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ABSTRACT With the development of emerging applications such as augmented reality, more and more
computing tasks are sensitive to delay. Caching popular task computation results on the mobile edge
computing (MEC) server is an effective solution to meet the latency requirements. When multiple users
request the same task, if the computation result is cached on the MEC server, it will return the computation
result directly to the user to reduce the delay for repeated computation. In this paper, we use the caching
to assist the calculation. Non-orthogonal multiple access (NOMA) is used to further reduce the delay for
computation offloading. The optimization problem is formulated as how to make caching and offloading
decision to minimize the delay of whole system. In the case of unknown popularity, we use Gated Recurrent
Unit (GRU) algorithm to predict the task popularity in time-varying system, and place the computing results
of tasks with high popularity on the corresponding server. Based on the predicted popularity, a multi-agent
Deep-Q-network (MADQN) algorithm is used to solve the caching and offloading problem. The simulation
results show that the prediction error of GRU algorithm can be reduced by increasing the learning rate.
Meanwhile, the proposed MADQN can effectively reduce the delay compared with other methods.

INDEX TERMS Mobile edge computing (MEC), non-orthogonal multiple access (NOMA), caching,
multi-agent Deep-Q-network (MADQN).

I. INTRODUCTION
With the development of mobile communication technology,
more and more new applications have a strict requirement
for latency. Mobile edge computing (MEC) is one promising
technology to meet the low latency demand. It can reduce the
burden on mobile users by offloading computing tasks to the
MEC server [1]. Therefore, the research on MEC system has
attracted much attention. In [2], the authors considered the
problem of multi-user multi-server task offloading and the
goal was to minimize the communication delay. The opti-
mization of radio and computational resources in MEC sys-
tem was studied in [3], which can reduce the total consumed
energy. However, one same assumption adopted in [1]–[3] is
that the computation tasks for different users are different
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and the computation results cannot be reused, which may
not always hold in practice. In fact, it is very common for
users to reuse the computation results with the innovative
applications. For example, visitors in augmented reality may
request a processed augmented reality output synchronously
or asynchronously for better experience; In mobile online
games, the game environment can also be requested syn-
chronously by a group of players or asynchronously by indi-
vidual players. In the meanwhile, considering the limited
computing capacity of theMEC server, it is difficult to handle
a large number of computing tasks. If these repeated tasks
are calculated on the MEC server, it will cause a waste of
computing resources.

In order to avoid duplicate transmission and computation
of same tasks, caching the computation results of popular
tasks is an effective solution to reduce latency. As for the
research on caching, most of the papers mainly focus on
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content caching, but less on the caching of computation
results. The content caching, which usually caches videos,
does not involve task executing and computation results
downloading [4]. The caching of computation results refers
to caching popular tasks computation results, which can save
the delay of repeated computation [5]. Existing research on
the caching of computation results is mainly inMEC systems,
which is often used to assist in task offloading and computa-
tion [6]. For example, the joint optimization of caching and
edge computation in MEC system was studied in [7], [8],
where the goal was to reduce total execution delay. The core
idea of [9] was that how to design the caching and com-
putation offloading policy to minimize the required average
transmission rate. In [10], the authors proposed the joint
optimization of caching and computation in a multi-user
cache-assisted MEC system, where MEC servers cache com-
putation results for future demands. Edge computing, caching
and multicast were considered in [11], which can tackle the
wireless bandwidth bottleneck problem. However, the main
concern of computation results caching and task offloading
on above MEC system is computing and caching capabilities
of the edge servers, they do not consider how to use limited
spectrum resources to further reduce latency.

The combination of non-orthogonal multiple access
(NOMA) and caching has become an effective way to solve
the problem of limited spectrum resources. In the caching
network, NOMA technology can push more content to
the server or users at the same time. Thus, the efficiency
of the transmission in wireless caching network can be
improved [12]. For caching in NOMA system, previous arti-
cles mainly focused on content caching, which takes into
account not only the effect of channel conditions, but also the
location and content of the caching [12]–[14]. In the recent
work [15], the authors proposed the method of deep rein-
forcement learning to solve power allocation in cache-aided
NOMA systems. In terms of NOMA combined with caching,
dynamic power control for NOMA transmissions in wireless
caching networks was studied in [16], which designed a
deep neural network (DNN)-based method to keep a balance
between the performance and the computational complexity.
However, caching in NOMA systems is generally about con-
tent caching. Although it considers the effect of spectrum
resources, it ignores the advantage of computation results
caching in assisting edge calculation to reduce delay and
energy consumption.

