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ABSTRACT Android malware has been in an increasing trend in recent years due to the pervasiveness
of Android operating system. Android malware is installed and run on the smartphones without explicitly
prompting the users or without the user’s permission, and it poses great threats to users such as the leakage
of personal information and advanced fraud. To address these threats, various techniques are proposed by
researchers and practitioners. Static analysis is one of these techniques, which is widely applied to Android
malware detection and can detect malware quickly and prohibit malware before installation. To provide
a clarified overview of the latest work in Android malware detection using static analysis, we perform a
systematic literature review by identifying 98 studies from January 2014 to March 2020. Based on the
features of applications, we first divide static analysis in Android malware detection into four categories,
which include Android characteristic-based method, opcode-based method, program graph-based method,
and symbolic execution-based method. Then we assess the malware detection capability of static analysis,
and we compare the performance of different models in Android malware detection by analyzing the results
of empirical evidence. Finally, it is concluded that static analysis is effective to detect Android malware.
Moreover, there is a preliminary result that neural network model outperforms the non-neural network model
in Android malware detection. However, static analysis still faces many challenges. Thus, it is necessary
to derive some novel techniques for improving Android malware detection based on the current research
community. Moreover, it is essential to establish a unified platform that is used to evaluate the performance
of a series of techniques in Android malware detection fairly.

INDEX TERMS Android malware detection, static analysis, systematic literature review.

I. INTRODUCTION
With the explosive growth of the mobile market in the last
decade, Android has become the largest intelligent operating
system. So far, the number of Android system has accounted
for more than 80% of the whole market of smartphones.1

When it is popular with plenty of application developers and
users, Android operating system also becomes a preferred
attack target for malicious offenders. In September 2010,
it was the first time to detect malware in the Android sys-
tem. Shortly later, the number of malicious applications is
gradually increasing. Zhou et al. [1] discovered thousands of
malicious applications in the following years. According to

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .
1https://www.tenda.com.cn/faq/7983.html

G data,2 the number of Android malware reached 3.2 mil-
lion and increased by 40% year-on-year in the third quarter
of 2018.

Android applications have been ubiquitous in daily life.
According to Google Play,3 there were 2.6 million Android
applications available for users as of September 2018.
However, many malicious applications are hidden in the
Android market, which poses great threats to users. Android
malware is installed and run on smartphones without explic-
itly prompting the users or without the users’ permission.
Generally, it has one or more of the following behaviours:
forced installation, browser hijacking, stealing and modi-
fying user data, malicious collection of user information,

2http://www.199it.com/archives/793849.html
3https://zh.wikipedia.org/wiki/Google_Play
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malicious installation, malicious bundling, and other mali-
cious behaviours. These behaviours would seriously infringe
on the legitimate rights of users, and will even bring huge
loss of interests to users. Based on these behaviours [2],
Android malware can be divided into four categories, which
include malware installation (e.g., repacking, update attack,
and drive-by download), malware activation, malicious pay-
loads (e.g., privilege escalations, remote control, finance
charge, and information collection), and permission abuse.

To address such threats mentioned above, researchers
and practitioners propose various techniques, which mainly
include dynamic analysis and static analysis. Dynamic anal-
ysis instruments and executes the APK for malware detec-
tion, while static analysis can detect malware by scanning
the entire APK without running the APK. Compared with
dynamic analysis, although static analysis has some prob-
lems in resisting malicious deformation techniques such as
java reflection and dynamic code loading, static analysis can
detect malware quickly and prohibit malware before installa-
tion. Moreover, static analysis is not only scalable and usable
when facing batch unknown APKs detection, but also can
traverse all possible execution paths of the APKs.

Currently, static analysis has been already an impor-
tant technique in Android malware detection. For example,
Enck et al. [3] proposes a tool, which is mainly based on the
combinations of dangerous permissions to identify vulnera-
ble applications. It is an early representative static analysis
methods to apply permissions to detect Android malware.
ScanDal [4] takes Dalvik bytecode as input to detect private
information leaks in Android applications. IccTA [5] extracts
components from applications to detect malicious payloads.
Alam et al. [6] automatically identify sensitive data leak paths
through control flow graph and taint data analysis.

In order to learn about Android malware detection
using static analysis, there are some surveys and reviews
published before. Faruki et al. [7] discuss the prob-
lems of malware penetration and stealth techniques from
the perspective of Android security architecture between
2010 and 2014. In addition, it also enumerates existing
methods related to Android malware detection using static
analysis. Calleja et al. [8] mainly focus on the evolution
of malware and estimate of the development costs of mal-
ware repair based on the size and code quality of mal-
ware. Zachariah et al. [9] just present Android malware
detection methods from three aspects of static analysis
(i.e., signature-based detection, permission-based detection,
and Dalvik bytecode detection) and discuss the advantages
and limitations of these methods. However, there is not exten-
sive coverage, which only includes 27 studies, and it also does
not make the discussions and state the future work. Besides,
a recent survey [10] in detail illustrates on the sensitivity of
static program analysis (i.e., flow sensitivity, context sensi-
tivity, path sensitivity, field sensitivity, and object sensitivity)
and describes the application of static analysis techniques
in the field of Android such as code detection, test case
generation, and code verification. However, there is a gap in

the Android malware detection investigation in recent years.
More importantly, with the rapid evolution of Android mal-
ware, some studies related toAndroidmalware detection have
obviously increased in past years (see Section III), and some
novel solutions have emerged to detect Android malware.
For example, analogizing graph classification technology,
Canfora et al. [11] combine control flow graphs and graph
kernels to analyze the difference between malicious and
benign applications to identify Android malware. Therefore,
it is indispensable to summarize Android malware detection
using static analysis in recent years.

To have a clear view of Android malware detection using
static analysis in the past few years, we perform this sys-
tematic literature review (SLR) after identifying thoroughly
related studies. The main contributions of this SLR are listed
as follows.

• We perform this SLR based on the key aspects of
Android malware detection using static analysis.

