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ABSTRACT This paper proposes a brand-new method to perform safety monitoring using images for steel
coil marking industrial processes. The new safety monitoring method is developed with the aid of a new
graph-regularized semi-supervised nonnegative matrix factorization (GSNMF) algorithm. Compared with
the existing nonnegative matrix factorization (NMF)-like algorithms, GSNMF is developed in an all-new
manner so that it not only can take advantage of images with known labels and images with unknown labels to
train a model for monitoring purpose, but also can take advantage of graph theory to improve the monitoring
performance. Because any two different samples are connected by an edge in a graph, thus graph theory
is beneficial for GSNMF to measure the similarity between any two different samples and to assign the
same labels for the samples with close connections between them. As a result, GSNMF is more capable of
analyzing the samples with a complicated distribution than the existing NMF-like algorithms, theoretically.
Finally, an experiment on a steel coil marking process is adopted to evaluate the superiorities of our proposed
method over the existing methods.

INDEX TERMS Fault detection, nonnegative matrix factorization, semi-supervised learning, marking
process.

I. INTRODUCTION
The Safety of the workers is the hottest topic discussed in
the field of engineering technology. Although people already
made a lot of effort to protect workers from injury by robots
over the past decades, the workers in the steel factory with
robots still suffer from a high safety risk. The automaticmark-
ing system is an advanced production and processing equip-
ment with industrial robots as the core equipment. Robots can
replace workers to work continuously in the environment of
high temperature, high noise, and toxic and harmful gases.
As a result, robots have been widely used in the fields of
aerospace, automobile manufacturing and iron and steel met-
allurgy. For the safety concern, workers should keep a safe
distance from the robots [1], [2]. Compared with the tra-
ditional safety monitoring methods, the vision-based safety
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monitoring methods can provide a more intuitive monitoring
result, which takes advantage of digital imaging techniques
to monitor the work zone of robots and alerts the workers
who suffer from safety risks. Traditionally, the safety officer
observed manymonitoring screens to find the potential safety
risk in a factor. However, when dangers occurs, the safety
officer may fail to find it in time due to negligence. Moreover,
even he found a danger, it is still a hard task to generate
alerts. Therefore, the vision-based safety monitoring meth-
ods are effective ways to solve this problem, where vision-
based safety monitoring methods do not rely on the use of
system models, and they are feasible if some samples are
available in advance [3]–[7]. As a result, vision-based safety
monitoring methods are much easier to implement compared
with the traditional safety monitoring and fault detection
techniques [8]–[12].

Recently, fault detection and isolation techniques have
earned great progress in industrial applications. For example,
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Wu et al. proposed a fault detection filtering for complex sys-
tems over communication networks subject to nonhomoge-
neous Markovian parameters, where event-triggered scheme
is used by the authors to decide whether the networks should
be updated at the trigger instants [13]. Nonnegative matrix
factorization (NMF) proposed by Lee and Seung has been
used in the field of data science [14]. NMF is a matrix
factorization algorithm, which has a lot of valuable features,
such as data clustering. NMF has been applied in the fields
of document clustering, image processing, and voice anal-
ysis [15]. People were attempting to explore the industrial
applications of NMF over the past decades, such as fault
detection and safety monitoring. A lot of successful industrial
applications of NMF can be found. For example, Li et al.
proposed a modified NMF algorithm, then this NMF algo-
rithm is used to develop a fault detection approach [16]. In
addition, Li et al. also applied NMF to the fault detection
for the non-Gaussian process and the well-known benchmark
Tennessee Eastman process [17], [18]. Recently, Jia et al.
further exploited the clustering feature of NMF-like models
to develop approaches for simultaneous fault detection and
isolation [19]. Zhang et al. propose an adaptive graph reg-
ularization discriminant nonnegative matrix factorization for
image clustering [20].

