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ABSTRACT With the advance of deep neural networks (DNNs), artificial intelligence (AI) has been widely
applied to various applications in our daily lives. These DNN-based models can be stored in portable storage
disks or low-power Neural Compute Sticks. They can then be deployed in edge devices through the USB
interface for AI-based applications, such as Automatic Diagnosis Systems or Smart Surveillance Systems,
which provides solutions to incorporating AI into the Internet of Things (IoT). In this work, based on our
observation and careful analysis, we propose a model-based deep encoding method built upon Huffman
coding to compress a DNN model transmitted through the USB interface to edge devices. Based on the
proposed lopsidedness estimation approach, we can exploit a modified Huffman coding method to increase
the USB transmission efficiency for quantized DNN models while reducing the computational cost entailed
by the coding process. We conducted experiments on several benchmarking DNN models compressed using
three emerging quantization techniques, which indicates that our method can achieve a high compression
ratio of 88.72%, with 93.76% of the stuffing bits saved on average.

INDEX TERMS Network compression, Huffman coding, USB transmission, edge computing.

I. INTRODUCTION
In recent years, the demand for internet-connected
devices or Internet-of-Things (IoT) has been grown drasti-
cally. With the advance of deep-learning technology used
in Computer Vision (CV) and Natural Language Processing
(NLP), migrating various deep-learning-based CV and NLP
applications to the Internet of Things (IoTs) attracts more
attention [1]. Such applications usually require massive data
transmission to/from the cloud from/to IoT devices, mostly
relying on cloud computing for running deep-learning mod-
els. To save on cloud computation costs and preserve data pri-
vacy, using edge computing to analyze or process data using
deep neural network models are pervasive nowadays. Edge
computing can also help reduce the amount of data trans-
mitted to the cloud to avoid long latency [2]. For instance,
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autonomous driving service provides drivers with assistance
systems based on CV applications based on Deep-Neural-
Network (DNN) models, including lane recognition [3], road
signs recognition [4], pedestrian detection [5], etc. In a smart
city, DNN models can be deployed on edge devices for deep-
learning-based applications, such as crowd density estima-
tion [6], abnormal crowd event detection [7], and person
re-identification [8].

In a modern edge computing architecture for AI [9],
as shown in Fig. 1, edge devices can utilize a hardware
inference accelerator (HIA) to process deep-learning tasks.
The inference model can be trained on local GPU servers
and transmitted to edge devices through wired/wireless inter-
faces, which is called deployment. However, emerging deeper
DNN models, often used as a feature extractor with high
accuracy, impose a heavy burden of computing power on the
hardware inference accelerator. Besides, a considerable num-
ber of weight parameters in a deeper DNN model severely
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FIGURE 1. Modern edge computing architecture.

impact the transmission efficiency during deployment and the
access efficiency of the hardware inference accelerator [10].
Therefore, many methods for model compression have been
proposed to cut down the hardware resource need and data
transmission load. He et al. [11] proposed an interactive
method, called ‘‘channel pruning,’’ to reduce the number of
channels in network layers by a Least Absolute Shrinkage
and SelectionOperator (LASSO) regression based on channel
selection and least square reconstruction. Lin et al. [12] pro-
posed to quantize the weights of a model from 32-bit floating-
point to 16-bit fixed-point representation to reduce the data
usage. Han et al. [13] proposed pruning and trained quan-
tization techniques to quantize the weights of deep-neural-
network (DNN) models for compression. They also adopted
the conventional Huffman coding as their final compression
step.

In addition to model compression, optimization based on
transmission media is another way to improve transmission
efficiency. Much research has been done to increase trans-
mission efficiency based on transmission media, such as
the 5G network [14] and WiFi [15], by examining a better
deployment scenario in terms of data transmission. However,
the techniques used are mostly regarding distributed com-
puting for mobile devices, which usually does not apply to
edge computing of artificial intelligence (AI) deployment.
Additionally, most commercial hardware inference accel-
erators use the USB interface for data transmission, such
as Intel Movidius Neural Compute Stick [16]. To provide
feasible solutions for edge devices to adopt deep-learning
models, using a specialized low-power Neural Compute
Stick is very popular. As far as we know, no work has
been done on gating the transmission behavior of a DNN
model through the USB protocol. The proposed work aims to
increase the USB transmission efficiency, which can directly
work with the Movidius Neural Computing Stick for better
compression.