• This paper divides static analysis in Android malware
into four categories based on the features of applica-
tions. Thereafter, by analyzing the empirical evidence,
this paper assesses the malware detection capability of
static analysis and compares the performance of differ-
ent models in Android malware detection.

• According to the results of empirical evidence, static
analysis is effective and neural network model outper-
forms non-neural network model in Android malware
detection.

• Finally, we make the discussions and provide the future
work in Androidmalware detection using static analysis.

The rest of this SLR is organized as follows. Section II
presents the research questions and the overall review pro-
tocols. Section III shows the results of the studies. Section IV
discusses the research directions. Section V depicts the
threats to the validity. Section VI concludes this paper and
provides future work.

II. REVIEW PROTOCOL
This SLR is based on the guidelines of Budgen and
Brereton [12]. Figure 1 shows the complete process of this
SLR, which is divided into three phases.

• Planning the review. This phase aims to identify the goal
and develop the protocols of this SLR.

• Conducting the review. This phase points out the main
contents of research in this SLR, which can be divided
into six steps.
1) Research questions. Research questions locate the

issues that need to be analyzed in this SLR, and the
answers to research questions perform the basis of
the section of discussions.

2) Search strategy. This step aims to identify search
sources and search terms in order to collect pri-
mary studies.

3) Study selection criteria. Study selection crite-
ria include inclusion criteria and exclusion cri-
teria. These criteria determine which studies are
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TABLE 1. Research questions.

FIGURE 1. The overview of systematic literature review process.

included or excluded from this SLR, and we screen
irrelevant studies on the basis of inclusion and
exclusion criteria.

4) Quality assessment criteria. This step is used for
assessing the relevance between selected studies
and the objective of this SLR.

5) Data extraction. The objective of this step is to
design data extraction form to accurately record the
information, which is related to research questions.

6) Data synthesis. This step aims to collate and sum-
marize the results of primary studies.

• Reporting the review. According to these guidelines, this
phase aims to fulfill with this SLR.

A. RESEARCH QUESTIONS
This section mainly devises research questions, which is used
to identify the primary studies and form the main part of
this paper. Table 1 presents four research questions related to
Android malware detection using static analysis. RQ1 iden-
tifies the category of static analysis in Android malware
detection. RQ2 identifies the general process of assessing

the empirical evidence in the primary studies. This question
includes six dimensions, which focus on the experimental
datasets, the support tools for static analysis, the commonly
used features, feature reduction techniques, the selected
models to detect Android malware, and the performance
measures, respectively. On the basis of empirical evidence,
we research the RQ3 and RQ4. As for RQ3, the performance
of static analysis techniques in Android malware detection
is assessed by the commonly used performance measures.
RQ4 aims to investigate whether the performance ofModel A
is better than Model B on the same dataset and performance
measure.

B. SEARCH STRATEGY
To obtain studies related to Android malware detection using
static analysis, we form some search terms that are associ-
ated with this paper. The main approach is to apply boolean
expressions to combine search terms, and these boolean
expressions include ’AND’ or ’OR’. The search terms can be
mainly summarized (mobile OR Android OR Smartphone)
AND (malware OR malicious behaviours OR suspicious
behaviours OR vulnerability) and (detection OR detect) OR
(static analysis OR data flow OR control flow).

After ensuring these search terms, the relevant digital
repositories are selected. We search the seven electronic
databases, which are listed as follows.

• IEEE Xplore Digital Library
• ScienceDirect
• ACM Digital Library
• Wiley Online Library
• Google scholar
• SpringerLink
• Web of Science
The searching process is carried on the above seven

electronic databases, which include main journals and con-
ferences. These journals and conferences are mainly from
Software Engineering and Programming Languages (SE/PL)
and Security and Privacy (S&P), which are listed in Table 2.
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TABLE 2. The main journals and conferences.

Second, we also collect the studies that are related to Android
malware detection using static analysis in the reference
section, where studies take up a small proportion in the pri-
mary studies. All the studies related to search terms are taken
into account, and the searching range is from January 2014 to
December 2018.

C. STUDY SELECTION CRITERIA
To select the related studies, we build three inclusion criteria
in the searching process based on seven electronic databases.
First, search terms are included in the title or abstract or key-
words. Second, static analysis techniques are introduced in
the studies. Third, empirical experiments are conducted in the
studies.

To filter out studies which are irrelevant with the objective
of this SLR, a series of exclusion criteria are formed as
follows.

• Wefilter out the studies that are not published in English.
• We exclude less extensive studies with corresponding
duplicate papers. Generally, some studies are published
in conferences and journals at the same time. According
to authors, titles, and abstracts, we locate these studies,
where less extensive studies are excluded.

• The studies related to window applications are excluded.
• The studies that apply dynamic analysis to detect
Android malware are filtered out.

• Due to ‘‘Android’’ in the search terms, some studies
about Android operating system are excluded.

D. QUALITY ASSESSMENT CRITERIA
To assess the quality of the selected studies, we follow the
guidelines of quality assessment criteria in Table 3 and screen
these studies. To ensure the reliability of the results, we use
the cross-checking method to identify whether the selected
studies meet these criteria. After the step of quality assess-
ment criteria, the final studies are obtained, which include
94 studies and 4 SLRs related to Android malware detection.

TABLE 3. Quality assessment criteria.

FIGURE 2. The information of the extracted information.

E. DATA EXTRACTION AND DATA SYNTHESIS
The process of data extraction is to design forms for accu-
rately extracting the information from the primary studies.
According to the information in the data extraction forms,
we can obtain the answer to research questions. The extracted
information in the data extraction forms is listed in Figure 2.

• The author, publication time, and publication source of
studies. In this part, we can obtain the author, publica-
tion time, and publication source, including journals and
conferences in the primary studies.

• Static analysis techniques. This part mainly focuses on
static analysis techniques adopted by primary studies.
According to the features of applications, we classify
static analysis techniques.
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• Empirical evidence. To answer these research ques-
tions, we summarize from six dimensions: experimental
datasets, the support tools for static analysis, feature
reduction techniques, static analysis features, the used
models, and performance measures.