Thus, in order to balance the limited spectrum resources
and computing resources in the cache network, caching task
computation results on NOMA-MEC system is a new trend to
reduce the delay and energy consumption. For the research of
NOMA-MEC system, most articles mainly focus on offload-
ing computation. In NOMA-MEC system, by offloading
the computation tasks to MEC server, energy consumption
of users and the delay of processing tasks can be reduced
greatly [17]–[20]. The authors of [21] investigated the
resource allocation problem in the D2D communica-
tion underlaying a NOMA-based MEC system. In [22],

the authors designed a scheme to joint optimize computation
offloading and time allocation. Up to now, there are very
few works investigating the caching of computation results
on NOMA-MEC system. The authors of [23] designed a
cache-assisted NOMA-MEC framework, where Q-learning
and Bayesian learning automata (BLA) based multi-agent
Q-learning (MAQ-learning) algorithm was used to address
caching, offloading, and resource allocation issues, but it only
covers a MEC server and local caching. The cache capacity
of a single MEC server is limited, making it difficult to
cache much more task computation results. If users request
a variety of tasks, it will result in lower hit rate. In this case,
the uncached task can only be computed, so the delay cannot
be effectively reduced. Therefore, in this paper, we con-
sider the caching of computation results in NOMA-MEC
system with multiple MEC servers. Computation results can
be shared between servers. If the local server does not cache
the computation results of the task requested by the user,
it can retrieve the required content from the collaborating
server. However, due to the delay cost of data transmis-
sion between two servers, there faces the choice whether to
retrieve the result from collaborating server, which is huge
challenge for the cooperative caching system.

In addition, for caching, we need to consider task
popularity, which is an important factor affecting the
caching. Task popularity refers to the probability of a task
being requested within a specific time [24]. Most arti-
cles believe that popularity is known and follows a Zipf
distribution [25]–[28]. However, in the actual scenario, due to
the dynamics of the task and the mobility of the user, the pop-
ularity changes dynamically over time, so it can be considered
as a time series [24]. Gated Recurrent Unit (GRU) algorithm
is a method of deep learning, which can deal with vanishing
gradient and efficiently capture long-term dependencies [29].
Moreover, it has great advantages in time series prediction.
Thus, in this paper, we use the GRU algorithm to predict
dynamic and unknown popularity. To our best knowledge,
GRU algorithm is first used to predict the task popularity.
Based on the predicted task popularity, we propose to opti-
mize caching and offloading decisions in order to minimize
the delay of whole system. The main contributions of this
paper are summarized as follows:

(1) We study the joint caching and offloading problem in a
multi-user NOMA-MEC system with multiple MEC servers
to minimize the delay of whole system. By extending the
local caching of a single server to the cooperative caching
of multiple servers, the computation results can be shared
between servers.

(2) Considering the fact that the task popularity is dynamic
and unknown, we propose a novel GRU algorithm to predict
the task popularity. According to the predicted popularity,
computing results of tasks with high popularity can be placed
on the corresponding server. We prove that by increasing the
learning rate, the prediction error can be reduced.

(3) Based on the predicted popularity, we adopt the
multi-agent Deep-Q-network (MADQN) algorithm for
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caching and offloading decisions. In the multi-agent system,
each user in the same base station is treated as an agent.
Before selecting the action, agents need to check the case
of hitting to determine the optional action. After that, agents
can adjust their behavior through the feedback from the
environment without knowing other agents’ behaviors in
advance. Simulation results show that due to the cooperative
caching in MADQN, the hit rate is higher compared to only
local caching. At the same time, MADQN can effectively
reduce the delay compared with other schemes.

The paper is organized as follows. The systemmodel which
includes caching model and computation model in Section II.
The problem formulation is in Section III. The problem solu-
tion is given in Section IV. Section V provides the simulation
results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL
We consider a typical caching and offloading model which
includes multiple servers as shown in Fig. 1. In this model,
there are N users in each base station (BS) and each user
is only connected with a single BS. The number of MEC
servers is B. We denote the set of users within the same BS
and MEC servers byN = {1, 2, · · · ,N }, B = {1, 2, · · · ,B},
respectively. Each BS is equipped with one MEC server
and the MEC servers could be co-located with the cellular
BSs [30]. We assume that multiple MEC servers have the
same computing and caching capabilities, denoted by CMEC
and Ncache, respectively. Multiple servers form a cooperative
caching area where the cached computation results can be
shared. We consider that there is a set of S computing tasks
in edge computing system, denoted by S = {1, 2, · · · , S}.
Different from [1]–[3], we focus on the scenario where one
task may be required by multiple users, hence its computa-
tion result can be reusable [31]. Examples of these types of
applications have been illustrated in Section I. Assuming that
each user only requests the task once and all users request
tasks at the same time, while the same task can be requested
by different users according to their preferences.

