep
reinforcement learning is 0.99. The learning stepsizes απ and
αv for the policy network and value function network are
0.0002 and 0.0005, respectively. The episode number is set as
2000 with the maximum step number of 20000. To guarantee
the algorithm stability, the ratio between old and new policies
is clipped via ε = 0.2. Injecting a small load disturbance
1P=0.1p.u, the training process is shown in Fig. 3, which
demonstrates three progressive stages: adaption, exploration,
and stabilization. The red and blue curves in Fig. 3 compare
the rewards of the proposed energy reinforced manage-
ment and the conventional linear dispatch without energy
reinforced management. Between 0-382 episodes, i.e., the

FIGURE 3. Episode performance improvement during the training
procedure.

adaption stage, the reinforcement strategy gradually upgrades
its performance from -101.86 to -80.06, which reaches the
same reward of traditional linear strategy. However, because
of its evolutionary mechanism, the developed strategy is able
to continue the reward progress until 668th, which empowers
the system with 49.69% enhancement in the exploration
stage. After that, the whole management system steps into the
stabilization stage, maintaining the reward around -40 p.u..
Despite the weak regulation performance at the beginning,
the management network can effectively find the optimal
dispatch outputs for the multiple EV aggregators within only
908 episodes during the adversary against the value function
network.

FIGURE 4. SOC management with the developed energy reinforced
approach.

Fig. 4 shows that the SOCs of Aggregator 1 and 2 almost
converge within 600s. During this period, the SOC of
aggregator one declines from 48% to 47.92%, while the
Aggregator 2 SOC rapidly drops from 52% to 48.23%.
As indicated by Fig. 5, the frequency deviation is maintained
in the arrange of [-0.013Hz, 0.013Hz], which secures the
normal frequency state of the electrical grid. From the power
outputs of EVs and the turbine in Fig. 6, it is seen that facing
the external disturbance and the internal energy imbalance,
the whole system adapts in the 50s. The stable power fromEV
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FIGURE 5. Grid frequency facing the load disturbance.

FIGURE 6. Power outputs under the reinforced management.

Aggregator 1 is 0.024GW, while the Aggregator 2 generates
1.13GW to compensate for the external fluctuation and
decrease their SOC difference. In the 50s, the gradual
optimization process is also displayed in Fig. 6. In the
beginning, the power from Aggregator 2 quickly rises to
1.80GW. The occurrence of this quick rise is caused by
the management objective and mechanism of reinforcement
learning. As the management target is set to compress the
frequency fluctuation and SOC imbalance simultaneously,
the energy management system aims to explore the optimal
operation point facing the internal and external disturbances.
Through the rapid exploration in the range of [0, 1.80GW],
it helps the proposed policy find out the final optimal point
of 1.13GW. After that, aggregated EVs slowly decrease the
power outputs converging to their optimal operating states.
The EV aggregator with a higher SOC level participates more
than the aggregator with lower SOC value.

C. REINFORCED MANAGEMENT AGAINST EXTERNAL
VARIATIONS
Considering the external variations, the power disturbance
injecting to the system increases from 0.1 p.u. to 0.2 p.u..
Facing this change, the SOC changes of the two EV

TABLE 3. Rapid energy balance among different aggregation groups.

aggregators are listed in Table 3. Due to the larger dis-
turbance, the reinforcement-based management dispatches
more power from the Aggregator 2. Within 500s, the SOC
difference between the two EV groups is almost eliminated
by the proposed strategy shown in Table 3. Compared
with the SOC regulation speed in Fig. 4, the SOCs of
two aggregators coincide within 500s, which reflects the
adaption of the proposed strategy against external variations.
The corresponding power curves from the two aggregators
are depicted in Fig. 7. It can be seen that the power
output from the Aggregator 2 has grown to 1.5GW to
reduce the external variations, which is 1.27 times larger
than that in Fig. 6. Without knowing the system model
and disturbance, the developed strategy can automatically
change, guaranteeing the system flexibility.

FIGURE 7. Power outputs with the increased disturbance of 0.2 p.u.