In the step of data synthesis, it mainly summarizes similar
and comparable results from data extraction forms, which
can provide supporting evidence for conclusive answers to
research questions. After the step of data synthesis, the results
are saved into an excel file. Finally, we adopt the histogram,
pie chart, and table to show the conclusive results clearly.

III. RESULTS
This section aims to present the results obtained from primary
studies. We first describe primary studies. According to facts,
we thereafter show the results of this SLR in light to the
research questions.

A. DESCRIPTION OF STUDIES
This section describes 98 studies from the perspective of
publication time and publication source.

FIGURE 3. The year-wise distribution of studies.

1) PUBLICATION TIME
Figure 3 shows that the number of studies from 2014 to
2020 is 6, 6, 15, 21, 26, 21, 3, respectively. According to this
figure, it can be seen that the number of studies in 2018 takes
the largest proportion. Except for papers in 2020 (some paper
in 2020 are not published, so the period of these papers
in 2020 is from January to March), the number of studies
related to Android malware detection using static analysis is
overall in sharp growth from 2014 to 2019. From this figure,
it suggests that Android malware detection has always been
a hot topic in the last few years.

2) PUBLICATION SOURCE
Table 4 shows the main type of publication source and the
number of studies related to publication source in the primary
studies. According to Table 4, it presents that the first five
publication sources are Computer and Security, Security and
Communication Networks, IEEE Access, Information and

TABLE 4. The results of publication source.

Software Technology, and IEEE Transactions on Information
Forensics and Security, and the number of them is 13, 8,
7, 3, 3, respectively. It is noted that the remaining of the
publication sources are not listed such as IEEE transaction
on reliability and the Network and Distributed System Secu-
rity Symposium. According to this table, it can be inferred
that the number of studies from the journal occupies more
than 50%.

B. RQ1: WHAT ARE THE POPULAR STATIC ANALYSIS
TECHNIQUES IN ANDROID MALWARE DETECTION?
Static analysis is a kind of code analysis technique that takes
source code or binary code of a program as input. It examines
this code without running the program so as to verify the
specifications (e.g., security and reliability) of this program.
Compared to the dynamic analysis, the major advantages of
static analysis do not need to execute the application, so it
has high execution efficiency and fast speed. Due to these
advantages, static analysis techniques are widely adopted in
Android malware detection.

In general, an APK is mainly composed of META-INF,
resource files, library directory, resource directory,
AndroidManifest.xml, and binary files. According to
extracted features from APKs, we divide static analysis
into four categories, which include Android characteristic,
opcode, program graph, and symbolic execution.

1) ANDROID CHARACTERISTIC-BASED METHOD
This category mainly collects features related to Android
characteristic, which can be almost obtained from both con-
figuration files and bytecode programs in the binary files.
After that, a series of features can be collected, such as per-
missions, API calls, intents, and hardware components. These
features are considered as feature vectors, which are trained
in the machine learning models or used in statistical models
(see RQ2.5) for Android malware detection. For example,
Feizollah et al. [15] extract the intents of applications as
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features for the malware classification. Yerima et al. [16]
attempt to use permissions and sensitive API calls to detect
malware and the experimental result indicates these fea-
tures achieves promising performance in Android malware
detection.

2) OPCODE-BASED METHOD
The opcode is extracted from binary files of the APK. The
binary files consist of many smali files, and each smali file
represents a class file of this application, which is made
up of a series of opcode sequences. This method focuses
on treating opcode sequences as text and then combining
natural language processing models or deep learning models
to detect malware. For instance, Jerome et al. [17] extract all
possibles n-gram (i.e., the n-grammodel is a natural language
processing model, which is based on the assumption that the
occurrence of the nth word is only related to the previous
n-1 words) from the opcode sequences as an initial feature
sets, and combine the machine learning models to classify
malware. Yan et al. [18] learn the contextual semantics of
opcode sequences by Long Short-Term Memory to identify
malware.

3) PROGRAM GRAPH-BASED METHOD
The program graph is extracted from binary files of APK.
According to primary studies, the program graph can capture
more syntax or semantic information compared to the two
methods above. Thus, many studies adopt program graph-
based method to analyze and detect malware. For example,
Allix et al. [38] rely on the abstract representation control
flow graph of an application, collect all basic blocks that
compose and refer to them as features, combine machine
learning models to detect malware. Arzt et al. [19] present
to build data flow graphs among system calls, and then use
graph matching techniques for Android malware detection.
Fan et al. [20] extract function call graphs (FCGs), and then
construct frequent subgraphs (fregraphs) from FCGs to rep-
resent common behaviours of malware samples that belong
to the same malware family, and finally develop the tool of
FalDroid, which automatically classifies malware and selects
representative fregraphs in accordance with malware.

4) SYMBOLIC EXECUTION-BASED METHOD
The symbolic execution is an accurate procedure variable
computing technology, which simulates application execu-
tion by replacing abstract symbols with variables. According
to the conditional branches of given paths in the application,
these abstract symbols are used to generate expressions and
constraints, which could be used by constraint solver. Then
the expressions and constraints of malicious applications are
collected as rule library. If the expressions and constraints of
an application are in this rule library, this application will be
considered as a malicious application. For example, to reduce
the high false-positive rate of Android malware detection
using Flowdroid, TASMAN [21] uses symbolic execution to
further detect Android malware and improve the performance

of Flowdroid. It points out in [90] symbolic execution has
still faced many challenges especially path selection and con-
straint solving, thus the number of studies that use symbolic
execution-based method to detect Android malware just takes
up a very small proportion.

TABLE 5. The category of static analysis techniques.

