
Received May 22, 2020, accepted June 10, 2020, date of publication June 16, 2020, date of current version June 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002763

A New Hash Function Based on Chaotic Maps and
Deterministic Finite State Automata
MOATSUM ALAWIDA 1, JE SEN TEH 1, DAMILARE PETER OYINLOYE 1,
WAFA’ HAMDAN ALSHOURA 1, MUSHEER AHMAD 2, AND RAMI S. ALKHAWALDEH3
1School of Computer Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Malaysia
2Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India
3Department of Computer Information Systems, The University of Jordan, Aqaba 77110, Jordan

Corresponding authors: Moatsum Alawida (matsm88@yahoo.com) and Je Sen Teh (jesen_teh@usm.my)

This work was supported in part by the Ministry of Education Malaysia through the Fundamental Research Grant Scheme (FRGS) under
Project FRGS/1/2019/ICT05/USM/02/1.

ABSTRACT In this paper, a new chaos-based hash function is proposed based on a recently proposed
structure known as the deterministic chaotic finite state automata (DCFSA). Out of its various configurations,
we select the forward and parameter permutation variant, DCFSAFWP due to its desirable chaotic properties.
These properties are analogous to hash function requirements such as diffusion, confusion and collision
resistance. The proposed hash function consists of six machine states and three simple chaotic maps. This
particular structure of DCFSA can process larger message blocks (leading to higher hashing rates) and
optimizes its randomness. The proposed hash function is analyzed in terms of various security aspects
and compared with other recently proposed chaos-based hash functions to demonstrate its efficiency and
reliability. Results indicate that the proposed hash function has desirable statistical characteristics, elevated
randomness, optimal diffusion and confusion properties as well as flexibility.

INDEX TERMS Chaotic map, cryptography, data integrity, finite state automata, hash function, security.

I. INTRODUCTION
A hash function is a one-way function that compresses
messages to fixed-length hash values. Hash functions are
widely used in various cryptographic applications [1]–[7].
Blockchain and cryptocurrency are also heavily depen-
dent on hash functions in their consensus protocols [8].
The Merkle-Damgard (MD) structure is one of the most
well-known hash constructions and has been used to design
hash functions such asMD5 and SHA-1. However, some con-
ventional hash functions have shown security defects under
differential or collision attacks [9], [10]. Furthermore, a col-
lision has been found for SHA-1 [11]. With the cryptanalysis
of MD5 and a theoretical break of SHA-1 [12], the National
Institute of Standards and Technology (NIST) released the
SHA-2 family. However, SHA-2’s design is based on similar
principles of MD5 and SHA-1, and the same class of attacks
has used to cryptanalyze SHA-2 [13].

NIST called for a competition to establish a new, standard-
ized hash, henceforth known as SHA-3 [14]. A hash function
based on the sponge structure was finally selected [15]. Since

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Yan .

then, the SHA-3 algorithm has been subjected to various
cryptanalytic attacks [16]–[18]. Although SHA-3 has yet
to be fully cryptanalyzed, alternative hash function designs
should still be explored in the meantime [19].

Chaotic systems have been used to design hash functions
due to the commonalities between chaotic systems and hash
function characteristics [20]. These characteristics include
sensitivity to small changes to initial conditions and sys-
tem parameters, random-like behavior, ergodicity, diffusion
and confusion properties. Thus, various hash function con-
structs have been proposed based on the chaotic systems
such as iterating simple chaotic maps [21], [22], multiple
maps [23], high-dimensional maps [24], [25] and message
block-controlled hyperchaotic map [26]. Other chaos-based
hash functions in literature include Li et al.’s hash function
based on generalized chaotic maps with perturbed chaotic
parameters [27], Ahmad et al. design based on the dynamics
of a nonlinear 12-term 4D chaotic system [28], Liu et al.’s
proposal based on the Lorenz system with multiple parame-
ters and time-varying perturbation [29].

Akhavan et al. have proposed a chaotic hash function based
on piecewise nonlinear chaotic map and a 1D chaotic map in
parallel mode [24] whereas Teh et al. have proposed a keyed

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 113163

https://orcid.org/0000-0001-8146-5843
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-4925-5042
https://orcid.org/0000-0002-5005-386X
https://orcid.org/0000-0002-4915-9325
https://orcid.org/0000-0002-9697-2108

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

hash function based on logistic map realized with fixed point
representation [30]. Li et al. have proposed a new chaotic
hash function based on circular shifts and variable parame-
ters, piecewise linear chaotic map and one-way coupled map
lattice [31]. The maps were used generate chaotic variables
while circular shifts were used in enhancing randomness.
However, most of these proposed functions suffer from secu-
rity flaws due to weaknesses in the underlying chaotic maps
or designs used. These security flaws can be generalized as
follow:

• Using 1D chaotic map without enhancing chaotic
behaviours lead security defects and ease of estimating
chaotic parameters [32]–[36].

• Using hyperchaotic maps or HD chaotic maps lead to
high computational complexity [23], [24], [26], [28].

• Perturbation of initial conditions, or chaotic points,
or chaotic parameters in each chaotic iteration and mes-
sage block lead more overheads [24], [29], [31].

• A taken message block in each iteration is limited by
floating point precision [37], [38].

• Convoluted or complex designs lead to a lack of analyz-
ability or hidden weaknesses [37].

In this paper, we propose a new chaotic hash function based
on deterministic chaotic finite state automata (DCFSA) with
dynamic perturbation. DCFSA was originally proposed to
enhance 1D chaotic behaviors without using external entropy
sources [39], [40]. Out of its various configurations, we select
DCFSAFWP due to its various advantages such as large
chaotic parameter range, high complexity, better random-
ness, and elevated nonlinearity. Six machine states and two
transitions between each state are used to reduce number of
chaotic iterations and message block iterations. DCFSAFWP
is iterated using the perturbed buffer values to generate new
chaotic points. The hash value is then extracted from the
binary values of these chaotic points. The hash function has
the flexibility to generate hash values of different lengths,
all of which are uniformly distributed. We then compare
the proposed hash function with other existing chaotic hash
functions, whereby findings show that the proposed function
has desirable statistical properties, is collision resistant, effi-
cient and has a simple analyzable design to facilitate future
cryptanalysis efforts.

The remaining sections of this paper are as follows:
Section II provides details about DCFSA architectures and
its chaotic analyses. Then, the proposed chaos-based hash
function is detailed in Section III, followed by its security and
performance analysis in Section IV. Some final remarks and
a summary of findings conclude the paper in Section VII.

II. DETERMINISTIC CHAOTIC FINITE STATE AUTOMATA
DCFSA combines 1D chaotic maps with deterministic finite
automata (DFA) to overcome dynamical degradation and
enhance chaotic complexity [39]. 1D chaoticmaps such as the
logistic map, sine map, and tent map are known as unimodal
maps since they only have one critical point for their control

parameter. Due to this property, using them directly in cryp-
tographic applications without any enhancements can lead to
security problems [34], [41], [42]. The main advantage using
DCFSA as a chaotification strategy is that the computational
complexity of the resulting chaotic system is still comparable
to a unimodal map, whereby each iteration of the DCFSA
only involves one chaotic map without additional calcula-
tions. Therefore, DCFSA has better chaotic performance as
compared to unimodal maps while maintaining a low com-
putational complexity.