On account of the real-time variation, the variation
data based on the PV measurement [37] is deployed to
vary the electrical grid. In 600s of Fig. 8, the power
disturbance fluctuates between 0.342GW and 0.805GW,
which reaches 16% of the power rating. With the help of deep
reinforcement learning, the frequency deviation is displayed
in Fig. 9. Facing the high-penetration of renewable energy,
the frequency of the whole system only varies between
[−0.015Hz, +0.015Hz], which demonstrates the feasibility
of the proposed management. From Fig. 9, it can also be
seen that the frequency deviation curve is much smoother
after 300s showing the continuous learning capability of the
proposed management strategy.

D. REINFORCED MANAGEMENT AGAINST EV INTERNAL
VARIATIONS
Besides the external disturbance, the states of EV aggregators
may also suffer from internal dynamics and uncertainties.
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FIGURE 8. The PV fluctuation in 10 minutes.

FIGURE 9. Grid frequency deviation facing the PV fluctuation.

FIGURE 10. SOC adjustment with internal aggregation uncertainties.

To verify the advantage of developed management strategy,
the participation rates of two EV aggregators are switched
from 1:9 to 1:1, which means these two aggregators have
an identical contribution to the frequency regulation. The
SOC adjustment process is shown in Fig. 10. With higher
power, the EV Aggregator 1 increases its SOC from
48% to 55.77 %, while the Aggregator 2 slowly grows
to 55.80 %, which keeps the dynamic balance via the
model-free dispatch. To investigate the dispatch process of

FIGURE 11. The reward comparison with traditional PI AGC signals.

FIGURE 12. Performance consistency against internal and external
dynamics.

the deep reinforced management, the reward of each step
is also displayed in Fig. 11. Although there is a small
adaption stage in the period of [0s, 155s], the objective
is gradually optimized to 0 by the developed reinforced
management. However, the traditional automatic generation
control signal from the proportional-integral (PI) controller
is unable to adjust the SOC dynamically (KP=0.2, KI=0.2),
which influences the aggregation performance of the
EV system.

To further detect the management performance facing
various SOC scenarios, the SOC values of two EV aggre-
gators are set the same with 52%. Meanwhile, the timescale
of external PV fluctuation is extended to 36 minutes for
the verification of long-term performance consistency. From
the long-term simulation in Fig. 11, the peak value of the
frequency deviation is constrained by 0.036Hz, while the
minimum frequency dip is reduced by 0.01Hz. Defining the
comparison index J as the deviation reduction per hour, its
expression is as below

J =
t+1T∑
t

‖1f ‖ /1T (21)
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According to (21), the accumulated frequency deviation
of PI dispatch is 185.38Hz/hour, while the proposed man-
agement is 163.82Hz/hour. In front of this random dynamic,
the improvement can still reach 11.63%. As time goes by,
the merit of an established management strategy will be
more notable, which makes the intelligent EV management
possible.

VI. CONCLUSION
A probabilistic energy reinforced management structure is
developed in this work to cope with the modeling and
aggregation difficulties of the electric vehicles (EVs). Parallel
with the traditional automatic generation control, the policy
network in the proposed management strategy observes the
operating dynamics of the electrical grid and the electric
vehicles simultaneously to fully understand and utilize the
energy differences. According to the instantaneous and the
accumulated rewards from the Markov decision process,
the established policy network continuously generates and
adjusts its dispatch commands for various EV aggregators.
To enhance the algorithm consistency, the policy network
gradient is further optimized by regulating the evolutionary
ratio between the old and new policies. By the typical
electrical grid-electric system, the proposed approach demon-
strates significant merits in terms of SOC dispatch, frequency
regulation, and the evolutionary properties, which establishes
a uniform energymanagement framework for the aggregation
of EVs in the grid frequency regulation. The future work is to
take the aggregation process into consideration. In this study,
the EV aggregation process is simplified based on references,
but the practical aggregation dynamic is complex and
requires the investigation of diversified customer behaviors.
As the proposed management strategy does not rely on the
system model and includes probability learning, it could be
further designed and extended to the hybrid energy-behavior
management for effective EV-grid integration.
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