The main contributions of our manuscript are that the pro-
posed GSNMF algorithm can fully make use of the labelled
samples to implement semi-supervised learning in the frame-
work of NMF, and the geometry of sample data is maintained
in the GSNMF model at the same time because GSNMF
incorporates a graph regularizer. Cai et al. [21] already proved
that a graph regularizer can maintain the geometry structure
of sample data. In addition, the nonlinear structure of sample
data can be described as well with GSNMF, and the low
dimensional representation of samples have a better separa-
bility. These merits of GSNMF make it become a powerful
algorithm for data representation. As a result, the GSNMF-
based safety monitoring approach can significantly improve
safety monitoring performance theoretically.

The remainder of this article is organized as follows. The
next section consists of the introduction to the GSNMF
algorithm and the detailed proof of its convergence. In the
section III, we will introduce the proposed GSNMF’s appli-
cation to developing a safety monitoring approach by iden-
tifying the membership of the current sample. A case study
on a steel coil marking process will be made in the section
IV to evaluate the monitoring performance of the proposed
approach. In the last section, conclusions are summarized.

II. INTRODUCTION TO THE GSNMF ALGORITHM
Let us begin with a brief introduction to the semi-nonnegative
matrix factorization (SNMF) algorithm. SNMF can be repre-
sented by the following matrix factorization model

X = UV+ E (1)

where matrix X ∈ Rm×n, U ∈ Rm×k , V ∈ Rk×n
+ ,

E ∈ Rm×n [23]. SNMF has a close relation with k-means

clustering algorithm, which means SNMF can partition a
set of samples into k clusters. It needs to emphasize that k
denotes the cluster quantity of training samples, and can be
set manually for purpose. SNMF and k-means have the same
objective as follows to be minimized.

J (U,V) =
1
2
‖X− UV‖2F (2)

After matricesU ∈ Rm×k andV ∈ Rk×n
+ are determined by

minimizing above objective function J (U,V), the member-
ships of the original samples in matrix X can be identified by
the membership indicator matrix V [21], [22]. Every single
detail about the clustering principles of SNMF can be found
in the literature [23].

Next, we will propose a modified SNMF algorithm, which
is referred to as graph-regularized semi-supervised nonnega-
tive matrix factorization (GSNMF). In fact, Cai’s work [21]
inspires us in part to develop GSNMF algorithm with appli-
cations to safety monitoring. GSNMF is developed delib-
erately with the aid of graph theory for analyzing samples
with a complicated structure. As a result, GSNMF has better
performance than SNMF in identifying the memberships of
samples. The final purpose of this paper is to perform safety
monitoring using GSNMF through identifying the member-
ship of the current sample.

Given a sample set Xl ∈ Rm×nl where the membership of
each sample in Xl is already known in advance, and a sample
set Xu ∈ Rm×nu where the membership of each sample in
Xu is unknown. Without loss of generality, we suppose that
each column of Xl and Xu is a sample. GSNMF attempts to
construct a matrix factorization model as follow

[Xl Xu] = U[Vl Vu]+ E (3)

where matrix U ∈ Rm×k is known as a centroid matrix,
Vu ∈ Rk×nu

+ is referred to as a membership indicator matrix
with respect to Xu, E ∈ Rm×(nl+nu) is an error matrix. The
matrix Vl should be already known because the elements
in Vl indicate the memberships of the samples in Xl . As a
result, the matrix Vl can be initialized in an understand-
able way, i.e., if i-th sample in Vl is from j-th cluster then
(Vl)ji = 1, otherwise, (Vl)ji = 0. Actually, above initializa-
tion of Vl follows the clustering principle used by k-means
algorithm.