Fig. 2 shows that a general workflow for using a Neural
Compute Stick to develop deep-learning models for edge
devices. As can be seen, at the model developing/training/
fine-tuning stage, one has to profile the performance of the
model multiple times. After deploying the model to an edge
device, it still needs periodic updates on new data. All of the
transmissions are through the USB interface.

FIGURE 2. A general workflow for neural compute stick. (Icons made by
https://www.flaticon.com/authors/freepik, Nikita Golubev, surang, and
itim2101).

Based on our careful experiment and analysis, we observed
that the weights of quantized DNN models conform to a
biased distribution. The characteristic allows us to compress
the weights through Huffman encoding [17], [18]. Further-
more, we propose a Model-based Deep Encoding (MDE)
method to further optimize transmission efficiency for DNN
models deployed via the USB interface to edge devices. The
proposedMDE incorporates the method [19], whichmodifies
Huffman encoding based on the Non-Return-to-Zero Inverted
(NRZI) encoder, to reduce the bit stuffing and thus the amount
of data transmission. We, moreover, proposed to estimate the
lopsidedness of a Huffman tree to decrease the computational
overhead incurred by modified Huffman encoding.

Overall, we make three primary contributions as follows:

• We propose the first DNN model-based encoding
scheme for the USB transmission by a critical obser-
vation that biased distributions of weights of quantized
DNN models exist for the modified Huffman coding to
reduce the bit stuffing.

• We develop an approach that can estimate the lopsid-
edness of a Huffman tree to avoid unnecessary tree
modifications before coding weights of DNNmodels for
computational reduction.

• We conduct extensive experiments on three benchmark-
ing DNN models using three emerging quantization
techniques to demonstrate the superior performance of
our proposed scheme for the USB transmission.

The remainder of this paper is organized as follows. Sec. II
describes related work, including network compression tech-
niques, non-return-to-zero inverted encoding, and the mod-
ified Huffman coding for data transmission. In Sec. III,
we detail the proposed MDE method. The experimental
results are demonstrated and discussed in Sec. IV. At last,
Sec. V concludes the paper.

II. RELATED WORK
A. MODEL COMPRESSION
Applications using DNN models require more computa-
tions and memory, making deployment to low-power devices
difficult due to low computational and memory resources.
Therefore, it is common to apply model compression to
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DNN models to relax these hardware constraints for the
practicality and portability. In general, model compression
techniques can be classified into three categories: compact
network design, network parameters reduction, and network
quantization [20]. Compact network design aims at building
efficient networks where convolutional layers can be replaced
with more economical designs, such as Inception Module in
GoogLeNet [21], Bottleneck structure in ResNet [22], depth-
wise convolution in MobileNet [23] and point-wise group
convolution in ShuffleNet [24]. Although using these com-
pact network architectures can not only make performance
better but reduce the number of the weights in the model,
it is not appliable to a pre-trained DNN model. Network-
parameter-reduction techniques, such as pruning feature map
connections [25], [26], learning a more efficient representa-
tion by low-rank approximation [27], and structured sparsity
regularization [28], [29]. However, dimension-reduced repre-
sentation methods could hardly achieve a high compression
ratio while keeping the fidelity of the data. Network quanti-
zation techniques can be used to scale down the size of the
model by quantizing data with lower precision [30], [31].
Therefore, it can achieve a larger compression ratio than the
other two types of techniques.

B. NON-RETURN-TO-ZERO INVERTED (NRZI) ENCODING
Non-return-to-zero inverted encoding [32] is a commonly-
used encoding technique widely used over transmission
media due to its stability and simplicity. This method trans-
forms the logic transition as a transmission code without
requiring a separate clock signal delivered with the data.
As shown in Fig. 3, logical ‘‘0’’ in the original data is
transmitted as a signal which represents a logic transition
in the NRZI data, while logical ‘‘1’’ is transmitted as no
transition. However, a long series of no-transition signals in
NRZI data (i.e., a long consecutive logical 1 in original data)
is hard for the receiver to count the bits accurately without a
reference clock. To ensure the entirety of transmission for the
receiver, a stuffing bit ‘‘0’’ is used and inserted in the original
data stream when meeting five consecutive 1 bits to force a
transition.

FIGURE 3. The NRZI code with and without stuffing bits.