DFA includes a number of machine states and transition
arrows between states. Each transition can hold a single sym-
bol and a state transition rule can be used to design various
DFA configurations. DCFSA also depends on similar factors
that dictate its configuration which include the number of
machine states and state transition rule but includes addi-
tional ones such as the number of chaotic maps, symbols
and the type of perturbation operation that is associated with
each state transition. Out of the ten DCFSA configurations
analyzed in [39], we have selected DCFSAFWP to be used
in the proposed hash function as it depicts optimal chaotic
characteristics. The acronym FWP refers to the type of per-
turbations that are associated with each state transition, which
are forward perturbation (FW) and parameter perturbation
(P). Both of these operations are detailed in the following
subsection.

A. DCFSAFWP CONFIGURATION
TheDCFSAFWP used in this workwill utilize three 1D chaotic
maps, logistic, sine, and tent, that are mathematically repre-
sented as

xn+1 = r1xn(1− xn) (1)

xn+1 =
r2
4
sin(πxn) (2)

xn+1 =


r3
2
xn if xn < 0.5

r3
2
(1− xn) if xn ≥ 0.5

(3)

respectively, where x0 is the initial condition, {r1, r2, r3} ∈
[0, 4] are the control parameters, n is the number of iterations,
and xn ∈ [0, 1] denotes the system variable or chaotic point.
The standard state transition rule, δ dictates that machine

states are linked to one another by two transitions, labeled
as 0 and 1 in Figure 1 (note that the initial state is indicated
using the dashed line). Threemachine states and six transition
arrows are used to generate the standard DFA. δ can be
defined as
• q1 × 0→ q2
• q1 × 1→ q3
• q2 × 0→ q3
• q2 × 1→ q1
• q3 × 0→ q1
• q3 × 1→ q2

where qi are the labels of the machine state indexed by
i = {1, 2, 3}.

113164 VOLUME 8, 2020

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

FIGURE 1. DFA with three states.

FIGURE 2. Frequency of phase space of logistic map when r = 4.

DCFSAFWP involves forward and parameter perturbations
and three different 1D chaotic maps. Each machine state
is associated with one chaotic map and each state has an
internal buffer to store the value of the chaotic point after each
iteration. During the transition between states, a quantization
function G selects the type of perturbation to be performed.
This selection is based on the value of the chaotic point after
each iteration of the chaotic map. G is denoted as

G =

{
1 if xn > T
0 if xn ≤ T

(4)

where xn is a chaotic point, T is the threshold value set as
0.5 to divide the phase space equally. The three 1D chaotic
maps have a control parameter of r = 3.999 to ensure
they have uniform distribution and ergodicity as depicted
in Figure 2. We can see that the phase space is divided
to 256 intervals (8-bit) and logistic is iterated to 10,000 times.
The intervals are equally visited, that means the system is
ergodic and uniform distribution. DCFSAFWP can generate
chaotic behaviors along r ∈ (0, 4] and is ergodic [39]. Thus,
we set T = 0.5 to equal selection between two type of per-
turbation methods. That will help to make balance between
two types and generate better chaotic performance. Forward
and parameter perturbation will be selected if G = 1 and
G = 0, respectively. Figure 3 shows the proposedDCFSAFWP
configuration along with its corresponding buffer values.

According to the DCFSA description in [39], forward
perturbation is used to modify chaotic points after iterating

FIGURE 3. Buffers in DCFSA for perturbation purposes.

chaotic maps in each machine state. The chaotic point from
the prior machine state is used in perturbation function. The
forward perturbation function is defined as

xn+1 = Ffw(ci, ri, xn, bi) = (ci(ri, bi)+ xn) mod 1 (5)

where i is the index of the current machine state, bi is the
value stored in the buffer (which corresponds to the last
chaotic point generated by the current machine state), and
xn is the chaotic point generated by the prior machine state.
ci(ri, bi) represents the chaotic map of the current machine
state, whose control parameter and chaotic points are ri and
bi, respectively.
In parameter perturbation, the previous chaotic point, xn

(from a prior machine state i−1) is used to perturb the control
parameter of the chaotic map in the current state, i. Parameter
perturbation can be defined as

xn+1 = Fpr (ci, ri, xn, bi) = ci(φ(ri, xn), bi) (6)

where the perturbation function, φ is the parameter scaling
functionwhose outputs are limited to values that have positive
Lyapunov exponents (LE). φ is calculated as

φ(ri, xn) = ((ri + (1− xn)ζ)) mod (ζ)+ bmin (7)

where bmax and bmin are the chaotic range of ci, where
ζ = bmax − bmin. DCFSAFWP is a combination of two robust
chaotification methods, leading to improved chaotic proper-
ties. The perturbation methods and state buffer values are
used to generate new chaotic points. The selection between
the two perturbation methods is based on the previous chaotic
point (from the previous state) and the threshold value. There-
fore, DCFSAFWP is a piecewise function and can be written
as

xn+1 =

{
(ci(ri, bi)+ xn) mod 1 if xn > T
ci(φ(ri, xn), bi) if xn ≤ T

(8)

A slight change to one bit of any chaotic point leads to
a strong avalanche effect that propagates from one machine
state to another. More details about DCFSA can be obtained
from [39].

VOLUME 8, 2020 113165

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

FIGURE 4. Bifurcation and LE, and FuzzyEn diagrams of DCFSAFWP with different control parameters, (a) Bifurcation diagram r1 & r2, (b) LE values r1 &
r2, (c) FuzzEn values r1 & r2, (d) Bifurcation diagram r1 & r3, (e) LE values r1 & r3, (f) FuzzEn values r1 & r3, (g) Bifurcation diagram r2 & r3, (h) LE values
r2 & r3, (i) FuzzEn values r2 & r3, (j) Bifurcation diagram when r1 = r2 = r3, (k) LE values when r1 = r2 = r3, (l) FuzzEn values when r1 = r2 = r3.

B. DCFSAFWP ANALYSIS
DCFSAFWP depicts highly chaotic behavior and high sensi-
tivity to small changes to its parameters, along with a wide
range of chaotic parameters. To depict these chaotic prop-
erties, we use bifurcation diagrams, LE and fuzzy entropy
(FuzzyEn). The bifurcation diagram is a classical indicator
of chaotic range whereas LE is used to evaluate the sys-
tem’s chaotic sensitivity. Large positive values of LE indicate
high sensitivity and chaotic behavior. FuzzyEn is used as a
measure of complexity, which is a metric that can be used
to determine if a chaotic system is susceptible to estimation
parameter attacks. A high FuzzyEn value is proportionate to
the complexity of the system.

Figure 4 shows the bifurcation, LE and FuzzyEn diagrams
for different parameter settings of the three underlying 1D
chaotic maps and same control parameters. The first three
rows of Subfigures 4 (a) to (f) show chaotic behaviors when
two control parameters are changed while one remains con-
stant. This allows us to study the relationship between the
various chaotic parameters. We can see that DCFSAFWP has
a large chaotic parameter range within the standard range of
(0, 4]. Thus, there is higher flexibility when it comes to select-
ing suitable control parameters that guarantee chaotic behav-
ior. LE diagrams demonstrate that DCFSAFWP has positive

values for different parameter settings, which implies that it
is a highly sensitive system. Some outlying negative values
can be observed in 4 (b) and (e) because two control param-
eters are dynamically changed while one remains constant
in these experiments. When all three parameters are dynam-
ically changed, the system depicts positive LE values. The
FuzzyEn diagrams show thatDCFSAFWP has highly complex
patterns and irregular behavior. Subfigures 4 (j), (k) and (l)
depict DCFSAFWP behaviors when the same control param-
eter value is applied to all three chaotic maps. We can see
that DCFSAFWP still produces chaotic behaviors along the
range of (0, 4], thus confirming that DCFSAFWP based on
two chaotification methods can enhance the properties of 1D
chaotic maps.