Naturally, the unknown matrices U and Vu can be deter-
mined by solving the following constrained optimization
problem.

min
U,Vu≥0

J (U,Vu) = ‖[Xl Xu]− U[Vl Vu]‖2F (4)

To further improve the clustering performance of the
model (3), we introduce a graph-based regularizer into
model (3). Because we hope that the indicator matrix V can
indicate the memberships of the samples in X. Therefore,
if two samples xi and xj in X are similar, then we hope that
their membership indicators vi and vj are similar as well.
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To this end, we construct a graph-based regularizer as follows

R =
1
2

N∑
i=1

Wij
∥∥vi − vj

∥∥2
F

=

N∑
i=1

DiivTi vi −
N∑
ij=1

WijvTi vj

= trace
(
VDVT

)
− trace

(
VWVT

)
= trace

(
VLVT

)
= trace

(
[Vl Vu]L[Vl Vu]T

)
= trace

([
L1 L2

L3 L4

][
VT
l Vl VT

l Vu

VT
uVl VT

uVu

])
= trace

(
L1VT

l Vl + L2VT
uVl + L3VT

l Vu + L4VT
uVu

)
(5)

where L1, L2, L3 and L4 are submatrices of L with appropri-
ate dimensions, Dii =

∑
jWij, L = D −W is called graph

Laplacian, and

Wij = e−
‖xi−xj‖

2
F

δ (6)

Graph theory already told us that one can guarantee that if
two samples xi and xj inX are closed then their memberships
indicators vi and vj are also closed by minimizing R.

As a result, GSNMF problem reduces to solve the follow-
ing optimization problem

min J (U,Vu)

= ‖[Xl Xu]− U[Vl Vu]‖2F − trace
(
8TVu

)
+λtrace

(
L1VT

l Vl + L2VT
uVl + L3VT

l Vu + L4VT
uVu

)
= ‖Xl − UVl‖

2
F + ‖Xu − UVu‖

2
F − trace

(
8TVu

)
+λtrace

(
L1VT

l Vl + L2VT
uVl + L3VT

l Vu + L4VT
uVu

)
(7)

where 8 is a Lagrange multiplier matrix associated with
constraint Vu ≥ 0, and λ is a tradeoff parameter.
The partial derivative of J (U,Vu) with respect to U is

∂J (U,Vu)
∂U

= 2U[Vl Vu][Vl Vu]T − 2X[Vl Vu]T .

Consider the following condition

∂J (U,Vu)
∂U

= 0, (8)

we have an update rule for U as follows

U = X[Vl Vu]T
(
[Vl Vu][Vl Vu]T

)−1
= X[Vl Vu]T

(
Vl VT

l + VuVT
u

)−1
(9)

The partial derivative of J (U,Vu) with respect to (Vu)ij is

∂J (U,Vu)
∂ (Vu)ij

= 2
(
UTUVu

)
ij
− 2

(
UTXu

)
ij
+ λ (VlL2)ij

+λ
(
VlLT3

)
ij
+ 2λ (VuL4)ij −8ij

= 2
(
UTUVu

)
ij
− 2

(
UTXu

)
ij
+ 2λ (VlL2)ij

+2λ (VuL4)ij −8ij (10)

According to the following factorizations

UTU =
(
UTU

)+
−

(
UTU

)−
(11)

and

UTXu =

(
UTXu

)+
−

(
UTXu

)−
(12)

where, for any matrix A, A+ =
1
2 (|A| + A),

A− = 1
2 (|A| − A), we have

∂J (U,Vu)
∂ (Vu)ij

= 2
(
UTUVu

)
ij
−2

(
UTXu

)
ij
+2λ (VlL2)ij+2λ (VuL4)ij

= 2
((

UTU
)+

Vu −

(
UTU

)−
Vu

)
ij

−2
((

UTXu

)+
−

(
UTXu

)−)
ij

+2λ (VlL2)ij + 2λ (VuL4)ij −8ij (13)

Since Vu is a nonnegative matrix, thus we have the KKT
condition 8ij (Vu)

2
ij = 0. We have zero-gradient condition

∂J (U,Vu)
∂ (Vu)ij

= 0. (14)