FIGURE 1. An illustration of caching and offloading for mobile edge
computing.

Each task j ∈ S is characterized by three parameters.
Here Dj denotes the size of input data needed for com-
puting task j. Wj denotes the total number of CPU cycles
required to accomplish the computation task j. Mj represents

the size of computation result for task j. Each user has a
computation-intensive and latency-sensitive task to complete.
We assume that the user knows the serial number of the
requested task. Before the user requests a task, the MEC
server has placed the high-popularity computation results.
In our model, there are four ways to process computational
tasks: local caching, cooperative caching, offloading compu-
tation and local computation.

A. CACHING MODEL
In the caching model, there are two caching modes for users
to obtain the computation result when choosing the caching
decision: the local caching mode and the cooperative caching
mode.

1) LOCAL CACHING MODEL
In local caching model, the local MEC server has stored com-
putation results of popular tasks. Before selecting the local
caching decision, we need to consider the hit situation. In the
case of user i requesting task j, whether the local server has
cached task j needs to be checked. We define a variable β jm,
which indicates whether the local server m has cached task j.
β
j
m = 1 represents local server m has cached task j. Oth-

erwise, β jm = 0. If user i chooses local caching decision
when hitting the local caching, the local MEC server will
send the calculation result directly to user i. The local caching
decisions of N users within the coverage of BS connected to
MEC server m is denoted as Zm = [z1m, z

2
m, · · · , z

N
m ], where

zim ∈ {0, 1}. If z
i
m = 1, it means that user i gets computation

results from the cache content of the local MEC server m.
Otherwise, zim = 0. Furthermore, Z = [Z1,Z2, · · · ,ZB] is
used to represent local caching decisions on all MEC servers.

Although local caching can cause some delay, the delay of
local caching is negligible compared to cooperative caching
and offloading computation [32]. This is because compared
to cooperative caching, the local MEC server is closer to the
user. At the same time, compared to the offloading com-
putation, the download data rate is higher and the size of
computation result is much smaller than that of input data.
Therefore, we can ignore the delay of local caching.

2) COOPERATIVE CACHING MODEL
In cooperative caching model, the cooperative server has
stored computation results of popular tasks. If the user
chooses cooperative caching decision when hitting coopera-
tive caching, the local server retrieves the computation results
from the cooperating MEC server and returns them back to
the user.We define the cooperative caching vectors ofN users
within the coverage of BS connected to MEC server m
as αm = [α1m,n, α

2
m,n, · · · , α

N
m,n], where α

i
m,n ∈ {0, 1}.

If αim,n = 1, it represents that user i gets the calculation result
of the requested task from the cooperative server n, which col-
laborates with the local server m. Otherwise, αim,n = 0. In the
system, there are B servers. Therefore, cooperative caching
vector on all servers is denoted as α = [α1, α2, · · · , αB].
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When the computation results of the task are cached on the
servers, communication between BSs facilitates the sharing
of information about the results of caching tasks between
MEC servers. For example, the X2 interface between NodeBs
in LTE can provide data exchange [24], so it can be used to
realize information exchange between servers. In cooperative
caching, due to the long distance between servers, the trans-
mission delay cannot be ignored. Therefore, the delay of
cooperative caching can be obtained as follows:

T jm,n =
Mj

rm,n
(1)

where rm,n represents download rate between local server m
and cooperative server n.

B. COMPUTATION MODEL
Computation results cached on the server can be obtained
through task offloading and computation at the MEC server
during the historical period. In order to obtain complete com-
putation results, we consider that tasks are either completely
offloading or completely local computation. Therefore, there
are two ways to process tasks in computing model: local
computation and offloading computation.

1) LOCAL COMPUTING MODEL
The N users’ local computation vectors within the coverage
of BS connected to MEC server m can be defined as Ym =
[y1m, y

2
m, · · · , y

N
m ], where y

i
m ∈ {0, 1}, y

i
m = 1 means that

user i within the coverage of BS connected to MEC server
m decides to execute the task by itself. Otherwise, yim = 0.
Therefore, the local computation vector on all servers can be
represented as Y = [Y1,Y2, · · · ,YB].
If user i chooses to execute its task j locally, the local

execution delay of task j is

T li,j =
Wj

f li
(2)

where f li represents the computation capacity (i.e. CPU cycles
per second) of user i in the local computing phase.