Table 5 enumerates the category of static analysis tech-
niques and shows the number (No.) and percentage (PCT)
of the studies corresponding categories. Excluded 4 SLRs
([7]–[10]) and 2 studies ([24] and [82]) that combine mul-
tiple static analysis techniques, this table includes 92 studies.
In this table, it shows Android characteristic-based method
is the most commonly used static analysis technique, which
accounted for about 53% in all the studies. And the num-
ber of primary studies related to the opcode-based method
and program graph-based method occupies about 19% and
20%, respectively. The number of studies related to the sym-
bolic execution-based method is the smallest. It suggests that
Android characteristic-based method has been an important
focus.

RQ1: According to extracted features from APKs,
we divide static analysis into four categories: Android
characteristic-based method, opcode-based method, pro-
gram graph-basedmethod, and symbolic execution-based
method. Of these, Android characteristic-based method is
most commonly used in Android malware detection.

C. RQ2: HOW DO THESE PRIMARY STUDIES CONDUCT
THE EMPIRICAL EXPERIMENTS OF ANDROID MALWARE
DETECTION USING STATIC ANALYSIS
In response to RQ2, we analyze and summarize empirical
evidence in detail. Figure 4 shows the five steps of the
process of empirical experiments in Android malware detec-
tion. First, data collection aims to collect benign and mali-
cious datasets. In general, the more experimental datasets,
the more convincing the results are. Second, feature extrac-
tion aims to extract features from APKs by support tools for
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FIGURE 4. The steps of Android malware detection.

static analysis. Third, feature reduction techniques are
adopted to determine and select significant features. Fourth,
model selection aims to find an appropriate model to distin-
guish malicious applications from benign applications. These
models include statistical models and machine learning mod-
els. Fifth, model evaluation aims to assess the generalization
of models by performance measures. According to the pro-
cess of empirical experiments, the following sections deter-
mine experimental datasets, support tools for static analysis,
commonly used features, approaches to feature reduction,
the used models, and performance measures in Android mal-
ware detection.

1) RQ2.1: WHICH DATASETS ARE USED FOR
ANDROID MALWARE DETECTION?
In the primary studies, various malicious datasets have
been adopted by researchers and practitioners. Based on the
source of datasets [38], they can be divided into two cate-
gories: in-the-lab datasets and in-the-wild datasets. In-the-
lab datasets are generally regarded as baselines in Android
malware detection and mainly include Drebin,4 Genome.5

Genome is the first malware dataset that is collected and
published. Based on Genome [2], Drebin is proposed to eval-
uate Android malware detection method, which is the first
efficient and explainable method [35]. In-the-wild datasets
are continuously updated and maintained. Due to a large
number of samples and diverse categories, the performance
of methods evaluated in the in-the-wild datasets is more
credible than that of in-the-lab datasets. Concretely, in-the-
wild datasets include Virustotal,6 Virusshare,7 Contagio,8

AMD [20], McAfee,9 and Androzoo.10 In addition, some
studies such as [22]–[24] adopt Kaggle11 and Anzhi.12 Kag-
gle is a competition platform, and Anzhi is a Chinese Android
market. The datasets mentioned above are publicly avail-
able. However, a few studies still use unpublic datasets such
as [25], [26]. In terms of benign datasets, the applications
are mainly from Google Play Store,13 and China Mobile
ApplicationMarket, and benign datasets have no open source
in most studies.

Excluded 4 SLRs and 6 studies that do not disclose mali-
cious datasets, Figure 5 shows the number of datasets adopted

4http://www.sec.cs.tu-bs.de/ danarp/drebin/
5http://www.malgenomeproject.org/
6https://www.virustotal.com
7https://virusshare.com/
8http://contagiominidump.blogspot.hk/
9https://home.mcafee.com/Default.aspx?rfhs=1
10https://androzoo.uni.lu/
11https://www.kaggle.com/
12http://www.anzhi.com/
13https://play.google.com/store

FIGURE 5. The number of malicious datasets in the primary studies.

in primary studies. To verify the usability and effectiveness of
proposed methods, somemalicious datasets are used multiple
times by some studies. According to this figure, it presents
Drebin and Genome are the most commonly used datasets in
the in-the-lab datasets, and the most commonly used dataset
is Virusshare in the in-the-wild datasets.

RQ2.1: In-the-lab and in-the-wild datasets occupy a sim-
ilar proportion in the studies of Android malware detec-
tion. Of these, Drebin and Genome are the most com-
monly used experimental datasets.

2) RQ2.2: WHICH SUPPORT TOOLS ARE USED FOR STATIC
ANALYSIS IN ANDROID MALWARE DETECTION?
For the purpose of supporting static analysis, a series of tools
are adopted in primary studies. There are some off-the-shelf
support tools to implement the preliminary static analysis.
The difference among these tools is that intermediate rep-
resentations [10] are different during the process of static
analysis. The intermediate representations of these support
tools include smali, dex_assembler, jimple, and Java_class.
In order to obtain the terminal representation format of
Android applications, it is still needed further analysis and
processing.

Figure 6 enumerates current support tools for static analy-
sis and shows the number of these support tools. According
to this figure, it can be seen that Apktool takes up the largest
proportion and is often used to decompile APKs. Table 6
shows the descriptions and intermediate representations (IR)
of support tools and gives a few examples of specific studies
with corresponding support tools.

RQ2.2: The difference in support tools for static analysis
is intermediate representations. In primary studies, Apk-
tool is the most commonly used support tool for static
analysis in Android malware detection.

3) RQ2.3: WHICH FEATURES ARE COMMONLY USED IN
ANDROID MALWARE DETECTION?
Different categories of features can represent behaviours of
APKs at different levels. Thus, malware detection capabil-
ities of these features are inconsistent. In order to detect
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TABLE 6. The details of support tools for stat analysis.

FIGURE 6. The results of support tools for static analysis.

malware, primary studies use a series of features to represent
behaviours of APKs. According to four categories of static
analysis techniques in RQ1, opcode-based method regards
opcode sequences as text and opcode sequences can capture
context semantics of APKs. Additionally, symbolic execution
is a complex technique and is adopted by 2 studies, so this
section focuses on Android characteristic and program graph-
based methods to detect malware, the more details of features
are listed in Figure 7.