C. MODIFIED HUFFMAN TREE
With the rapid growth of multimedia and internet popularity,
image compression attracts much attention. Huffman cod-
ing [17] is a lossless compression method with variable-
length codes that can reduce the average code length to
achieve a higher compression ratio. It is a very commonly

used coding technique in JPEG or many video compression
methods. In [20], Y. Pai et al. proposed an improved method
to speed up data transmission based on the NRZI encoder by
modifying the Huffman coding in the JPEG standard.

As previously mentioned, in the NRZI coding scheme,
a ‘‘0’’ bit is transmitted as a signal transition, whereas a ‘‘1’’
bit no change. The NRZI data transmitter and receiver use
bit stuffing to prevent clocks from losing synchronization by
inserting a ‘‘0’’ bit after a long run of ‘‘1’’ bits and to verify
the data entirety. Based on that, one can avoid the bit stuffing
by reducing the occurrence of over consecutive six 1s events
(OCF1). In [20], it proposed to reduce the OCF1, which has
two parts: sub-trees partition (STP) and sub-trees swap (STS).
Given a Huffman tree, STP transverses each node of the tree
to create a list of sub-trees, where OCF1 may occur, for
swapping in STS until the node is found to belong to a binary
tree or the depth of the tree is less than six. The list stores
sub-trees where their depths are more than six and are deeper
than the corresponding sibling sub-tree. For STS, the sub-
tree would swap with the corresponding sibling sub-tree if
the total expected value of OCF1 in both sub-trees is greater
than that after swapping. The expected value of OCF1 in a
sub-tree t is calculated as:

E(t) =
∑
k

{Ok · P(Lk )} (1)

where Lk is the kth leaf nodes included in the sub-tree and Ok
represents the occurrence of OCF1 event defined as:

Ok =

{
x, if x OCF1 events occur in Lk ;
0, if no OCF1 events occur in Lk .

(2)

The P(L) in (2) is the occurrence probability of a leaf node L
and is denoted as:

P(L) = 2−[length(L)]. (3)

where length(L) is the level length of L.
The Huffman tree would be partitioned into several groups

based on the skewness of the sub-tree and the possibility of
OCF1. By comparing the expected values of OCF1 before
and after swapping, the Huffman tree is modified to reduce
the OCF1 occurrences. Therefore, the modified Huffman tree
can still keep a comparable compression ratio while achiev-
ing high efficiency on data transmission because of less bit
stuffing used.

III. PROPOSED METHOD
A. QUANTIZED DNN MODELS
Compared to compact network design and network param-
eters reduction, network quantization can shrink operation
units by using a lower precision to achieve more efficient
computations and hardware-friendly implementation. That is,
network model weights can be quantized to meet the require-
ments of speed and memory on resource-limited devices with
only a slight loss on accuracy. Han et al. [13] proposed to
generate the codebook as a look-up table to quantize the
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weights of network models by mapping them to several
centroids of clusters derived by k-means. Their experiment
indicated that the weights of a quantized model conform
to a biased probability distribution. With Huffman coding
applied, the compression ratio of a model can be further
improved (e.g., 20% - 30% on the AlexNet model). Inspired
by this work [13], we proceed further to look into the distribu-
tions of quantized weights in all the layers of a networkmodel
and conduct a series of experiments over several DNNmodels
quantized using different techniques to examine whether a
biased probability distribution exists concerning the network
layers.

FIGURE 4. The sorted weight distributions of the AlexNet for each layer
quantized by DC, INQ [33], and DoReFa-Net [30].

In Fig. 4, it shows that the quantized weight distri-
bution of the AlexNet for each layer after sorting. The
weights are quantized at 5-bit precision on the ImageNet
dataset [34] by three representative quantization techniques,
Deep Compression (DC) [13], Incremental Network Quanti-
zation (INQ) [33], and DoReFa-Net [30], involving pre- and
post-training quantization. Note that the source code of these
quantization methods is made available by their authors for
people to download. We applied these quantization methods
to the AlexNet with the same hyperparameters as in the
original work. We found that all the distributions present
biased shapes no matter which of these quantization tech-
niques is used, which could indicate that Huffman coding

can be applied to different quantized DNNmodels for further
compression. The quantized models would have smaller data
sizes. Additionally, we verified this observation and also
found a biased distribution of quantized weights for an often-
used object detector model proposed in [35] with the VGG-16
backbone. In our work, we exploit this characteristic in a
low-power edge computing scenario where network model
weights are often transmitted through the USB interface.
By modifying Huffman coding, we can further reduce the
inserted stuffing bits, used in the USB protocol for data
synchronization.