We have E li,j as the corresponding energy consumption of
task j, which is expressed as

E li,j = e(f li )
2Wj (3)

According to work [33], the energy consumption per com-
puting cycle is ε = e(f li )

2, where e is the energy coefficient,
which depends on the chip architecture. We set
e = 10−27 [33].

2) OFFLOADING COMPUTING MODEL
We define the task offloading strategy on server m as Xm =
[x1m, x

2
m, · · · , x

N
m ], where x

i
m ∈ {0, 1}, x

i
m = 1 indicates

that the task requested by the user i is offloaded to the local
server m. Otherwise, x im = 0. Then, we can obtain task
offloading decisions on all servers, which can be expressed
as X = [X1,X2, · · · ,XB]. Assuming that there are Nm

up
users to offload the computation tasks to the local server m.

It can be represented as Nm
up =

{
1, 2, · · · ,Nm

up

}
, where

Nm
up =

∑N
i=1 x

i
m.

If user i chooses to execute task j by offloading com-
puting, the whole offloading approach will be divided into
three steps. Firstly, user i needs to offload input data to
local BS. In order to improve the spectrum utilization
and further reduce the transmission delay, we adopt the
NOMA technique to transmit information to local BS. In the
NOMA model, multiple users transmit simultaneously and
share the same uplink channel. At the BS, in order to distin-
guish the superimposed signals, the successive interference
cancellation (SIC) is adopted for decoding, that is, the user
with better channel quality is decoded firstly, and it is sub-
tracted from the received signal so that it will not interfere
with the user with worse channel quality. Then, in this way,
the signals of users with worse channel quality are decoded.
For data offloading, suppose that channel gain between user i
and MEC server m is

∣∣him∣∣2, i ∈ Nm
up. Without loss of gen-

erality and for the ease of discussion, there is
∣∣h1m∣∣2 ≥ ∣∣h2m∣∣2

≥ · · · ≥

∣∣∣hNm
up

m

∣∣∣2. The achievable transmission rate between

the mobile user i and MEC server m, denoted as Rim, can be
written as:

Rim = Blog2(1+
pi
∣∣him∣∣2∑Nm

up
g=i+1 pg

∣∣hgm∣∣2 + σ 2
) (4)

where pi represents the transmit power of user i, and
σ 2 denotes the power of additive noise. The transmission
delay user i offloads the task j to the local BS is

T oi,j =
Dj
Rim

(5)

The corresponding transmission energy consumption is

Eoi,j = piT oi,j (6)

Then the MEC server allocates part of computational
resource to execute the computing task. The required time is
the processing delay of the MEC server, which can be given
as

Tmeci,j =
Wj

f mecm,i
(7)

where f mecm,i is defined as the computational resource allocated
to user i by the MEC server m.
Finally, the MEC server returns the computation result to

user i. This step is the same as the local caching process, so the
delay of this step is also neglected.

III. PROBLEM FORMULATION
According to above discussion, considering caching and
computing, the delay of user i within the coverage of
BS connected to MEC server m is

T im = (1− zim)[α
i
m,nT

j
m,n + x

i
m(T

o
i,j + T

mec
i,j )+ yimT

l
i,j] (8)
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The delay of server m is the maximum delay of N users,
so the delay of server m can be expressed as

Tm = max
{
T 1
m,T

2
m, · · · ,T

N
m

}
(9)

In this way, the delay of whole system is the maximum
delay of all servers, which is expressed as follows:

T = max {T1,T2, · · · ,TB} (10)

Our goal is to minimize the delay of whole system under
the constraints of computation resource, cache capacity, and
users’ energy consumption. Thus, the problem can be formu-
lated as follows:

min
X ,Y ,Z ,α

T (11)

s.t. x im, y
i
m, z

i
m ∈ {0, 1} , ∀i ∈ N ,m ∈ B (12)

αim,n ∈ {0, 1} , ∀i ∈ N ,m, n ∈ B,m 6= n (13)

x im + y
i
m + z

i
m + α

i
m,n = 1 (14)

Nm
up∑

i=1

f mecm,i ≤ CMEC , ∀m ∈ B (15)

S∑
j=1

β jmMj ≤ Ncache, ∀m ∈ B (16)

N∑
i=1

(x imE
o
i,j + y

i
mE

l
i,j) ≤ Emax , ∀m ∈ B (17)

In this paper, we mainly use the caching to assist the cal-
culation, without special considering the effect of the caching
policy. Therefore, objective function is set to one-shot
latency. In the above formulation, (12) and (13) denote that
offloading, local computation, local caching, and cooperative
caching decisions are binary variables, respectively. Accord-
ing to (14), the user only chooses one of the decisions to get
the computation result of requested task. (15) makes sure that
the sum of computational resource allocated to the offload-
ing users can not exceed the computing capacity of MEC
server. (16) guarantees that the cached computation results
do not exceed the caching capacity of the MEC server. In for-
mula (17), it represents the energy consumption of N users in
the same BS is limited to maximum energy consumption.