III. DCFSA-BASED HASH FUNCTION
The DCFSA chaotification method enhances the chaotic
behaviour of classical maps, leading to chaotic trajectories
with long cycle lengths [40]. Due to these desirable prop-
erties, DCFSA can be adopted to design new cryptographic
hash function with high security. In the proposed work,
we employ a DCFSAFWP configuration with six machine
states, {q0, q1, .., q4, q5}, three chaotic maps, {c0, c1, c2} and
an updated state transition mapping as shown in Figure 5.

113166 VOLUME 8, 2020

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

FIGURE 5. DCFSAFWP with 6 machine states (logistic map - {q0,q3}, tent
map - {q1,q4}, sine map - {q2,q5}).

The quantization function is based on a threshold value T =
0.5, while 1 and 0 denote forward and parameter perturbation
respectively. The states q0 and q3 utilize the logistic map
c0, q1 and q4 utilize the tent map c1, and q2 and q5 utilize
the sine map c2. Each map will be assigned different control
parameters and initial buffer values which can be any value
within its chaotic range. The steps of the overall hash function
algorithm based on DCFSAFWP can be described as follows:

Algorithm 1 Padding Algorithm
Data: Input messageMesbit .
Result: Message blocksMesbit , Number of blocksM

1 N = length(Mesbit);
2 remainder = N mod 312;
3 LenBin = dec2bin(N , 32);
4 if remainder ! = 0 then
5 Mesbit (N + 1) =′ 1′;
6 for i = N + 2 to N + remainder : +1 do
7 Mesbit (i) =′ 0′;

8 N = N + remainder ;
9 Mesbit (N + 1 : N + 32) = LenBin(1 : 32);

10 Mesbit (N + 33) =′ 1′;
11 for i = N + 34 to N + 312 do
12 Mesbit (i) =′ 0′;

13 M = N/312+ 1;

1) Transform a message of any length into binary,
(Mes→ Mesbit) by using ASCII representation.

2) A conventional padding rule is then used to ensure
that the overall message is a multiple of 312 bits. The
padding also includes the original message length to
avoid collisions and length extension attacks. First,
a single 1 bit is appended to the end of the message,
followed by 0s. The last 32 bits of the block is reserved
for the message length. If a message cannot accommo-
date the 32 bits for message length or if the message is
a multiple of 312 bits, an entirely new block will be
created. A detailed look is available in Algorithm 1.
Let M =

N
312 be the number of 312-bit message

blocks. Each message block will undergo one round of
DCFSAFWP, which is defined as a transition from q0 to
q5 then back to q0 for a total of 6 map iterations.

3) Divide each 312-bit message block Mesbit (1 : 312)→
chj, chj into six 52-bit sub-blocks chji, where j = 0, .., 5
and i = 1, . . .M . These 52-bit sub-blocks are then
used as U (0, 52) fixed point numbers, where U is
an unsigned number with 0 bits to represent integers
and 52 bits to represent the fractional portion of a real
number. The fixed point representation of each 52-bit
fixed point number is calculated as

chji =
52∑
k=1

(chji(k)× 2−k) (9)

where chji are real numbers that range between 0 and
1 to ensure that the DCFSA operates within its
phase space. We generate six values, one for each
machine state. Thus, the proposed hash function pro-
cesses 312 bits each round, and each block chji has
an effect on subsequent blocks. We utilize fixed point
numbers as it is more efficient to compute as compared
to IEEE 754 floating point number, and also prevents
other implementation problems commonly associated
with floating point numbers [37].

4) By using modular addition, chji is used to modify each
of the buffer values as bj = ((chji+bj)×7

14)mod 1. The
modified buffer values will then be used to calculate
future chaotic points if the machine state is visited
again. The constant 714 is used to increase diffusion
property and amplify the effect of the small changes to
chji. Modular addition ensures that the buffer values will
remain as fractional values that range between 0 and 1
to ensure that the map does not iterate out of scope.

5) Iterate DCFSAFWP with bj six times (one round) to
generate new buffer values for each of the machine
states. These six iterations will involve each of the
individual machine states one by one due to how the
state transition rule was designed (i.e. q0 → q1 →
q2 → q3 → q4 → q5). Each bj is modified twice,
once when being perturbed by the message bits and
second due to the DCFSAFWP iterations. During the
DCFSAFWP iterations, the buffer values are perturbed
using one of two perturbation techniques which are
dynamically selected based on various factors such
as message bits, key values, and past iterations. The
chaotic properties of DCFSAFWP eliminates statistical
correlation between current and past buffer values.

6) Repeat steps 3-5 for each message block. The entire
process can be seen as a compression function that
compresses all message bits to produce the final set of
buffer values.

7) To increase the diffusion effect of the proposed
hash function, we iterate DCFSAFWP an addi-
tional 50 rounds (6 iterations per round). The 50 rounds
increase the differences between all chaotic points,

VOLUME 8, 2020 113167

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

fully diffusing the effect of all message blocks to all
state buffers.

8) In the final step, we generate the hash value, where H
denotes its length. DCFSAFWP is iterated

⌈ H
32

⌉
times,

then converts each chaotic point into its binary repre-
sentation. The 32 most significant bits of each chaotic
point is then extracted to be part of the hash. For
example, to generate a 128-bit hash value, four iter-
ations of DCFSAFWP are required. This implies that
four machine states are visited, their chaotic maps are
iterated, and the resulting chaotic points are collected
to form the hash value. It can be seen that the proposed
hash function can trivially produce hash values of other
lengths by varying the number of iterations.

In short, the hash function involves perturbing the buffer
values of each machine state with message bits, then iterating
the DCFSA such that each state is visited multiple times. The
random-like nature of the chaotic points being produced will
then randomly select between forward and parameter pertur-
bation, which is an additional dimension of unpredictability.
Since the final hash value is derived from the chaotic points
being produced by the DCFSA, generating varying lengths of
hash values is a straightforward process. All steps involved in
the proposed hash function are included in Algorithm 2.