According to the above conditions, we have an update rule
for (Vu)ij as follows

(Vu)ij

= (Vu)ij

×

√√√√√ (
(UTU)−Vu

)
ij+
(
UTXu

)+
ij(

(UTU)+Vu
)
ij+
(
UTXu

)−
ij +λ (VlL2)ij+λ (VuL4)ij

(15)

Next, we will introduce an important conclusion that, for
fixed U, the objective function J (U,Vu) is non-increasing
under update rule (15). Because the update rule (9) is an
optimal solution to the optimization problem min J (U,Vu)
for fixed Vu. Thus, the objective J (U,Vu) is non-increasing
if we apply the update rules (9) and (15) in turns, i.e., the
GSNMF algorithm is convergent.

We will adopt auxiliary function method to prove the con-
vergence of the GSNMF algorithm. The detailed definition of

112280 VOLUME 8, 2020



S. Fan et al.: Safety Monitoring by a GSNMF With Applications to a Vision-Based Marking Process

an auxiliary function can be found in the literature [24]. The
auxiliary function method is always used to prove the conver-
gence of an algorithm. Because, if an auxiliary function of an
objective function is non-increasing under an update rule then
the objective function is also non-increasing under this update
rule, i.e., the update rule is convergent.

The objective function J (U,Vu) can be rewritten as

J (U,Vu)

= ‖Xl − UVl‖
2
F + trace

(
XT
uXu−2XT

uUVu+VT
uU

TUVu

)
+λtrace

(
L1VT

l Vl+L2VT
uVl+L3VT

l Vu + L4VT
uVu

)
(16)

For any nonnegative matrix V′u, the following inequalities

trace
(
VT
u (U

TU)+Vu

)
≤

∑
ij

(
(UTU)+V′u

)
ij (Vu)

2
ij

(V′u)ij
(17)

trace
(
VT
u (U

TU)−Vu

)
=

∑
ijk

(Vu)ij (U
TU)−ik (Vu)kj

≥

∑
ijk

(UTU)−ik
(
V′u

)
ij

(
V′u

)
kj

(
1+ log

(Vu)ij (Vu)kj

(V′u)ij (V′u)kj

)
(18)

trace
((

XT
uU
)+

Vu

)
=

∑
ij

(
UTXu

)+
ij
(Vu)ij

≥

∑
ij

(
UTXu

)+
ij

(
V′u

)
ij

(
1+ log

(Vu)ij

(V′u)ij

)
(19)

trace
((

XT
uU
)−

Vu

)
=

∑
ij

(
UTXu

)−
ij
(Vu)ij

≤

∑
ij

(
UTXu

)−
ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij
(20)

trace
(
L2VT

uVl

)
=

∑
ij

(Vu)ij (VlL2)ij

≤ (VlL2)ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij
(21)

trace
(
L3VT

l Vu

)
=

∑
ij

(Vu)ij

(
VlLT3

)
ij

≤

(
VlLT3

)
ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij
(22)

and

trace
(
L4VT

uVu

)
≤
(
V′uL4

)
ij

(Vu)
2
ij

(V′u)ij
(23)

demonstrate that

F(Vu,V′u)

= ‖Xl − UVl‖
2
F + λtrace

(
L1VT

l Vl

)
+λ (VlL2)ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij

+λ
(
VlLT3

)
ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij

+λ
(
V′uL4

)
ij

(Vu)
2
ij

(V′u)ij
+

∑
ij

(
(UTU)+V′u

)
ij (Vu)

2
ij

(V′u)ij

−

∑
ijk

(UTU)−ik
(
V′u

)
ij

(
V′u

)
kj

(
1+ log

(Vu)ij (Vu)kj

(V′u)ij (V′u)kj

)

+2
∑
ij

(
UTXu

)−
ij

(Vu)
2
ij +

(
V′u

)2
ij

2 (V′u)ij

−2
∑
ij

(
UTXu

)+
ij

(
V′u

)
ij

(
1+ log

(Vu)ij

(V′u)ij

)
(24)

is an auxiliary function of objective function J (U,Vu).
Because inequalities (17)-(23) hold, thus F(Vu,V′u) ≥

J (U,Vu) and F(Vu,Vu) = J (U,Vu) also hold. As a result,
it is an obvious fact that F(Vu,V′u) is an auxiliary function
of J (U ,Vu). The relation between an objective function and
its auxiliary function is demonstrated by Figure 1 [24].