Since the optimization problem consists of 0-1 variables,
thus, problem (11) is non-convex and NP-hard. It is difficult
to solve this problem by using traditional optimization meth-
ods, while reinforcement learning method has a good advan-
tage in dealing with this problem. Therefore, the algorithm
based on reinforcement learning is used to find the optimal
policy.

IV. PROBLEM SOLUTION
In this section, we firstly use the GRU algorithm to predict
the task popularity, and determine the computation results
cached on MEC servers according to the popularity. Then,
based on the cached computation results on the servers,
MADQN method is used to find the optimal caching and
offloading decision.

A. GATED RECURRENT UNIT
Before users request these tasks, we must decide what to
cache to the servers without knowing the task popularity.
In order to increase caching hit rate and reduce system delay,
we need to predict the task popularity. Popularity is changing
over time in the actual scenario. Therefore, in this model,
we can consider task popularity as a time series. GRU algo-
rithm is widely used in the prediction of time series, so it
can be used to predict the task popularity. GRU is a kind
of Recurrent Neural Network (RNN), which can solve such
problems as the gradient in long-term memory and back
propagation. GRU model is shown in Fig 2.

FIGURE 2. Detail structure of GRU cell.

AGRU algorithm contains two gates: a reset gate rt and an
update gate zt .

rt = σ (Wr · [ht−1, xt ]) (18)

zt = σ (Wz · [ht−1, xt ]) (19)

where Wr and Wz represent the weights, while ht−1 and
xt denote the input of network, σ (·) is a logistic sigmoid
function.

The reset gate determines how the new input is combined
with the previous memory, and the update gate determines
how much previous memory counts. The hidden state can be
expressed as

ht = (1− zt )� ht−1 + zt � h̃t (20)

h̃t = tanh(W · [rt � ht−1, xt ]) (21)

where tanh(·) denotes the hyperbolic tangent function,
� refers to element-wise multiplication.

In the system, the task popularity before users request
these tasks is unknown, and we collect the tasks requested
by users at historical time and the computation results
of different tasks. In GRU algorithm, it uses historical
popularity as inputs and outputs is the task popularity
in the near future.

{
Sj(1), Sj(2), · · · , Sj(TM )

}
is an input

sequence of length TM . The output sequence is expressed as{
Sj(TM + 1), Sj(TM + 2), · · · , Sj(TM + TN )

}
, which output

sequence of length is TN , where Sj(t) indicates the popularity
of the task j during the time t .The cross entropy error is used
as a loss function [34]:

L = −
Nt∑
j=1

p(j)logq(j) (22)
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where the popularity of the predicted task j is expressed
in terms of q(j), p(j) is the popularity of the actual task j.
The cross entropy is used to compare the popularity of the
current training with the actual distribution of the popularity
when the future moment arrives. By minimizing the loss
function, the predicted value is closer to the real value and
the prediction is more accurate. During the training, we take
the derivative of loss function through back-propagation with
respect to all parameters, and update parameters with stochas-
tic gradient descent.

According to the above method, GRU algorithm is used
to predict the popularity of different tasks in the near future
periods. In the case of not exceeding the cache capacity of
the MEC server, that is, in order to satisfy the constraint
of formula (16), it is important to determine what computa-
tion results are stored on the server. Considering the cache
capacity of the server and the size of computation results,
the computing results of the task are cached on the server
in order of popularity from large to small, so as to cache
the computing results of the task as much as possible. The
above method is usually suitable for storing separately popu-
lar content from its own service area at each MEC server. For
multiple servers, when the number of servers is small, for
example, three servers, these servers can collaborate to cache
popular computation results. For the same computing task
at each MEC server, we consider its popularity and cache
computation results with high popularity on the server where
it is located. If the popularity is same on different servers,
the computation results is randomly cached on one of the
servers. In addition, we also need to consider the location of
multiple servers when caching popular content, because the
distance between servers can affect the transmission delay.
However, for scenarios with a large number of servers in the
model, it is very challenging for multiple servers to cache
content through mutual cooperation, which is one of our
future research directions. Before all users request tasks,
these servers have placed the popular computation results,
which is beneficial to hit the local caching and cooperative
caching.