Algorithm 2 DCFSA-Based Hash Function Algorithm
Data: Input messageMesbit . Message blocksMesbit , Number

of blocksM , bj and rj, j = 0, 1, 2, 3, 4, 5
Result: H hash value

1 N = length(Mesbit);
2 M = N/312+ 1;
3 Call Padding algorithm;
4 for i = 1toM do
5 chi = Mesbit (312× (i− 1)+ 1 : i× 312);
6 for j = 0to5 do

7 chji = chi(52× (j)+ 1 : (j+ 1)× 52);
8 for k = 1to52 do
9 chji = (chji(k)× 2−k);

10 bj = ((chji + bj)× 714) mod 1;
11 bj = DCFSAFWP(rj, bj);

12 for i = 1 to 50 do
13 for j = 0 to 5 do
14 bj = DCFSAFWP(rj, bj);

15 for n = 1 to
⌈ H
32

⌉
do

16 bn = DCFSAFWP(rn, bn);
17 H = (bn)1,...,32;

18

IV. EXPERIMENTAL EVALUATION
In this section, the performance of the proposed DCFSA-
based hash function is analyzed. The input message for all
experiments is a sequence of the letter a. All experiments are

FIGURE 6. Distribution hexadecimal hash value for 1000 different input
messages.

implemented using Matlab R2012b on a Intel Core i5-560M
@ 2.67GHz Processor, 8GB RAM and Windows 7 operating
system. The proposed scheme is evaluated under a stan-
dardized set of statistical tests which includes distribution
analysis, sensitivity test, diffusion and confusion test and
collision analysis. The use of these metrics also allows for
a fair comparison against the state-of-the-art in chaos-based
hash functions.We use six chaoticmaps that have a total of six
initial conditions and six control parameters. The hash length
for all experiments is 128 bits. The initial buffer values are
set to bi = 0.25 whereas the control parameter values are set
to ri = 3.99 for i = {0, 1, .., 5}.

A. DISTRIBUTION OF HASH VALUE
A uniformly distributed output is an important requirement
for a secure cryptographic hash function. Any biases can
be leveraged upon by an adversary to perform collision
or forgery attacks. To analyze the distribution of the pro-
posed hash function, 1000 randomly selected input messages
of 1500 characters are hashed and their corresponding hash
values are represented using hexadecimal values. The fre-
quency of occurrence for each hexadecimal value is noted.
The frequency of occurrence for each value is shown in
Figure 6, depicting an even distribution.

B. SENSITIVITY TEST
Hash functions should be highly sensitivity to any slight
change to its input message, initial values and system param-
eters. Thus, high sensitivity is a desirable trait of a hash
function. In this test, an input message consisting of 1000
‘a’ characters is selected. Subsequently, a number of slight
changes in to the input message, initial values or system
parameters are performed and their corresponding hash val-
ues are calculated. Hash values for the following cases are
computed:

Case 1 : An input message M consisting of 1000 ‘a’
characters

Case 2 : Flip the first bit ofM
Case 3 : Flip the last bit ofM
Case 4 : Flip the middle bit ofM
Case 5 : Small change to initial value x0 + 10−15

Case 6 : Small change to system parameter r + 10−15

Table 1 shows the hexadecimal representation of six hash
values under the various cases, indicating a high level of
sensitivity to its inputs. The percentage of bits changed for
each case compared to case 1 is included into the table,

113168 VOLUME 8, 2020

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

TABLE 1. 128 bits hash values in different six cases and percentage of number of bits changed.

depicting the sensitivity and strong avalanche property of the
proposed hash function.
DCFSAFWP has positive LE values along r ∈ (0, 4] as

shown in Figure 4 (k). LE is a quantifier for sensitivity to
initial conditions. In other words, it is used tomeasure the rate
of divergence of two initial conditions that start off infinitesi-
mally close to one other after n iterations. Two input message
blocks with a difference of just one bit can be viewed as
two initial conditions. The small difference between the two
blocks will grow with the increasing number of DCFSAFWP
iterations, resulting in distinct chaotic points with a large
difference. This will then result in two entirely different hash
values, implying that the hash function is strongly dependent
on the DCFSAFWP map in generating hash values.

C. DIFFUSION AND CONFUSION TEST
Diffusion and confusion properties are vital for a hash func-
tion in order to disperse message bits throughout a hash value
and also obscures any relationship betweenmessage and hash
value. In other words, good diffusion means each bit of an
input message has an equal effect on the overall hash value.
Meanwhile, having a good confusion property means that
any slight change to the input message or key should lead to
approximately half of the hash bits being flipped at randomly
distributed binary locations [43]. The following steps are used
to perform confusion and diffusion test:

1) Calculate the hash value, H1 of a randomly selected
messageM .

2) Flip one random bit inM to obtainM ′.
3) Calculate the hash value, H2 of M ′.
4) Note the number of changed bits, B between H1 and

H2.
5) Repeat the experiment N times.

The following statistical tests are used to quantify the confu-
sion and diffusion property of a hash algorithm [2], [27], [29]:

• Minimum changed bit number Bmin = min(Bi)N1
• Maximum changed bit number Bmax = max (Bi)N1
• Mean changed bit number B̄ =

∑N
1

Bi
N

• Mean changed probability P = B̄
128 × 100%

• Standard variance of the changed bit number

4B =
√

1
N−1

∑N
1 (Bi − B̄)2

• Standard variance of probability

4P =
√

1
N−1

∑N
1 (

Bi
128 −

B̄
128)× 100%

The experiment is performed for N = 512, 1024, 2048
and 10000 and tabulated in Table2. The theoretical values

TABLE 2. Statistical results for N = 512, 1024, 2048, 10,000 and 128-bit
hash.

FIGURE 7. Distribution of changed bit number Bi .

of B̄ and P are 64 and 50% respectively. Low values of 4B
and 4P should be minimized to achieve good diffusion and
confusion properties. The proposed hash function has a B̄ that
is extremely close to the theoretical value of 64. The values
of the standard variances are also low, indicating a strong dif-
fusion and confusion properties. Table 3 shows a comparison
between the proposed function and other recently proposed
chaos-based hash functions. The proposed hash function is
at least on par or outperforms its peers in terms of achieving
near-ideal results. Additionally, Figure 7 shows the frequency
of the mean changed bit numbers. The normally distributed
histogram centered at 64 bits again implies desirable diffusion
and confusion properties.

D. COLLISION ANALYSIS
One of the design goals of hash functions is collision resis-
tance.When two different input messages have the same hash
value, a collision is said to have occurred. In this section,
we analyze the susceptibility of the proposed hash function to
collisions. Hash values are calculated for two different input
messages which differ in only one bit. The two resulting hash
values are recorded as ASCII characters and then compared.
The number ASCII characters in the same position that are
equal is considered a hit. Let ω denote the number of hits
(ω = 0, 1, 2, . . . , s) whereas WN (ω) denotes the number of
times those specific number of hits occur afterN experiments.

VOLUME 8, 2020 113169

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

TABLE 3. Comparison of diffusion and confusion characteristics
N = 2048.

The theoretical values of WN (ω) for different N can be cal-
culated as

F=

WN (ω)=N ×
s!

ω!(s−ω)!
× (

1
28

)ω × (1−
1
28

)s−ω∑s

ω=0
WN (ω)=WN (0)+WN (1)+. . .+WN (s)=N

(10)

where s = 128
8 = 16 (128 is the length of the hash

value whereas 8 bits are required for ASCII representation).
When N = 10000 the theoretical values are WN (0) =
9392.98,WN (1) = 589.36,WN (2) = 17.33,WN (3) =
0.3172, . . . ,WN (16) = 2.94×10−35. The results of proposed
scheme are WN (0) = 9401,WN (1) = 575,WN (2) = 24
and WN (> 2) = 0 which is visually depicted in Figure 8.
For N = 10000, the proposed hash function has near-ideal
results which implies strong collision resistance. The pro-
posed hash function’s collision resistance property is bench-
marked against its peers in Table 4, depicting a performance
that is at least on par with the others with respect to the ideal
collision resistance values.