B. MODEL-BASED DEEP ENCODING
Based on our observation, a bias probability distribution
generally exists in sorted quantized model weights. We pro-
pose an encoding pipeline where the quantized weights are
coded by Huffman coding specially modified for transmis-
sion via the USB interface for further compression. It can
work on both pre- or post-training quantization. The pro-
posed encoding pipeline is called Model-based Deep Encod-
ing (MDE), based on network quantization and Huffman
coding to improve the transmission efficiency of edge device
deployment of deep-neural-network models. MDE utilizes
tree modification [18] to reduce the overhead of bit stuffing
used in the USB transmission, discovering and reducing the
occurrence possibility of Over Consecutive Six 1 (OCS1)
events in the Huffman code table. However, tree modification
involves traversing the entire Huffman tree, which may not
be needed because OCS1 events do not always happen to any
Huffman code. To avoid the computation overhead caused by
unnecessary tree modification, we propose a method to esti-
mate the lopsidedness of a Huffman tree to determinewhether
applying tree modification. Fig. 5 illustrates the diagram of
the proposed pipeline.

FIGURE 5. The proposed pipeline applied to each layer of a
quantized (Qed) model.

C. LOPSIDEDNESS ESTIMATION
We propose an effective approach to determine whether to
apply the tree modification, where the depth of the generated
Huffman tree is estimated. As one may know, the depth of
a Huffman tree is measured by traversing the entire tree
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FIGURE 6. The Huffman tree of (a) Fibonacci sequaence, an = an−1 + an−2 where a1 > 0, a2 > 0, n = {3, 4, . . .},
and (b) Geometric sequence, bn = a · rn where a > 0, r > 1, n ∈ N.

after generating the tree, which is time-consuming and inef-
ficient. According to Huffman coding, a lopsided Huffman
tree features a larger depth compared to a balanced one. Here,
the lopsidedness of a Huffman tree is determined based on the
pattern of the probability distribution of input symbols (iPD),
which can also be considered as the skewness of a Huffman
tree. Therefore, the lopsidedness of a tree can be utilized to
estimate the depth of a tree.

A Huffman tree is generated by iteratively combining two
nodes with the two least probabilities in the ascending-order-
sorted queue as a new node. The most lopsided Huffman tree
appears when the ascending-order-sorted queue Q in each
iteration satisfies the following conditions:

a1 + a2 ≤ a4, (4)

where a1, a2 and a4 denote the first, second and fourth
elements respectively in Q. For example, two representative
distributions which can generate such tree type are Fibonacci
Sequence and Geometric Sequence. Fig. 6 shows Huffman
trees for Fibonacci Sequence and Geometric Sequence with
their iPDs. We observed that the generated Huffman tree is a
full binary tree in which each node is either a leaf node or pro-
cesses exactly two child nodes. The deep of the tree achieves
the ultimate, that is:

Nsymbol − 1, (5)

where Nsymbol denotes the number of input symbols. Further-
more, these two iPDs are well modeled by exponential func-
tion as shown in Fig. 7 where the R2 score is approximately

FIGURE 7. The distribution of (a) Fibonacci sequence given that a1 = 1,
a2 = 1, and (b) Geometric sequence given that a = 0.5, r = 2.

equal to one. The lopsidedness estimation in the proposed
pipeline exploits the regression degree of the exponential
model. It assesses the lopsidedness of the Huffman tree of
iPD through R2 score, also referred to lopsidedness in this
work. The formula of a exponential regression model is:

y = α · eβx , (6)

where α and β can be derived by the observed data set
{(x1, y1), (x2, y2), . . . , (xn, yn)}:

β =

n
n∑
i=1

ln yi · xi −
n∑
i=1

ln yi ·
n∑
i=1

xi

n
n∑
i=1

x2i − (
n∑
i=1

xi)2
;

α = eln y−βx .

(7)

According to the definition of R2 score, the regression
model is regarded as a well-fit model when its score is higher
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TABLE 1. The lopsidedness and depth of Huffman tree for each layer of
the AlexNet quantized by three different quantization techniques at 5-Bit
precision.

than 0.75. Therefore, the threshold of lopsidedness for deter-
mining whether to perform tree modification is set to 0.75.
Table 1 shows the R2 score of the exponential regression
model and the depth of theHuffman tree, which uses the prob-
ability distribution of weights in each layer of the Alexnet.
The R2 score for each iPD is more than 0.75, which indicates
that its corresponding Huffman tree has more than 5 layers,
and tree modification is needed to avoid OCS1. It also means
if a tree with its R2 < 0.75, tree modification can be skipped.