Figure 7(a) presents that features related to Android
characteristic-based method are divided into eight categories.
In this figure, permissions and API calls are the most com-
monly used features in the primary studies, and the number
of them is far more than that of other features. Permissions
are security-related resources and are proactively granted by
users during the process of installation. As for API calls,
some of them are related to permissions and are restricted
to Android permission system. For example, if you want to
connect the network, you need to request the permission of
ACCESS_NETWORK_STATE and call the API of getNet-
workOperator(). Besides, some API calls are connected with
sensitive data or resources such as getDeviceID(). In general,
if an API call is sensitive, the frequencies of this API call in
benign applications is less than that in malicious applications.
It is noted that all the possible API calls in the static analysis
can be extracted from binary files of the APKwithout running
theAPK,while API calls in the dynamic analysis are obtained
by executing the APK in the protected environment such
as Android emulators or sandboxes. Thus, API calls in the
dynamic analysis are effective to resist malicious deformation

FIGURE 7. The overview of features.

techniques, but dynamic analysis often misses some impor-
tant API calls compared with static analysis. This figure also
shows that the least used features are network (e.g., [36])
and code related patterns (e.g., [39]) in primary studies. The
feature about the network is used to fetch data and files
and may be related to the botnet, and code related patterns
are collected by summarizing code patterns of benign and
malicious APKs. In addition, the feature about meta data in
this figure is the description information of released APKs in
the application market such as ratings, downloads, developer
reputation, and others.

Figure 7(b) shows five categories of program graph,
including API dependency graph, inter-component call
graph, control flow graph, function flow graph, and data
flow graph. These program graphs can be obtained from
support tools for static analysis. In the API dependency graph,
the contextual API operations are nodes and data dependency
between operations are edges [79]. The inter-component
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call graph is formed by the control flow graph and data
flow graph [78]. As for the control flow graph, basic blocks
represent nodes and the connection between last executed
basic block and currently active basic block represents edges.
Concerning the function call graph, functions are regarded as
nodes and calling relationships of functions are considered
as edges, which are identified by invocation statements such
as invoke. The data flow graph is different from the control
flow graph, and it depicts the program by the procedure of
data flow and data processing, and most static taint analysis
techniques adopt the data flow graph. According to this
figure, the number of data flow graph accounts for the largest
proportion in the program graph-based methods.

RQ2.3: Overall, features related to Android
characteristic-based method are the most, where
permissions and API calls account for the most
significant proportion.

4) RQ2.4: WHICH TECHNIQUES ARE USED FOR FEATURE
REDUCTION IN ANDROID MALWARE DETECTION?
In order to determine and select significant features in
Android malware detection, a variety of feature reduction
techniques have been used in the primary studies. Feature
reduction techniques are mainly divided into two categories:
feature selection and feature extraction. Feature selection
can eliminate redundant and noisy features, and select the
most relevant features, such as information gain (IG). Feature
extraction can reduce the dimensions of these origin features
and obtain new combinations of features, such as principal
component analysis (PCA). In primary studies, except for
4 SLRs, about 24% studies adopt off-the-shelf feature reduc-
tion techniques, which can be directly used in the studies.
About 12% studies improve off-the-shelf feature reduction
techniques and propose some novel feature reduction tech-
niques such as [52]. Besides, about 17% studies automatically
extract features from applications by the neural network,
where word embedding technique is the most common
[32], [74]. For example, Wang et al. [39] extract seven
categories of static features, of which the number is up
to 34 thousand. To process theses features efficiently, deep
autoencoders (DAE) are applied to reconstruct the origin
features. In addition, about 47% studies do not use feature
reduction techniques, and these studies apply origin features
directly to detect Android malware such as [31].

Table 7 gives descriptions and distributions of off-the-shelf
feature reduction techniques. This table lists seven off-the-
shelf feature reduction techniques, including IG, χ2, fisher-
score (Fisher), GR, co-relation based feature selection (CFS),
evolutionary algorithms (EA), and PCA. According to this
table, the most commonly used feature reduction technique
is IG, and IG of feature f is defined as the difference between
prior uncertainty and expected posterior uncertainty using
feature f. If IG of feature f1 is higher than that of feature f2,
then feature f1 is considered better than feature f2. To find

TABLE 7. The information of feature reduction techniques.

the most suitable feature reduction technique, it is noticed
that some studies make the comparison among different tech-
niques. For example, to find a suitable feature reduction
techniques, Martín et al. [45] compare the performance of
IG, Chi-square (χ2), and gain ratio (GR).

RQ2.4: Only a part of the studies adopt feature reduction
techniques, and IG accounts for the largest proportion in
the off-the-shelf feature reduction techniques.

5) RQ2.5: WHICH MODELS ARE USED FOR
ANDROID MALWARE DETECTION?
This section presents the used models in Android malware
detection. We divided the used models into two categories:
machine learning model and statistical model.

a: MACHINE LEARNING MODEL
With the rapid development of machine learning techniques
in natural language processing, image detection, and other
aspects, machine learning techniques have been gradually
widely applied to Android malware detection in recent
years. In the primary studies, the commonly used machine
learning models are Support Vector Machine (SVM), Naive
Bayes (NB), Logistic Regression (LR), Ensemble Learn-
ing (EL), neural network.