B. MULTI-AGENT DEEP REINFORCEMENT LEARNING
When the system contains a lot of users, our goal is to
find a strategy to minimize the delay in the whole system.
In different BSs, the tasks are handled in the same way,
such as local caching, cooperative caching, local compu-
tation or offloading computation. Therefore, we take the
process of handling tasks by users in a BS as an exam-
ple, and the method of multi-agent reinforcement learn-
ing (MARL) is used to optimize the caching and offloading
decisions. In MARL, we treat each user in the same BS as
an agent. In practice, when users are agents of deep rein-
forcement learning, in order to reduce high running delay
and energy consumption, there are usually lightweight meth-
ods combined with deep reinforcement learning to minimize
the objective function, which is beyond the scope of the
paper.

Considering each user in the same BS as an agent and
multiple users in the same BS, the network can be consid-
ered as a multi-agent system. In the multi-agent system, the
ith agent is represented as a tuple < si, ai, ri, χi >, where
si is the set of state, ai is a finite set of action, ri represents
the reward, and χi refers to the state transition function of
agent i, which describes the probability that the system will
reach the next state after taking action ai in the current state si.
As shown in Fig. 3, each agent can get state information sti
from the environment. After that, it chooses its own action ati .
In a multi-agent system, multiple users’ decisions form a set
of joint actions At =

{
at1, a

t
2, · · · , a

t
N

}
. Based on the current

state and action, each agent earns the reward r ti , and the
system gets to the next state with the transfer probability χi.
The state transitions of their common environment depend on
the agents’ joint actions.

FIGURE 3. The overview of MARL for caching and computation scheme.

Combined with the model, the corresponding relationship
with state, action and reward is as follows:

State: For agent i, si(t) = (µ(t),T im(t), ϕ(t), ζ (t)) repre-
sents the state. We denote µm(t) as the serial number of tasks
stored on the serverm at time step t . Therefore, serial number
of tasks stored on all servers at time step t is expressed as
µ(t) = {µ1(t), µ2(t), · · · , µB(t)}. In this paper, we have
cached corresponding computation results on each server in
advance by using the GRU algorithm. Cached computation
results can be shared between multiple servers. Through the
communication between BSs, the BS can obtain the serial
number of cached tasks on other servers. T im(t) represents the
delay of user i on the local server m. ϕ(t) is the available
computational capacity of the MEC server, which can be

represented as ϕ(t) = CMEC −
∑Nm

up
i=1 f

mec
m,i (t). ζ (t) denotes

available energy consumption of N users in the same BS,
and can be computed as ζ (t) = Emax −

∑N
i=1[x

i
m(t)E

o
i,j(t) +

yim(t)E
l
i,j(t)].

Action: At time step t , after observing the state of agent i,
it can select one action. For agent i, there are several alter-
native actions: ai(t) = (x im(t), y

i
m(t), z

i
m(t), α

i
m,n(t)), where

x im(t) is task offloading decision, yim(t) represents local com-
putation decision. As for zim(t) and α

i
m,n(t), they represent

local caching and cooperative caching decisions, respectively.
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However, not all of these actions are optional for all agents.
Offloading and local computation are actions that each agent
can choose. For caching decisions, we need to judge the case
of the hit. Depending on the state information and the task
requested by the user, the agent can know whether the local
caching or cooperative caching is hit. Only when the cache
is hit can the agent select the cache decision. For example,
the agent i only hits the local caching. In this way, the cooper-
ative cache is not selected when the action selection is made.
Its optional actions are local caching, local computation, and
offloading. If the cooperative caching is selected, it cannot
get the computation results on the cooperative server. At the
same time, the environment cannot feedback the reward infor-
mation to agent i. Thus, it will cause running error.
When choosing the action, we consider that computing

capacity of MEC server and energy consumption of N users
in the same BS are limited, once other agents perform local
computation or offloading computation, they can take up
computing resources and energy consumption, leading to a
possible change in the strategy for agent i. In other words,
the behavior of other agents will affect the decision of agent i.
In MARL, agent i does not know the actions and rewards
of the other N − 1 agents. It can only use its own state
information when learning a policy. In order not to exceed
the computational capacity of MEC server and the energy
consumption of N users in the same BS, we use the available
computational capacity of the MEC server ϕ(t) and the rest
of energy consumption of N users ζ (t) as state information.
According to the state information, agent i makes its own
action choices. Based on the reward of the feedback from
the environment, the selected action is constantly adjusted in
order to minimize the delay.