TABLE 2. The lopsidedness and depth of a Huffman tree for each layer of
the AlexNet quantized by three different quantization techniques at 3-Bit
Precision.

To assess the effectiveness of the proposed lopsidedness
estimation, we experiment with a neural network model
quantized at relatively low precision to make the generated
Huffman tree of low height for each layer. We measure the
time consumed by adopting the modified Huffman coding
(Huffman coding with tree modification to avoid OCS1) to
demonstrate how much computation time would be saved
using the proposed lopsidedness estimation. Table 2 shows
both the R2 score and depth of the Huffman tree generated
for weights in each layer of the Alexnet quantized with 3-bit
quantization precision. One can see that the low-precision
leads to a low R2 score (R2 < 0.75) for half of the layers’
iPD and a small value in depth of the corresponding Huffman
trees. Table 3 lists the execution time for Huffman tree con-
struction of each layer with or without using lopsidedness
estimation, where you can see the proposed lopsidedness
estimation effectively reduces the execution time. Note that

TABLE 3. The execution time (Millisecond) of the Huffman coding part in
MDE with and without using lopsidedness estimation based on the
AlexNet quantized at 3-bit precision.

all the experiment was conducted on a desktop with an Intel
Core i7-4790CPU and 24GRAM. It shows that using the pro-
posed lopsidedness estimation, the computational overhead
caused by tree modification can be avoided. Hence, using the
proposed lopsidedness estimation based on the R2 score of
model regression is more efficient than measuring the depth
of the Huffman tree by traversing the entire tree.

IV. EXPERIMENTAL RESULTS
The proposed MDE pipeline has two parts to increase trans-
mission efficiency: 1) model compression and 2) encoding
optimization for USB transmission. Thus, there are two types
of experimental results presented to assess our method: 1) the
compression ratio and 2) bit stuffing reduction ratio. Since
Huffman coding is a lossless encoding technique that does
not affect the weight distribution, the accuracy of a model
after encoded by Huffman coding is the same as that of the
quantized model. Therefore, the accuracy of a model would
not be discussed in the scope of this work. In the experi-
ment, the MDE pipeline adopts three representative model
quantization techniques, DC [13], INQ [33], and DoReFa-
Net [30] and works with three benchmarked DNN models,
AlexNet, GoogleNet, and ResNet-50. Table 4 lists the model
compression ratio %0 and bit stuffing reduction ratio %2
using the MDE, where Q, H , and Q + H represent the two
ratios (%0 and %2) using model quantization, Huffman
coding, and the MDE pipeline. H∗ represents the modified
Huffman coding with tree modification used.

A. COMPRESSION RATIO
For fair assessment, three DNN models are compressed
(quantized) at 5-bit precision using all three quantization
techniques. For each layer, the compression ratio would be
the same value of 84.38% since the quantization precision
used is the same for each method, which is 32 bits quantized
to 5 bits. The overall compression ratio of a DNN model is
calculated as:

%0 = 1−

∣∣∣∣Mafter −Mbefore

Mbefore

∣∣∣∣ · 100%, (8)
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TABLE 4. The model compression ratio %0 and bit stuffing reduction ratio %2 of the MDE in each layer of the AlexNet using three model quantization
techniques.

where Mafter and Mbefore denote the data sizes of the model
after and before the process. After model quantization,
the compression ratio is 84.38%. The Huffman coding can
further compress the data up to 30% compared to model
quantization. The overall compression ratio by the proposed
MDE (Q+ H ) can achieve almost 90%.