E. ABSOLUTE DIFFERENCE
Firstly, a pair of input messages and the obtained hash values
are conducted similar to the experiment in Section IV-D.
We compare the two hash values in terms of ASCII format.
The absolute difference d can be calculated as

d =
16∑
i=1

|t(ei)− t(ei′)| (11)

where ei and ei′ are the ith ASCII hash values in the original
and modified input massages respectively while the function
t() converts an ASCII character into its corresponding dec-
imal value. The theoretical value of the mean value of the

TABLE 4. Number of hits for N = 10000.

FIGURE 8. Distribution of number same ASCII codes at same location in
hashes.

absolute difference is important to compare with the proposed
hash function.H is a discrete uniform distribution when using
ASCII code for 16 characters (128-bita hash length), it has
range of 0 to 255. The mean value of a uniform distribution
is half of the maximum value of this distribution. All possible
characters are equal to 255 × 16 = 2, 040. According to
[24],with the assumption that the two distinct hash values are
ideally uniform, the sum of d of these two hash values has
to be equal to 2

3 of the mean value of a uniform distribution.
Therefore, the theoretical mean value of the absolute differ-
ence for two hash values is equal to 2

3 × 2, 040 = 1, 360 for
128-bits length. In the proposed function, The mean value
of the absolute difference for N = 10, 000 experiments is
1,351.345, which is very close to theoretical value.

F. KEYSPACE ANALYSIS AND WEAK KEYS
Keyspace analysis is vital for a keyed hash function because it
has a direct effect on its security. Generally, a keyspace should
be large enough to resist the brute force attacks. When used
as a keyed hash, keyspace calculation for the proposed hash
function takes into consideration six chaotic maps, which
have six initial conditions and six control parameters in total.
The initial conditions are assigned to the buffer values of
each machine state. The key consist of 12 variables that can
calculated under floating point or fixed-point number. For
initial conditions, the phase space of the three chaotic maps
is between 0 and 1 under a bit precision of 2−52 bits. In this
case, U (0, 52) is used and the keyspace for initial conditions
is 252×6 = 2312. For the control parameters, six control
parameters have the same chaotic range of (0, 4). To calculate
the bit precision of these six parameters, U (2, 50) is used to
provide the chaotic parameter range. Then, the keyspace for
control parameters is 252×6 = 2312.

113170 VOLUME 8, 2020

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

TABLE 5. Comparison of keyspace values.

When calculating keyspace, it is vital to take into con-
sideration the existence of weak keys when it comes to
chaos-based cryptographic algorithms. Unfortunately, it has
not been addressed in many chaos-based cryptographic pro-
posals [37]. A weak key can lead to a trivially constructed
collision. In the case of the proposed hash function, initial-
izing b1, b2, . . . b5 to zero must be avoided, regardless of the
initial value of b0. Otherwise, a collision can be constructed
by first identifying a 312-bit message block, Mcol whose
first 52 bits combined with b0 via modular addition will result
in a final value of 0. This value of 0 will then be propagated
throughout the DCFSA regardless of the number of iterations,
producing a hash value of all zeroes. Other 312-bit message
blocks consisting of all zeroes can be appended to Mcol to
generate collisions. This collision attack can be avoided by
restricting the use of these weak keys, the number of which
can be calculated as 252+ (5×52) ≈ 252. Thus, the keyspace
of the proposed hash function is 2312+312−52 = 2572 which
is large enough to resist estimation by brute force attacks.
Furthermore, Table 5 shows the comparison of keyspace of
the proposed hash function with other hash functions [27],
[30], [60]–[62].

If the proposed hash function is used in keyed mode, its
secret key comprises of the chaotic map initial conditions and
control parameters. The initial conditions are used to initialize
the state buffers prior to being modified by message bits.
Iterating the DCFSA then diffuses the effect of the key bits
to every machine state. On the other hand, the key bits used
as control parameters influence the chaotic behavior of each
individual 1D map, which indirectly affects the modification
of each state buffer and the resulting hash value. In short, the
entire secret key plays a strong role in producing hash values,
whereby a small change to the key will lead to an entirely
different hash value.

G. RESISTANCE TO BIRTHDAY ATTACK
The birthday attack is a generic attack that randomly selects
half of the input possibilities in order to get a 50% chance
of collision. Theoretically, an attacker only needs to test
n

1
2 randomly selected possibilities of an n-bit hash value to

discover a strong collision. In the proposed hash function,
the hash length is 128 bits, whereby probability of finding
a collision will be at least 264, which is still impractical by
today’s standard. In addition, the proposed hash function is
scalable, whereby its hash length can be trivially extended

TABLE 6. Hashing speed comparison.

due to the DCFSAFWP structure that has been employed.
Thus, the proposed hash function is deemed secure against
the birthday attack in the current attack model, excluding
quantum models.

H. FLEXIBILITY
One of the strengths of the proposed hash function is its
flexibility to accommodate various hash lengths without sig-
nificant computational overhead. One would just need to
repeat the hash generation step H

32 times to generate a H -bit
hash value. In a way, the DCFSA behaves slightly similar
to a sponge construction, whereby message blocks are first
absorbed by the DCFSA before being squeezed out as parts
of the hash value. The proposed hash function also has the
flexibility to be a keyed or unkeyed hash function.When used
as an unkeyed hash function, the initial conditions specified
in Section 4 would be used as constants. The proposed hash
function also can be modified easily to produce different hash
functions with different properties. Several possibilities are
listed below:
• Increasing or decreasing the number ofmachine states of
theDCFSAFWP to achieve different trade-offs in terms of
security and efficiency.

• Assigning different chaotic maps or a combination of
different chaotic maps to each of the machine states in
DCFSAFWP.

• Assigning different perturbation or chaotificiation meth-
ods to each of the transitions between the machine states
in DCFSAFWP.

• Increasing the number of machine states and chaotic
maps of the DCFSAFWP to increase its keyspace.

I. SPEED ANALYSIS
One of the requirements of a cryptographic hash function
is hashing speed. Hence, many researchers introduce new
designs that focus on improving hashing efficiency. Table 6
shows the comparison between the proposed hash function
with its peers [23], [28], [29], [31]. For a fair comparison, all
of the hash functions were implemented on the same machine
using Matlab R2012b on a Intel Core i5-560M @ 2.67GHz
Processor, 8GB RAM and Windows 7 operating system. The
proposed hash function is found to be more efficient than the
rest.

The hash length in the proposed DCFSA hash algorithm
is flexible due to how the DCFSA map is utilized (sim-
ilar to the squeezing process of a cryptographic sponge).
Generating larger hash values will have minimal effect on
the overall performance because it only involves several

VOLUME 8, 2020 113171

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

TABLE 7. Performance comparison of diffusion, confusion and collision
characteristics.

TABLE 8. Performance comparison of diffusion, confusion and mean
value of absolute difference with secure hash algorithms (SHA).

additional iterations of the DCFSA map, which only iterates
one 1D chaoticmap each time. Each iteration produces 32 bits
of hash values, thus even producing a 1024-bit hash value
would only require what is essentially 32 iterations of a
1D map.