FIGURE 1. The relation between an objective function J(x) and its
auxiliary function F(x,xt).
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TABLE 1. Algorithm of the GSNMF.

The partial derivative of F(Vu,V′u) with respect to (Vu)ij
is

∂F(Vu,V′u)
∂ (Vu)ij

= λ (VlL2)ij
(Vu)ij

(V′u)ij
+ λ

(
VlLT3

)
ij

(Vu)ij

(V′u)ij

+2λ
(
V′uL4

)
ij

(Vu)ij

(V′u)ij

+2

(
UTXu

)−
ij (Vu)ij

(V′u)ij
− 2

(
UTXu

)+
ij

(
V′u

)
ij

(Vu)ij

+2

((
UTU

)+V′u)
ij
(Vu)ij

(V′u)ij
− 2

((
UTU

)− V′u)
ij

(
V′u

)
ij

(Vu)ij

(25)

Let

∂F(Vu,V′u)
∂ (Vu)ij

= 0, (26)

one can obtain an update rule identical to (15), which
immediately completes the proof of the convergence of
GSNMF algorithm.

The GSNMF algorithm is described in Table 1 for readers
to better understand it.

III. SAFETY MONITORING BY IDENTIFYING THE
MEMBERSHIP OF THE CURRENT SAMPLE
For any newly coming sample xnew, it should follow a relation
with its membership indicator vnew as follows

xnew ≈ Uvnew (27)

Moreover, the new graph-based regularizer becomes

trace
(
[V vnew]Lnew[V vnew]T

)
= trace

([
(Lnew)1 (Lnew)2
(Lnew)3 (Lnew)4

] [
VTV VT vnew
vTnewV vTnewvnew

])
= trace

(
(Lnew)1 V

TV+ (Lnew)2 v
T
newV

+ (Lnew)3 V
T vnew + (Lnew)4 v

T
newvnew

)
(28)

Similarly, the indicator vnew can be determined by solving the
following constrained optimization problem

min J (vnew) = ‖xnew − Uvnew‖2F − ϕT vnew

+λtrace
(
(Lnew)1 V

TV+ (Lnew)2 v
T
newV

+ (Lnew)3V
T vnew + (Lnew)4 v

T
newvnew

)
(29)

where ϕ is a Lagrange multiplier vector associated with
constraint vnew ≥ 0.
The partial derivative of J (vnew) with respect to (vnew)j is

∂J (vnew)
∂ (vnew)j

= 2λ (V (Lnew)2)j + 2λ (vnew (Lnew)4)j − ϕj

+2
((

UTU
)+

vnew −
(
UTU

)−
vnew

)
j

−2
((

UT xnew
)+
−

(
UT xnew

)−)
j

(30)

According to

∂J (vnew)
∂ (vnew)j

= 0,

one can obtain an update rule for vnew as follows in (31),
shown at the bottom of the page.

Finally, the membership of the sample xnew can be iden-
tified by its indicator vnew. If the training samples contains
both normal sample and all types of abnormal samples then
one can know what the membership of xnew is.

(vnew)j = (vnew)j ×

√√√√√ (
(UTU)−vnew

)
j+
(
UT vnew

)+
j(

(UTU)+vnew
)
j+
(
UT vnew

)−
j +λ (V (Lnew)2)j+λ (vnew (Lnew)4)j

(31)
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IV. CASE STUDY
Steel enterprises need to mark important parameters,
the mintmark, size, batch number, date, and other information
on the surface of their products, to meet the standard man-
agement rules. Traditionally, the marking work is done by
workers. Because of the bad working conditions such as high
temperature, hazardous and noxious substances, and repeti-
tive work for a long time in fast speed, it is unavoidable for
workers tomark occasionally thewrong label on the products.
So, the robotic-arm based marking system is designed for
replacing human labor to enhance marking efficiency with
high quality.