B. BIT STUFFING REDUCTION
As mentioned in Sec. II-B, the NRZI coding scheme uses
‘‘0’’ and ‘‘1’’ to represent a signal transition and no change,
where a stuffing bit is inserted to prevent clocks from losing
synchronization between a transmitter and receiver through
inserting a ‘‘0’’ bit after a long run of ‘‘1’’ bits. In MDE, bit
stuffing reduction is contributed by model quantization and
tree modification. Based on the USB protocol, a DNN model
is transmitted by stringing up all the weights as a long bit
sequence. A stuffing bit is inserted when the OCS1 occurs
in two scenarios. First, OCS1 occurs in a data sequence.
Second, it occurs because of the concatenation of two data
sequences. For example, given two 5-bit data sequences,
01111 and 11000, OCS1 occurs when the two are transmit-
ted consecutively. Note that the tree modification can only
resolveOCS1 in the first scenario when the transmitted data is
encoded by Huffman coding. The bit stuffing reduction ratio
is calculated as:

%2 = 1−

∣∣∣∣bafter − bbeforebbefore

∣∣∣∣ · 100%, (9)

TABLE 5. The model compression ratio %0 and bit stuffing reduction
ratio %2 of the MDE on GoogleNet & ResNet-50 using three model
quantization techniques.

where bafter and bbefore denotes the number of the stuffing bit
inserted in the transmitted data after and before the process.
Since model quantization reduces the representation preci-
sion and makes data sequences shorter, it can extensively
reduce the OCS1 occurrence in both cases.

C. EVALUATION
Table 4 shows the model compression ratio %0 and bit
stuffing reduction ratio %2 of the MDE in each layer of
the AlexNet using three model quantization techniques. The
columns of ‘‘Size (KB)’’ and ‘‘Stuffing bits’’ refer to the file
size and the number of stuffing bits inserted for the AlexNet
model. The average%0 overall achieves 88.72%, which indi-
cates that using the MDE can provide a better compression
ratio than using model quantization only (which is 84.38%).
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The precision reduction bymodel quantization can reduce the
occurrence of OCS1, which leads to a reduction ratio of
the bit stuffing of 90.77%. Furthermore, using the modified
Huffman coding (Huffman coding with tree modification),
the bit stuffing reduction ratio achieves a higher value of
93.76%, which indicates that the MDE can further increase
the transmission efficiency of the USB transmission. Table 5
shows that the MDE can also achieve a high compression
ratio for the GoogleNet and ResNet-50. The results shown
represent the average over all layers of the models after
applying the MDE.

V. CONCLUSION
In the paper, we propose a model-based deep encoding
(MDE) pipeline built upon Huffman coding to compress a
DNN model transmitted through the USB interface to edge
devices. Based on our observation that a biased distribution
exists in the weights of a quantized DNN model, the pro-
posed MDE combines model quantization techniques and the
modified Huffman coding as a general encoding pipeline that
yields a higher compression ratio in the USB transmission.
We also propose a lopsidedness estimation method for a
Huffman tree to avoid the computational overhead caused
by tree modification. The experimental results on several
benchmarking DNN models compressed using three emerg-
ing quantization techniques indicate that our method can
achieve a high compression ratio of 88.72% with 93.76% of
the stuffing bits saved on average.

REFERENCES
[1] M.Mohammadi, A. Al-Fuqaha, S. Sorour, andM.Guizani, ‘‘Deep learning

for IoT big data and streaming analytics: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[2] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,’’ IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan. 2018.

[3] J. Li, X. Mei, D. Prokhorov, and D. Tao, ‘‘Deep neural network for
structural prediction and lane detection in traffic scene,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 690–703, Mar. 2017.

[4] W. Hu, Q. Zhuo, C. Zhang, and J. Li, ‘‘Fast branch convolutional neural
network for traffic sign recognition,’’ IEEE Intell. Transp. Syst. Mag.,
vol. 9, no. 3, pp. 114–126, Jul. 2017.

[5] X. Du, M. El-Khamy, J. Lee, and L. Davis, ‘‘Fused DNN: A deep neural
network fusion approach to fast and robust pedestrian detection,’’ in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017, pp. 953–961.

[6] V. C. Liang, R. T. B. Ma, W. S. Ng, L. Wang, M. Winslett, H. Wu,
S. Ying, and Z. Zhang, ‘‘Mercury: Metro density prediction with recurrent
neural network on streaming CDR data,’’ in Proc. IEEE 32nd Int. Conf.
Data Eng. (ICDE), May 2016, pp. 1374–1377.

[7] H. Wei, Y. Xiao, R. Li, and X. Liu, ‘‘Crowd abnormal detection using two-
stream fully convolutional neural networks,’’ in Proc. 10th Int. Conf. Mea-
suring Technol. Mechatronics Autom. (ICMTMA), Feb. 2018, pp. 332–336.

[8] E. Ahmed, M. Jones, and T. K. Marks, ‘‘An improved deep learning
architecture for person re-identification,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 3908–3916.