V. COMPARISON WITH OTHER ALGORITHMS
A comparison with other chaos-based hash functions [24],
[25], [27]–[29], [31], [48], [49] is performed based on diffu-
sion, confusion and collision analysis. The results tabulated
in Table. 7 indicates that the performance of the proposed
DCFSA hash function is comparable with existing work,
which all achieve near-ideal statistical results.

Table 8 compares the proposed hash function with
SHA-256 and SHA-3-256. In this comparison, we generate
hash values of 256-bit length for a fair comparison in terms
of diffusion, confusion, and absolute difference metrics. The
proposed DCFSA hash function produces near-ideal results
that are similar to SHA.

VI. DISCUSSION
Due to the properties of the DCFSA method, the resulting
chaos-based hash function has uniformly distributed hash
values with minimal chance of collisions. Each round in
the hashing process takes 312 bits, divied into six blocks,
and each chaotic machine state produces one chaotic point
that is use to determine the state transition for the next
chaotic map. The final result is generated by a ‘‘squeez-
ing’’ process that has allows hash values of flexible lengths
to be generated. The DCFSAFWP configuration was used
because it has better chaotic performance as compared to
the other DCFSA configurations. However, it needs two

operations to generate chaos: the first one perturbs the con-
trol parameter and whereas the second perturbs the chaotic
point. Therefore, if a DCFSA configuration that has fewer
multiplication operations can be found, it could potentially
improve the performance of the proposed algorithm even
further.

In terms of security evaluation, statistical-based experi-
ments have been the de facto methods when it comes to
evaluating chaos-based hash functions. The same set of
statistical-based experiments are also used to analyze the
proposed hash function. The proposed hash function man-
aged to produce near-ideal results for all test categories.
However, near-ideal statistical values do not indicate that a
hash function is resistant to advanced cryptanalytic attacks
such as pseudo-preimage [63] and semi-free start collision
attacks [64]. These attacks are generally performed inde-
pendently, separate from the original hash function pro-
posal. All chaos-based hash functions in recent literature
have not taken these advanced attacks into consideration.
One of the reasons for this is the use of floating point
operations which complicates the use of these cryptanalytic
techniques for security analysis. Hence, using fixed-point
numbers in the design of new hash functions is facilitates
future studies of its security aspects under these cryptanalytic
analyses.

VII. CONCLUSION
In this paper, a new hash function based on deterministic
chaotic finite state automata is proposed using fixed-point
representation. Out of its various configurations, we select
DCFSAFWP with six machine states and three simple chaotic
maps to construct the hash function. Two forms of pertur-
bations triggered by the message block, chaotic points, and
threshold values are used to create dynamic changes that
increase the randomness and sensitivity of the hash values.
The proposed DCFSAFWP-based hash function is evaluated
in terms of various security metrics such as the hash value
distribution, sensitivity to small changes of the message, con-
fusion and diffusion properties, robustness against birthday
attacks, absolute difference, keyspace and weak key analysis,
collision tests, analysis of speed, and flexibility. Findings
demonstrate that the proposed function has near-ideal statis-
tical properties. By avoiding an overly complex construction
and by using fixed point representation, the proposed hash
function has a high degree of cryptanalytic analyzability from
the binary point of view. Comparisons to the current state-of-
the-art in chaos-based hash functions and secure hash algo-
rithms show that the proposed hash function is at least on par,
or outperforms its peers in multiple aspects such as security
and efficiency. In future work, we will be looking into provid-
ing formal, mathematical descriptions for the behaviour and
properties of the proposed hash function.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

113172 VOLUME 8, 2020

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

REFERENCES
[1] L. P. Perin, G. Zambonin, D. M. B. Martins, R. Custodio, and J. E. Martina,

‘‘Tuning the Winternitz hash-based digital signature scheme,’’ in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jun. 2018, pp. 537–542.

[2] W. Luo, Y. Hu, H. Jiang, and J. Wang, ‘‘Authentication by encrypted
negative password,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 1,
pp. 114–128, Jan. 2019.

[3] C. S. Chum and X. Zhang, ‘‘Hash function-based secret sharing scheme
designs,’’ Secur. Commun. Netw., vol. 6, no. 5, pp. 584–592, May 2013.

[4] C. S. Chum, C. Jun, and X. Zhang, ‘‘Implementation of randomize-then-
combine constructed hash function,’’ in Proc. 23rd Wireless Opt. Commun.
Conf. (WOCC), May 2014, pp. 1–6.

[5] M. Adeli and H. Liu, ‘‘Secure network coding with minimum over-
head based on hash functions,’’ IEEE Commun. Lett., vol. 13, no. 12,
pp. 956–958, Dec. 2009.

[6] W. H. Alshoura, Z. Zainol, J. S. Teh, and M. Alawida, ‘‘A new chaotic
image watermarking scheme based on SVD and IWT,’’ IEEE Access,
vol. 8, pp. 43391–43406, 2020.

[7] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice, 6th ed. Upper Saddle River, NJ, USA: Pearson, 2013.

[8] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, ‘‘Security
services using blockchains: A state of the art survey,’’ IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 858–880, 1st Quart., 2019.

[9] A. Sotirov, M. Stevens, J. Appelbaum, A. K. Lenstra, D. Molnar,
D. A. Osvik, and B. deWeger, ‘‘MD5 considered harmful today, creating a
rogue CA certificate,’’ in Proc. 25th Annu. Chaos Commun. Congr., 2008.
[Online]. Available: https://www.win.tue.nl/hashclash/rogue-ca/

[10] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, ‘‘Cryptanalysis of the
hash functions MD4 and RIPEMD,’’ in Proc. Annu. Int. Conf. theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2005, pp. 1–18.

[11] T. Fox-Brewster. (2017). Google Just ‘Shattered’ an Old Crypto
Algorithm-Here’s Why that’s Big for Web Security. [Online]. Available:
https://www.theverge.com/2017/2/23/14712118/google-sha1-collision-
broken-web-encryption-shattered

[12] A. Cilardo and N. Mazzocca, ‘‘Exploiting vulnerabilities in cryptographic
hash functions based on reconfigurable hardware,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 8, no. 5, pp. 810–820, May 2013.

[13] J. Lathrop, ‘‘Cube attacks on cryptographic hash functions,’’ M.S. thesis,
Rochester Inst. Technol., Rochester, NY, USA, 2009. [Online]. Available:
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1653&context=theses

[14] R. F. Kayser, ‘‘Announcing request for candidate algorithm nominations
for a new cryptographic hash algorithm (SHA-3) family,’’ Fed. Register,
vol. 72, no. 212, p. 62, 2007.

[15] M. J. Dworkin, ‘‘SHA-3 standard: Permutation-based hash and
extendable-output functions,’’ Nat. Inst. Sci. Technol., Gaithersburg,
MD, USA, Tech. Rep. 202, 2015.

[16] J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, and L. Song, ‘‘Practical collision
attacks against round-reduced SHA-3,’’ J. Cryptol., vol. 33, pp. 228–270,
Feb. 2019.

[17] D. Saha, S. Kuila, and D. R. Chowdhury, ‘‘Symsum: Symmetric-sum
distinguishers against round reduced SHA3,’’ IACR Trans. Symmetric
Cryptol., vol. 2017, no. 1, pp. 240–258, 2017.