The neural network is a new area of machine learning and
widely applied to many research communities such as image
recognition and detection. It can also performwell in Android
malware detection. Xiao et al. [44] propose to associate
API calls from static analysis of Android applications and
identifymalware usingArtificial Neural network (ANN). The
evaluation result presents a high F-measure. Wang et al. [39]
use deep autoencoder (DAE) as a pre-training method of
Convolutional Neural Networks (CNN). With the combina-
tion of DAE and CNN (DAE-CNN), this method can learn
more flexible patterns in a short time. Compared with SVM,
accuracy with DAE-CNN is improved by 5%.
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FIGURE 8. The classification of machine learning models. (CART: classification and regression trees,
NB: naive bayes, BN: bayesian networks, PBN: naive bayes with informative priors, HMBN: hierarchical
mixture of naive bayes, RF: random forest, ROF: rotation forest, FT: functional tree, LADT: multiclass
alternating decision tree, NBT: naive bayes tree, RepT: fast decision tree learner, MLP: multilayer
perceptron, CNN: convolutional neural network, RNN: recurrent neural network, LSTM: long short-term
memory, DBN: deep belief network, ANN: artificial neural network, SVM: support vector machine,
SVR: support vector regression, GA: generic algorithm, SMO: sequential minimal optimization, LR: logistic
regression, KNN: K-nearest neighbour.)

b: STATISTICAL MODEL
The statistical model in Android malware detection is to
build a rule library from malicious applications. Then we
calculate the degree of similarity between an unknown APK
and this rule library. If the degree of similarity is more than
a certain threshold, this APK is regarded as a malicious
APK. Conversely, if the degree of similarity is less than a
certain threshold, this APK is regarded as a benign APK. For
example, Ali-Gombe et al. [70] predefine a rule library based
on extracting permissions and opcode sequences found in
sensitive functional modules, and then apply this rule library
to detect malware.

Except for 4 SLRs, we find thatmost studies adoptmachine
learning model, and the number of studies related to machine
learning model is 82, while the number of studies related
to statistical model is 12, which only takes up nearly 13%.
It indicates that the machine learning model has been an
important focus in Android malware detection recently.

Furthermore, we carry out classification in the field of the
machine learning model. The classification strategy category
is based on Malhotra [87], and machine learning model is
divided into nine categories: Decision Trees (DT), Bayesian
Learning (BL), Ensemble Learning (EL), Neural Networks
(NN), Support Vector Machines (SVM), Evolutionary Algo-
rithms (EA), Logistic Regression (LR), Rule-based Learning
(RBL), and Miscellaneous. Figure 8 shows more detailed
categories. According to this figure, EL has the most cate-
gories. Table 8 presents the number and percentage of the
studies with respect to corresponding categories. It is found

TABLE 8. The distribution of studies related to machine learning model.

that the three most commonly used models are ensemble
learning with taking up 22%, SVM with accounting for 19%,
and neural network with occupying 17%, respectively. The
further detailed distribution in the machine learning model is
presented in Figure 9, and the most widely applied models
in corresponding categories are shown in the pie charts. For
example, RF takes up the largest proportion in the field of
EL, CNN occupies the largest proportion in the field of neural
network.

RQ2.5: The most widely used model is machine learning
model in Android malware detection, where ensemble
learning takes up the largest proportion.

6) RQ2.6: WHICH PERFORMANCE MEASURES ARE
USED FOR ANDROID MALWARE DETECTION
USING STATIC ANALYSIS?
The performance measures are used for evaluating the gen-
eralization ability of models in Android malware detection.
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FIGURE 9. The distribution of subcategories with DT, BL, EL, NN, EA, and Miscellaneous.

TABLE 9. The results of performance measures.

Table 9 presents the definition of performance measures
and the number of studies related to performance mea-
sures. In this table, true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) is applied to
describe the definition of performance measures, where TP
is the number of benign applications accurately predicted
as benign applications, TN is the number of benign appli-
cations falsely predicted as malware, FP is the number of
malware falsely predicted as benign applications, and FN
is the number of malware accurately predicted as malware,
respectively. As for the FPR, FNR, and error rate, the lower
the value of the performance measures, the better the gen-
eralization ability of models. Correlation coefficient mainly
includes Jaccard, MCC (Matthews correlation coefficient),
standard deviation, and p-value in the primary studied, such
as [19] and [68]. Apart from the aforementioned performance
measures, the higher values of performance measures mean
the better generalization ability of models, such as accuracy

and F-measure. As shown in this table, the most commonly
used performance measure is accuracy, and the number of
studies using precision and recall has a similar proportion.

RQ2.6: Accuracy is the most commonly used perfor-
mance measure in Android malware detection.

D. RQ3: WHAT IS THE OVERALL PERFORMANCE OF
STATIC ANALYSIS TECHNIQUES IN ANDROID MALWARE
DETECTION BASED ON EMPIRICAL EVIDENCE?
This section aims to assess the effectiveness of static analy-
sis techniques in Android malware detection. Due to some
studies combining multiple datasets into a whole dataset,
we only record values of performance measures on the sep-
arate dataset, and these values are presented in an excel.14

Then we count the number of studies using the same static

14http://mrw.so/6y27U7
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analysis technique and choose accuracy, precision, and recall
as evaluation criteria, which are the three most commonly
used performance measures in RQ2.6. Finally, we calculate
the minimum, maximum, mean, and standard deviation of
three selected performancemeasures in the studies, which use
the same static analysis technique.

TABLE 10. The performance of static analysis techniques.

Table 10 presents the number of studies (No.) and mini-
mum (Min.), maximum (Max.), mean (Mean.), and standard
deviation (Std.) of accuracy, precision, and recall. As for
mean values, the performance of the opcode-based method is
the best with 97.58% in the accuracy, 96.24% in the precision,
and 96.20% in the recall. The Android characteristic and
program graph-based methods have a similar performance.
As shown in Table 10, the overall performance is more
than 88.16%, and the standard deviation ranges from 2.36 to
4.59 in four static analysis techniques. Overall, it suggests
that static analysis techniques are effective to detect Android
malware.

RQ3: Overall, the results show that it is effective for static
analysis techniques to detect Android malware.

E. RQ4: WHETHER THE PERFORMANCE OF MODEL A IS
BETTER THAN MODEL B IN ANDROID MALWARE
DETECTION BASED ON EMPIRICAL EVIDENCE?
We explore this research question based on the information
fromRQ3. By analyzing and comparing, it is found that in the
case of ignoring the sample size of the dataset, it exists that
Model A is better thanModel B. Furthermore, we divide these
models into two categories, which include neural network
model and non-neural network model. Then we calculate the
average accuracy, precision, and recall of these two models
on the same dataset. Finally, after comparing the perfor-
mance between two models, we reached a preliminary result
that neural network model outperforms non-neural network
model.