[9] S. B. Calo, M. Touna, D. C. Verma, and A. Cullen, ‘‘Edge computing
architecture for applying AI to IoT,’’ in Proc. IEEE Int. Conf. Big Data,
Dec. 2017, pp. 3012–3016.

[10] M. Capra, R. Peloso, G. Masera, M. R. Roch, and M. Martina, ‘‘Edge
computing: A survey on the hardware requirements in the Internet of
Things world,’’ Future Internet, vol. 11, no. 4, p. 100, Apr. 2019.

[11] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very deep
neural networks,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1389–1397.

[12] D. Lin, S. Talathi, and S. Annapureddy, ‘‘Fixed point quantization of
deep convolutional networks,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2849–2858.

[13] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,’’ 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[14] J. Zhang, W. Xie, F. Yang, and Q. Bi, ‘‘Mobile edge computing and field
trial results for 5G low latency scenario,’’ China Commun., vol. 13, no. 2,
pp. 174–182, 2016.

[15] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, ‘‘Quantifying the impact of edge computing on
mobile applications,’’ in Proc. 7th ACM SIGOPS Asia–Pacific Workshop
Syst. (APSys), 2016, pp. 1–8.

[16] Movidius Announces Deep Learning Accelerator and Fathom
Software Framework. Accessed: Apr. 2020. [Online]. Available:
https://developer.movidius.com/

[17] C. Pal, S. Pankaj, W. Akram, A. Acharyya, and D. Biswas, ‘‘Modified
Huffman based compression methodology for deep neural network imple-
mentation on resource constrained mobile platforms,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[18] Y.-T. Pai, F.-C. Cheng, S.-P. Lu, and S.-J. Ruan, ‘‘Sub-trees modifica-
tion of Huffman coding for stuffing bits reduction and efficient NRZI
data transmission,’’ IEEE Trans. Broadcast., vol. 58, no. 2, pp. 221–227,
Jun. 2012.

[19] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘‘LQ-nets: Learned quantization for
highly accurate and compact deep neural networks,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 373–390.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[23] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[24] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[25] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method
for deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[26] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. De Freitas, ‘‘Predict-
ing parameters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 2148–2156.

[27] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[28] X. Yu, T. Liu, X. Wang, and D. Tao, ‘‘On compressing deep models by low
rank and sparse decomposition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 7370–7379.

[29] V. Lebedev and V. Lempitsky, ‘‘Fast ConvNets using group-wise brain
damage,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2554–2564.

[30] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,’’ 2016, arXiv:1606.06160. [Online]. Available:
http://arxiv.org/abs/1606.06160

[31] Z. Cai, X. He, J. Sun, and N. Vasconcelos, ‘‘Deep learning with low pre-
cision by half-wave Gaussian quantization,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5918–5926.

[32] K. Schouhamer-Immink, Coding Techniques for Digital Recorders.
Upper Saddle River, NJ, USA: Prentice-Hall, 1991.

[33] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ 2017,
arXiv:1702.03044. [Online]. Available: http://arxiv.org/abs/1702.03044

112560 VOLUME 8, 2020



L.-Q. Yang et al.: Model-Based Deep Encoding Based on USB Transmission

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[35] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37.

LI-QUN YANG received the M.S. degree in elec-
tronic and computer engineering from the National
Taiwan University of Science and Technology,
Taipei, Taiwan. His research interests include low
power system design, deep learning, and image
processing.

SHANQ-JANG RUAN (Senior Member, IEEE)
is a Distinguished Professor with the Department
of Electronic and Computer Engineering, National
Taiwan University of Science and Technology. His
research interests include embedded deep neural
network processing, energy-efficient image pro-
cessing, and embedded systems design.

KAI-HAN CHENG received the B.S. degree in
computer science and information engineering
from Fu Jen Catholic University, Taipei, Taiwan,
in 2019. He is currently pursuing the M.S. degree
in computer science with National Chengchi Uni-
versity, Taipei.

YAN-TSUNG PENG (Member, IEEE) received the
Ph.D. degree in electrical and computer engineer-
ing from the University of California at San Deigo,
San Diego, CA, USA, in 2017. Following a
Senior Engineer at Qualcomm Technologies, Inc.,
in 2019, he joined the Department of Computer
Science, National Chengchi University, Taipei,
Taiwan, where he is currently an Assistant Profes-
sor. His research interests include image process-
ing, video compression, and machine learning.

VOLUME 8, 2020 112561