Reward: Agent i makes its own decisions based on obser-
vations of the environment. Then, agent i receives a reward
to evaluate the selected action. In reinforcement learning,
our goal is to maximize rewards. In the system, we want to
minimize the objective function. To meet the requirements of
both, we set the reward of agent i as:

ri(t) = T locali (t)− Ti(t) (23)

where T locali (t) is the latency when the task of user i is
executed locally, Ti(t) represents the actual delay of user i
at time step t .

In this paper, there are a large number of users in the BS,
and each agent makes its own action choices based on state
information. Therefore, the state and action spaces are huge,
causing the problem of dimensional disaster. In this case, due
to the large number of states and actions, it is impractical for
multi-agent Q-learning to find the optimal strategy by looking
up tables. The multi-agent Deep-Q-network algorithm can
just solve the above problem.

In theMADQN based caching and task offloading scheme,
the output of the convolutional neural networks (CNN) is
used for estimating the optimal Q-values. When finding the
policy, we apply the ε−greedy algorithm. The agent chooses
the optimal caching and task offloading policy with high

Algorithm 1 MADQN for Caching and Offloading Policy
1: Initialization:
2: for all i ∈ N do
3: Initialize state si, action ai, reward ri
4: Initialize replay memory D, current Q-network

Q(s, a; θ ), target Q-network Q̂(s′, a′; θ̂ )
5: end for
6: while θ is not convergence do
7: for iteration do
8: for each agent i = 1 : N do
9: Observe initial state si
10: if with probability 1− ε then
11: ai = maxaQ(s, a; θ )
12: else
13: Select random action ai
14: end if
15: Update the reward ri according to (23)
16: Observe the next state si′

17: Store transition (si, ai, ri, si′) in D
18: Sample a min-batch of M transitions from D
19: Using stochastic gradient to minimize the loss

L = (ri + γmaxa′Q̂i(s′, a′; θ̂ )− Qi(s, a; θ ))2

20: Update the state si← si′

21: end for
22: end for
23: end while

probability 1− ε. Otherwise, it selects a random policy with
probability ε. In the training phase, the experience of agent i
is ei = (si, ai, ri, si′), where si, ai, ri correspond to the
state, action, and reward of agent i. si′ represents the next
state of agent i. The experience of all agents is stored in
the experience replay memory D = {e1, e2, · · · , en}, where
n is the number of agents. During training, small batches of
experience are randomly selected from D. To minimize the
loss function, for the update of parameter θ , it is obtained
according to the stochastic gradient descent method based
on the previous caching and offloading experience in the
memory pool. In the MADQN network, the parameters of the
current Q-network are updated in real time. Every M steps,
the parameters of the current Q-network are copied to the
target Q-network. Stop training once the parameter θ con-
verges. The details of our proposed MADQN for caching and
offloading decision is provided in Algorithm 1. According to
this method, caching and offloading are performed on users
in other BSs. Since the delay of whole system is composed
of the delay of multiple BSs, the purpose of minimizing the
delay of whole system can be achieved by reducing the delay
of different BSs.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
In this section, we present simulation results to evaluate
the performance of the NOMA-MEC system for caching
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and computation. In the simulation, we set the number of
MEC servers to 3 and the number of users served by the
same BS to 10. Multiple BSs are randomly distributed in
a 800 × 800 m2 area. The coverage of each BS is a circular
area with radius of 100m, and the BS connected with a server
is located in the center of this circular area. Coverage areas
between different BSs do not overlap. The positions of users
in the same BS are randomly distributed in a circular area.

The computing capacity of each MEC servers is set
to 5GHz/sec. The bandwidth B = 10MHz and the cor-
responding noise power σ 2

= 2 × 10−13. The size of
input taskDj (kbits) follows the uniform distribution between
(300,500). In addition, the total number of CPU cycles Wj
(in Megacycles) obeys the uniform distribution between
(1000, 1300). In the local computing phase, the CPU fre-
quency of each user f li = 0.6GHz/sec. The user’s transmis-
sion power during offloading is set to 0.5W.

B. PREDICTION OF TASK POPULARITY
In the NOMA-MEC system, we consider the location of users
to be fixed, but the task requested by users changes constantly
over time. We use the GRU algorithm to predict the task
popularity. For the dataset, through the analysis of data char-
acteristics, we use software to simulate the communication
scene. In the simulated environment, multiple users and a
BS are added. The user’s channel is set to Rayleigh fading.
We collect the number of times each task is requested at
different times and put them into a dataset. Due to the huge
difference of these data, therefore, the preprocessing work is
normalizing them into [0, 1]. Next, we take the example of
predicting the popularity of task j on MEC server m to prove
that the GRU algorithm has a good prediction effect.