Figure 10 shows the performance of Android
characteristic-based method on Drebin, Genome, Virusshare,
and VirusTotal (Other results of static analysis techniques are
shown in the link of RQ3). Concretely, except for the accuracy
on Genome, the performance of neural network model is
better than that of non-neural network model. Especially on

FIGURE 10. The overall performance of Android characteristic-based
method on Drebin, Genome, Virusshare, and VirusTotal.

Virusshare, the precision of neural network model obviously
exceeds that of non-neural network model. Although the
accuracy of neural network model is better than that of non-
neural network model on Genome, the accuracy between
neural networkmodel and non-neural networkmodel is close.
According to this figure, the overall performance of neural
network model is better than that of non-neural network
model.

RQ4: The results show that it exists that Model A is better
than Model B, where neural network model outperforms
non-neural network model.

IV. DISCUSSIONS
Based on the investigation above, static analysis is a reli-
able technique for Android malware detection. However,
according to RQ3, it is found that static analysis techniques
can detect malware effectively, but some studies have low
performance such as [11] and [29]. It suggests that static
analysis is still not sound and complete formalware detection.
To improve Android malware detection using static analysis,
this section constitutes several discussions around the results
of research questions.

A. COMBINING MULTIPLE STATIC ANALYSIS TECHNIQUES
COULD BE ESSENTIAL TO HIGHLY PRECISE ANDROID
MALWARE DETECTION.
Static analysis techniques in this paper extract different fea-
tures of applications, which can capture the information
of APKs at different levels. Android characteristic-based
method extracts the information of configuration as fea-
tures such as permissions and intents, and these features
are manually designed and are generally coarse-grained. The
opcode-based method can capture contextual semantics of
applications, but it missed structural semantics of APKs.
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The program graph-based method can extract structural
semantics. Moreover, the program graphs, especially control
flow graph, are capable of resisting code obfuscation and
encryption [115]. The symbolic execution-based method can
obtain the abstract representations of executed paths in the
applications. In general, these static analysis techniques can
detect malware to some extent. For example, Yuan et al. [32]
apply permissions and API calls as features, and the eval-
uation result shows this method is suitable for identifying
Android malware. McLaughlin et al. [66] learn contextual
semantics from opcode sequences though CNN, and the eval-
uation result shows high performance in Android malware
detection. Allix et al. [38] present the effectiveness of the
control flow graph in classifying malware.

To some extent, these static analysis techniques are com-
plementary. In practice, combining multiple static analysis
techniques can have more promising results in comparison
with applying one static analysis technique. As an example,
DroidEnsemble [82] combines Android characteristic-based
method, including permissions, hardware features, intents,
API calls, code patterns, as well as program graph-based
method like function call graph, then applies SVM, KNN
and RF to evaluate the performance of these two types of
features. The experimental result shows that using two types
of features has more potential results than using one type of
features. However, according to RQ1, we find most studies
apply one static analysis technique inAndroidmalware detec-
tion. Thus, for further improvements in Android malware
detection, it is essential to explore the complementarity of
static analysis techniques and reasonably combine multiple
static analysis techniques.

B. APPLYING SUITABLE FEATURE REDUCTION
TECHNIQUES TO DIFFERENT FEATURES IS NECESSARY TO
IMPROVE THE PERFORMANCE OF ANDROID
MALWARE DETECTION.
Feature reduction techniques can select significant features
and improve the performance of Android malware detection.
However, as shown in RQ2.3, there is still a part of studies
which don’t use feature reduction techniques in the primary
studies. These studies can be divided into two categories.
First, some studies such as [55] mainly adopt statistical
models to detect Android malware, it is not necessary for
these studies to use feature reduction techniques. In fact,
these studies take up a small proportion in the whole primary
studies. Second, to improve the performance of Android mal-
ware detection, some studies which don’t use feature reduc-
tion techniques should adopt feature reduction techniques.
For example, Wang et al. [40] extract a series of features
(e.g., permissions and API calls) and apply deep belief net-
work (DBN) to these features. DBN is generally composed
of Restricted Boltzmann Machine (RBM), which can pre-
train these features. Compared with the method that directly
uses origin features for Android malware detection in [35],
the experimental result shows that the method of apply-
ing DBN to these features can achieve better performance.

Therefore, there is still a need to apply feature reduction
techniques to form some more precise methods of Android
malware detection.

According to RQ2.3, we find that there are some stud-
ies using feature reduction techniques. Yet, these techniques
have differences in primary studies. Recently, Morales-
Ortega et al. [34] apply a series of feature reduction tech-
niques (e.g., χ2, relief, and IG) on permissions and hard-
ware components. Based on the classification results, RF
with relief achieves better performance than RF with χ2

and IG. Bhattacharya and Goswami [42] propose a novel
feature reduction technique based on rough set quick reduct
algorithm with community detection scheme and carry on the
experiments on permissions. Compared with the off-the-shelf
feature reduction techniques (e.g., IG and GR), the proposed
method shows more promising classification accuracy.

According to these points, we find that it is impor-
tant to adopt feature reduction techniques in Android mal-
ware detection. Furthermore, to improve the performance of
Android malware detection methods, it is necessary to apply
suitable feature reduction techniques to different features.

C. USING NEURAL NETWORK TO DETECT ANDROID
MALWARE USING STATIC ANALYSIS IS RECOMMENDED
In recent years, Compared to the statistical model, we find
that it has been a hot topic to apply machine learning model
to detect Android malware from RQ2.5. Particularly, we also
observe that most studies adopt non-neural network model
to identify malware in the field of the machine learning
model. However, it is not still satisfying to apply non-neural
network model to Android malware detection. For example,
Morales-Ortega et al. [34] encode permissions and hardware
components by one-hot encoding, but the evaluation result on
ensemble learning still exists a high FPR. Canfora et al. [11]
convert opcode sequences into n-grams and take the frequen-
cies of n-grams as features. Thereafter, machine learning
models are trained to detect malware. Yet, the best result on
RF presents that the value of AUC is only 72.7%.