[18] S. Huang, X. Wang, G. Xu, M. Wang, and J. Zhao, ‘‘New distinguisher on
reduced-round keccak sponge function,’’ IEICE Trans. Fundam. Electron.,
Commun. Comput. Sci., vol. E102.A, no. 1, pp. 242–250, 2019.

[19] M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and
J. Schanck, ‘‘Estimating the cost of generic quantum pre-image attacks
on SHA-2 and SHA-3,’’ in Proc. Int. Conf. Sel. Areas Cryptogr. Cham,
Switzerland: Springer, 2016, pp. 317–337.

[20] J. S. Teh, M. Alawida, and J. J. Ho, ‘‘Unkeyed hash function based on
chaotic sponge construction and fixed-point arithmetic,’’ Nonlinear Dyn.,
vol. 100, pp. 713–729, Feb. 2020.

[21] Y. Li, D. Xiao, and S. Deng, ‘‘Secure hash function based on chaotic
tent map with changeable parameter,’’ High Technol. Lett., vol. 18, no. 1,
pp. 7–12, 2012.

[22] J. Liu, X. Wang, K. Yang, and C. Zhao, ‘‘A fast new cryptographic hash
function based on integer tent mapping system,’’ J. Comput., vol. 7, no. 7,
pp. 1671–1680, Jul. 2012.

[23] M. Ahmad, S. Khurana, S. Singh, and H. D. AlSharari, ‘‘A simple secure
hash function scheme using multiple chaotic maps,’’ 3D Res., vol. 8, no. 2,
p. 13, Jun. 2017.

[24] A. Akhavan, A. Samsudin, and A. Akhshani, ‘‘A novel parallel hash
function based on 3D chaotic map,’’ EURASIP J. Adv. Signal Process.,
vol. 2013, no. 1, p. 126, Dec. 2013.

[25] A. Kanso and M. Ghebleh, ‘‘A fast and efficient chaos-based keyed
hash function,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1,
pp. 109–123, Jan. 2013.

[26] Z. Lin, S. Yu, and J. Lü, ‘‘A novel approach for constructing one-way hash
function based on a message block controlled 8D hyperchaotic map,’’ Int.
J. Bifurcation Chaos, vol. 27, no. 7, Jun. 2017, Art. no. 1750106.

[27] Y. Li, X. Li, and X. Liu, ‘‘A fast and efficient hash function based on
generalized chaotic mapping with variable parameters,’’ Neural Comput.
Appl., vol. 28, no. 6, pp. 1405–1415, Jun. 2017.

[28] M. Ahmad, S. Singh, and S. Khurana, ‘‘Cryptographic one-way hash
function generation using twelve-terms 4D nonlinear system,’’ Int. J. Inf.
Technol., pp. 1–9, May 2018, doi: 10.1007/s41870-018-0199-8.

[29] H. Liu, A. Kadir, and J. Liu, ‘‘Keyed hash function using hyper chaotic
system with time-varying parameters perturbation,’’ IEEE Access, vol. 7,
pp. 37211–37219, 2019.

[30] J. S. Teh, K. Tan, and M. Alawida, ‘‘A chaos-based keyed hash function
based on fixed point representation,’’ Cluster Comput., vol. 22, no. 2,
pp. 649–660, Jun. 2019.

[31] Y. Li and X. Li, ‘‘Chaotic hash function based on circular shifts with
variable parameters,’’ Chaos, Solitons Fractals, vol. 91, pp. 639–648,
Oct. 2016.

[32] D. Arroyo, G. Alvarez, and V. Fernandez, ‘‘On the inadequacy of the logis-
tic map for cryptographic applications,’’ 2008, arXiv:0805.4355. [Online].
Available: http://arxiv.org/abs/0805.4355

[33] G. Alvarez, J. M. Amigó, D. Arroyo, and S. Li, ‘‘Lessons learnt from
the cryptanalysis of chaos-based ciphers,’’ in Studies in Computational
Intelligence. Berlin, Germany: Springer, 2011, pp. 257–295.

[34] Q. Jiang, L. Wang, and X. Hei, ‘‘Parameter identification of chaotic sys-
tems using artificial raindrop algorithm,’’ J. Comput. Sci., vol. 8, pp. 20–31,
May 2015.

[35] M. Alawida, A. Samsudin, and J. S. Teh, ‘‘Enhanced digital chaotic maps
based on bit reversal with applications in random bit generators,’’ Inf. Sci.,
vol. 512, pp. 1155–1169, Feb. 2020.

[36] Y. Li, ‘‘Collision analysis and improvement of a hash function based on
chaotic tent map,’’ Optik, vol. 127, no. 10, pp. 4484–4489, May 2016.

[37] J. S. Teh, M. Alawida, and Y. C. Sii, ‘‘Implementation and practical prob-
lems of chaos-based cryptography revisited,’’ J. Inf. Secur. Appl., vol. 50,
Feb. 2020, Art. no. 102421.

[38] W. Guo, X. Wang, D. He, and Y. Cao, ‘‘Cryptanalysis on a parallel keyed
hash function based on chaotic maps,’’ Phys. Lett. A, vol. 373, no. 36,
pp. 3201–3206, Aug. 2009.

[39] M. Alawida, A. Samsudin, J. S. Teh, and W. H. Alshoura, ‘‘Deterministic
chaotic finite-state automata,’’ Nonlinear Dyn., vol. 98, pp. 2403–2421,
Oct. 2019.

[40] M. Alawida, J. S. Teh, A. Samsudin, and W. H. Alshoura, ‘‘An image
encryption scheme based on hybridizing digital chaos and finite state
machine,’’ Signal Process., vol. 164, pp. 249–266, Nov. 2019.

[41] C. Li, B. Feng, S. Li, J. Kurths, and G. Chen, ‘‘Dynamic analysis of digital
chaotic maps via state-mapping networks,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 66, no. 6, pp. 2322–2335, Jun. 2019.

[42] M. Alawida, A. Samsudin, J. S. Teh, and W. H. Alshoura, ‘‘Digital
cosine chaotic map for cryptographic applications,’’ IEEE Access, vol. 7,
pp. 150609–150622, 2019.

[43] B. Coskun and N. Memon, ‘‘Confusion/diffusion capabilities of some
robust hash functions,’’ in Proc. 40th Annu. Conf. Inf. Sci. Syst., Mar. 2006,
pp. 1188–1193.

[44] N. Abdoun, S. El Assad, O. Déforges, R. Assaf, and M. Khalil, ‘‘Design
and security analysis of two robust keyed hash functions based on
chaotic neural networks,’’ J. Ambient Intell. Hum. Comput., vol. 11,
pp. 2137–2161, Feb. 2019.

[45] Y. Li and G. Ge, ‘‘Cryptographic and parallel hash function based on cross
coupled map lattices suitable for multimedia communication security,’’
Multimedia Tools Appl., vol. 78, pp. 17973–17994, Jan. 2019.

[46] M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and
K. Kordov, ‘‘Bentsign: Keyed hash algorithm based on bent Boolean func-
tion and chaotic attractor,’’ Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 3,
pp. 557–569, 2019.

[47] M. A. Chenaghlu, S. Jamali, and N. N. Khasmakhi, ‘‘A novel keyed parallel
hashing scheme based on a new chaotic system,’’Chaos, Solitons Fractals,
vol. 87, pp. 216–225, Jun. 2016.