In the GRU algorithm, we use the Adam optimization
method and set the learning rate as 0.001, 0.005, and 0.009,
respectively. Based on the popularity of historical period,
the popularity in near future period is predicted by GRU algo-
rithm. The predicted popularity with different learning rates is
shown in Fig. 4(a). In Fig. 4(b), it compares the loss function
with different learning rate. The loss function reflects the
difference between the true value and the predicted value.
According to Fig. 4(b), we can see that the loss function of
GRU algorithm with learning rate of 0.009 is smaller and
the prediction is more accurate. Therefore, a better predic-
tion effect can be achieved by appropriately increasing the
learning rate within a certain range.

C. CACHING AND OFFLOADING DECISION EVALUATION
By predicting the popularity, we place the computation results
of the task on the corresponding server. We consider two
kinds of caching decisions: cooperative caching and only
local caching.

Cooperative caching: Cached results can be shared
between multiple servers. During the caching process,
the user can get the computation results not only from the
local server, but also from cooperative server.

FIGURE 4. Prediction effect of GRU. (a)Task popularity prediction over
different learning rate. (b) Loss function of GRU with different learning
rate.

Only local caching: No other MEC servers cooperate with
the local server. The user can only obtain calculation result
of the requested task from local server during the caching
process.

From Fig. 5, we can see that the hit rate increases as the
cache capacity of the MEC server increases. In addition,
the hit rate of cooperative caching and only local caching
is approximately 80% and 45% respectively when the cache
capacity of each MEC server is up to 25Mbits. The hit rate of
the cooperative caching is higher than that of the only local
caching. Besides, the difference becomes more significant
with the cache capacity increases. Therefore, we can come to
the conclusion that cooperative caching can greatly improve
the hit rate, especially for large cache capacity ofMEC server.

FIGURE 5. Cache hit rate over different cache capacity of MEC server
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In Fig.6, we compare the performance ofMADQNwith the
following two schemes. 1) Multi-agent Q-learning (MAQ),
which finds the optimal policy by looking at the Q-table in
order to maximize the cumulative rewards. 2)Greedy algo-
rithm (GA), which selects the optimal decisions in the current
state, without considering whether it is the best decision for
the whole system. From the Fig.6, we can see that the delay
of GA, MAQ and MADQN algorithm are approximately
0.75s, 0.65s and 0.55s respectively through successive iter-
ations. Therefore, MADQN scheme outperforms MAQ and
GA schemes in terms of the delay. This is because compared
with MAQ algorithm, MADQN uses the output of CNN to
estimate Q-values, instead of calculating Q-values by looking
up Q-table, which avoids the situation that it is difficult to
find the optimal decision when the state-action space is large.
Meanwhile, compared with the GA algorithm, MADQN can
get the optimal decision for the whole system through succes-
sive iterations, while GA algorithm can only ensure to obtain
the optimal policy in the current state. Besides, it can also
be observed that MADQN algorithm is superior to GA and
MAQ algorithms in convergence speed.

FIGURE 6. The relationship between iterations and the delay of whole
system.

In the following, we compare the delay for varying input
size from 1Mbits to 5Mbits in Fig. 7. We can observe that the
delay of MADQN is lower than that of GA, MAQ and only
computation. Therefore, the proposed MADQN algorithm
is better than other schemes. As the number of input tasks
increases, the delay increases gradually. As a result, the goal

FIGURE 7. The delay of whole system over different task input size.

of reducing the delay can be achieved by appropriately reduc-
ing the size of input tasks.

VI. CONCLUSION
In this article, we address the issue of minimizing delay
through the cooperation of multiple MEC servers in
NOMA-MEC system. Considering that the popularity is
unknown, we use the GRU algorithm to predict the popularity
of tasks, and cache the computing results of tasks with high
popularity to the corresponding servers. Then, based on the
tasks’ computation results cached by the server, we propose
a multi-agent reinforcement learning method. In order to
solve the problem that traditional MAQ algorithm is difficult
to deal with large state-action space, we adopted MADQN
algorithm, which can effectively reduce the delay. Simula-
tion results show that the prediction of GRU algorithm is
more accurate by increasing the learning rate. Meanwhile,
compared with only local caching, cooperative caching can
effectively improve hit rate. Moreover, MADQN algorithm
shows a good advantage in reducing delay and convergence
in comparison with other schemes.
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