According to the results of RQ4, we find that neural
network model achieves better performance than non-neural
network model in the field of the machine learning model.
A study in. [39] shows CNN is better than some machine
learning models such as RF on Android characteristic-based
method. And Yousefi-Azar et al. [67] also present DNN
outperforms SVM and KNN on the opcode-based method.

Moreover, to bridge the gap between semantic represen-
tations of APKs and Android malware detection, neural net-
work is applied to fill this gap in some studies to some extent.
For example, Yan et al. [18] convert opcode sequences into
continuous vectors by opcode embedding and apply LSTM
to learn distribution representations of contextual semantics
from these opcode sequences for malware detection. The
evaluation result presents this method has better performance
than n-gram-based malware detection. Narayanan et al. [89]
extract control flow graphs (CFGs) from APKs, and get
rooted subgraphs from these CFGs by graph kernels.
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Then neural network is leveraged to learn the distribution
representations of structural semantics from these rooted sub-
graphs. The experimental result shows this method outper-
forms Android characteristic-based method [35].

In summary, neural network is a potential model in the field
of Android malware detection. In the case of continuously
promoting the robustness of neural network, it is recom-
mended to apply neural network to detect Android malware
using static analysis.

D. ESTABLISHING A UNIFIED PLATFORM IS NECESSARY
TO ASSESS THE PERFORMANCE OF DIFFERENT
TECHNIQUES IN ANDROID MALWARE
DETECTION FAIRLY
In the process of analyzing the primary studies, we find
that there are some biases in the results of RQ3 and RQ4.
The main reason is the inconsistency of datasets. First, dif-
ferent studies adopt different datasets. Some studies use
in-the-lab datasets, some studies use in-the-wild datasets,
and a few studies use unpublic datasets, such as [25], [26].
Second, some studies which use the same dataset are still
some inconsistencies. (1) The performance measures used in
these studies are not unified. For example, Arp et al. [35]
adopt the accuracy and ROC to evaluate the performance
of Android malware detection, and Grosse et al. [47] use
FNR as performance measure; (2) The size of the datasets
in these studies is inconsistent. Chen et al. [56] adopt more
than 10000 samples, while the size of the dataset is about
1000 in [60]; (3) The benign applications in the primary stud-
ies are rarely public. To some extent, these situations above
can reduce the reliability of these results in RQ3 and RQ4.

In addition, the experimental results of some studies are
inconsistent. For example, to train an effective classifier
to distinguish between malicious and benign applications,
some studies adopt n-gram features which collect from
opcode sequences. The best accuracy of classification can
be obtained by 2-gram in [11]. However, Jerome et al. [17]
present that 5-gram can achieve the best result in terms of
malware classification. Hence, it indicates that the selection
of parameter n for n-gram can have an impact on the accuracy
of malware classifiers.

According to these points above, it is necessary to establish
a unified platform and assess the performance of techniques
proposed by different researchers and practitioners fairly.

V. LIMITATIONS
The main threats to validity in this paper include construct
validity, internal validity, and external validity.

Construct validity is about the collection of studies. In this
paper, we try our best to collect the relevant studies from jour-
nals and conferences of seven electronic databases as much
as possible, but some of the relevant publications may be still
missing in our collected studies. The additional aspect of the
construct validity is that we are likely to have a few errors in
the process filtering out the studies by inclusion or exclusion
criteria. To further avoid these errors, we analyze the list

of publications by cross-checking method in the primary
studies.

Internal validity is related to data extraction and data anal-
ysis. There is a heavy workload in the data extraction and
data analysis, so our data are also collected by cross-checking
method, and the terminal data are obtained after we make
an agreement on the results of the comparison. However,
we are still likely to make a few mistakes in the process of
extracting and analyzing data. Furthermore, in order to reduce
mistakes, these data should be verified by original authors in
the primary studies.

External validity is about the summary of the results
obtained from the primary studies. There is a threat to the
validity of the results in RQ3 and RQ4. Due to the incon-
sistencies of studies used for comparison, it may not lead to
definitely conclusive results. Thus, we propose to establish a
unified platform to reduce the inconsistencies in the primary
studies. Moreover, more studies related to Android malware
detection using static analysis should be collected in order to
obtain definite and generalized results.

VI. CONCLUSION AND FUTURE WORK
This paper summarizes the state-of-the-art techniques and
provides a comprehensive overview of Android malware
detection using static analysis. Concretely, this SLR is per-
formed by 98 studies from 2014 to 2020. And this SLR inves-
tigates the categories of static analysis techniques, the process
of conducting empirical experiments, the malware detection
capability of static analysis techniques, and the performance
of different models in Android malware detection. Based on
the results in the primary studies, we make the discussions
and implications about Android malware detection using
static analysis.

According to this SLR, we find that (1) The most com-
monly used static analysis technique is Android character-
istic in Android malware detection; (2) In the empirical
experiments, in-the-lab datasets such as Drebin and Genome
occupy the largest proportion. Most studies adopt Apktool
as a support tool for static analysis. IG is the most com-
monly used feature reduction technique. Permissions and sen-
sitive API calls are the most used features. Machine learning
model takes up the largest proportion in all the used models.
And accuracy is most applied performance measure; (3) The
results of empirical evidence show static analysis techniques
are effective to detect malware; (4) By analyzing and compar-
ing primary studies, we draw a preliminary result that neural
network model outperforms the non-neural network model.

Based on results from research questions, it is concluded
from this SLR that Android malware detection using static
analysis still faces some challenges. To alleviate this chal-
lenge, we propose some guidelines that developing some
novel techniques improves the performance of Android mal-
ware detection and establishing a unified platform for assess-
ing the performance of various techniques fairly. In the future,
we will follow these guidelines to promote Android malware
detection methods.
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