[48] Y. Li, G. Ge, and D. Xia, ‘‘Chaotic hash function based on the
dynamic S-box with variable parameters,’’ Nonlinear Dyn., vol. 84, no. 4,
pp. 2387–2402, Jun. 2016.

VOLUME 8, 2020 113173

http://dx.doi.org/10.1007/s41870-018-0199-8

M. Alawida et al.: New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata

[49] J. S. Teh, A. Samsudin, and A. Akhavan, ‘‘Parallel chaotic hash function
based on the shuffle-exchange network,’’ Nonlinear Dyn., vol. 81, no. 3,
pp. 1067–1079, Aug. 2015.

[50] W. Chankasame and W. San-Um, ‘‘A chaos-based keyed hash function
for secure protocol and messege authentication in mobile ad hoc wireless
networks,’’ in Proc. Sci. Inf. Conf. (SAI), Jul. 2015, pp. 1357–1364.

[51] H. Bo, L. Peng, P. Qin, and L. Zhaolong, ‘‘A method for designing hash
function based on chaotic neural network,’’ in Proc. 1st Int. Workshop
Cloud Comput. Inf. Secur., 2013.

[52] Y. Li, D. Xiao, H. Li, and S. Deng, ‘‘Parallel chaotic hash function
construction based on cellular neural network,’’ Neural Comput. Appl.,
vol. 21, no. 7, pp. 1563–1573, Oct. 2012.

[53] Y.-L. Luo and M.-H. Du, ‘‘One-way hash function construction based
on the spatiotemporal chaotic system,’’ Chin. Phys. B, vol. 21, no. 6,
Jun. 2012, Art. no. 060503.

[54] M. Nouri, A. Khezeli, A. Ramezani, and A. Ebrahimi, ‘‘A dynamic chaotic
hash function based upon circle chord methods,’’ in Proc. 6th Int. Symp.
Telecommun. (IST), Nov. 2012, pp. 1044–1049.

[55] N. Jiteurtragool, P. Ketthong, C. Wannaboon, and W. San-Um, ‘‘A topo-
logically simple keyed hash function based on circular chaotic sinusoidal
map network,’’ in Proc. 15th Int. Conf. Adv. Commun. Technol. (ICACT),
2013, pp. 1089–1094.

[56] Y. Li, D. Xiao, S. Deng, Q. Han, and G. Zhou, ‘‘Parallel hash function
construction based on chaotic maps with changeable parameters,’’ Neural
Comput. Appl., vol. 20, no. 8, pp. 1305–1312, Nov. 2011.

[57] Y. Wang, K.-W. Wong, and D. Xiao, ‘‘Parallel hash function construction
based on coupled map lattices,’’ Commun. Nonlinear Sci. Numer. Simul.,
vol. 16, no. 7, pp. 2810–2821, Jul. 2011.

[58] H. Zhang, X.-F. Wang, Z.-H. Li, and D.-H. Liu, ‘‘One way hash function
construction based on spatiotemporal chaos,’’ Acta Phys. Sinica, vol. 54,
no. 9, pp. 4006–4011, 2005.

[59] R. Rivest, The MD5 Message-Digest Algorithm, document RFC 1321,
1992.

[60] A. Kanso and M. Ghebleh, ‘‘A structure-based chaotic hashing scheme,’’
Nonlinear Dyn., vol. 81, nos. 1–2, pp. 27–40, Jul. 2015.

[61] Z. Lin, C. Guyeux, S. Yu, Q. Wang, and S. Cai, ‘‘On the use of chaotic
iterations to design keyed hash function,’’ Cluster Comput., vol. 22,
pp. 905–919, Jul. 2017.

[62] M. Todorova, B. Stoyanov, K. Szczypiorski, and K. Kordov, ‘‘SHAH:
Hash function based on irregularly decimated chaotic map,’’ 2018,
arXiv:1808.01956. [Online]. Available: http://arxiv.org/abs/1808.01956

[63] Y. Sasaki and K. Aoki, ‘‘Finding preimages in full MD5 faster than
exhaustive search,’’ inAdvances in Cryptology. Berlin, Germany: Springer,
2009, pp. 134–152.

[64] F. Mendel, T. Nad, and M. Schläffer, ‘‘Improving local collisions:
New attacks on reduced SHA-256,’’ in Advances in Cryptology. Berlin,
Germany: Springer, 2013, pp. 262–278.

MOATSUM ALAWIDA received the B.Sc. degree
fromMutah University, Jordan, in 2005, the M.Sc.
degree in information systems from The Univer-
sity of Jordan, in 2010, and the Ph.D. degree
in computer science/cryptography and cyber-
security from the School of Computer Sciences,
University Sains Malaysia, in 2020. His research
interests include chaotic system, chaos-based
applications, multimedia security, blockchain, and
cryptography.

JE SEN TEH received the B.Eng. degree (Hons.) in
electronics fromMultimedia University, Malaysia,
in 2011, the M.Sc. degree in computer science
from Universiti Sains Malaysia, in 2013, and
the Ph.D. degree from the School of Computer
Sciences, Universiti Sains Malaysia, in 2017.
He is currently working as a Senior Lecturer
with Universiti Sains Malaysia. His research inter-
ests include cryptography, cryptanalysis, random
number generation, machine learning, and chaos
theory.

DAMILARE PETER OYINLOYE received the
B.Sc. (Hons.) and M.Sc. degrees in computer
science from Kwara State University, Malete,
Nigeria, in 2013 and 2016, respectively. He is cur-
rently pursuing the Ph.D. degree with the School
of Computer Sciences, Universiti Sains Malaysia.
He is also a Lecturer and a Researcher with Kwara
State University. His research interests include
blockchain, data privacy and security, cryptogra-
phy, and residue number systems.

WAFA’ HAMDAN ALSHOURA received the
B.Sc. degree and the M.Sc. degree in computer
science from Al-Zaytoonah University, Jordan,
in 2012 and 2017, respectively. She is currently
pursuing the Ph.D. degree with the School of
Computer Sciences, University Sains Malaysia.
Her research interests include digital watermark-
ing and hash function.

MUSHEER AHMAD received the B.Tech. and
M.Tech. degrees from the Department of Com-
puter Engineering, Aligarh Muslim University,
India, in 2004 and 2008, respectively. He has
been working as an Assistant Professor with
the Department of Computer Engineering, Jamia
Millia Islamia, New Delhi, since 2011. He has
published about 70 research articles in refereed
journals and conference proceedings of interna-
tional repute. His areas of research interest include

multimedia security, chaos-based cryptography, cryptanalysis, and optimiza-
tion techniques.

RAMI S. ALKHAWALDEH received the B.S.
degree in computer information systems from
Yarmouk University, Irbid, Jordan, in 2007, the
M.Sc. degree in computer information system
from The University of Jordan, Aqaba, Jordan,
in 2010, and the Ph.D. degree in computing sci-
ence from Glasgow University, U.K., in 2017.
From 2010 to 2012, he was a Lecturer with
The University of Jordan. Since February 2016,
he has been an Assistant Professor with the Com-

puter Information Systems Department, The University of Jordan. His
research interests include artificial intelligence, machine learning, informa-
tion retrieval, VOIP, and wireless networks.

113174 VOLUME 8, 2020