Robotic-arm has the advantages of fast movement speed,
large impact force, flexible track and large working range.
However, mechanical failure and control failure may occur
to the robotic-arm. So, the working area of the robotic-arm is
a very dangerous place for workers. Therefore, the purpose
of the safety monitoring system is to protect workers from
injury. Moreover, we hope that the safety monitoring system
will alert the workers who enter the work zone of robotic-arm.
To implement safety monitoring, we collect some images
including normal and abnormal images. With the aid of these
images, the safety monitoring task reduce to determine the
memberships of a newly coming image. To be specific, if the
image has a same membership as the normal images, then no
safety risks are detected. On the contrary, if the image has a
same membership as the abnormal images, then safety risks
are detected.

FIGURE 2. Normal sample of marking process with robotic-arm and its’
dangerous zone.

Figure 2 is a sample of normal images, while Figure 3 con-
sists of two samples of abnormal images since a worker
appeared in the dangerous zone. i.e., the robotic-arm’s work-
ing region. Obviously, the region we are interested in the
images is the robotic-arm’s working zone, and all others
regions are regarded as background with less safety informa-
tion. As a result, in the preprocessing phase, we extract only
the robotic-arm’s working zone in the images and transform
the extracted color images into gray images and norm the size
to 550× 500.

Figure 4 contains two sample images from both the prepro-
cessed normal and abnormal images, respectively.

To demonstrate the capabilities of the proposed meth-
ods, NMF, SNMF, convex nonnegative matrix factorization

FIGURE 3. Two samples of abnormal images.

FIGURE 4. Samples of preprocessed image of monitoring zone.

FIGURE 5. Monitoring result by GSNMF.

(CNMF) [23], graph-regularized nonnegative matrix factor-
ization (GNMF) [21], and transfer semi-nonnegative matrix
factorization (TSNMF) [19] are also considered for compar-
ison in the experiment. As a result, six algorithms namely
NMF, SNMF, CNMF, GNMF, TSNMF, and GSNMF were
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FIGURE 6. Monitoring results by NMF, Semi-NMF and CNMF.

used to develop safety monitoring approaches to identify the
memberships of the test images. In this experiment, a total
of 400 preprocessed images were collected, including 150
normal images and 250 abnormal images. We use five-fold
cross validation method to evaluate the performance of the
proposed method. The data set is divided into five subsets,
and the holdout method is repeated for five times. In each
time, one of the five subsets is used as the test set and the
other four subsets are put together to form a training set.
Then the average indexes across all five trials is computed as
shown in Table 2. The indexes are accuracy, precision, recall,
F1-score, and run time.

TABLE 2. Comparisons of performance indexes of different algorithms.

The monitoring result by GSNMF is demonstrated
in Figure 5. According to the indicator matrix, as shown
in Figure 5, we can conclude that the proposed approach can
successfully and accurately identify the memberships of the
30 normal images and 50 abnormal images.

The monitoring results using NMF and SNMF are given by
Figure 6-(a) and 6-(b), respectively. During the experiment,
we found that the accuracy of monitoring results are highly
dependent on initialization of matricesU andV for NMF and
SNMF-based monitoring methods. Although NMF performs
well as TSNMF and GSNMF, it sometimes give the results in
inverse form. Because the NMF is not a supervised learning
method, we do not take the result in inverse form as a wrong
result. So, we just selected a result in normal form among
these case studies, as shown in Figure 6-(a). Although SNMF-
based monitoring approach can identify the memberships of
the 30 normal images and 50 abnormal images sometimes,
the monitoring results are not sharp enough.

Figure 6-(c) indicates that the CNMF-based monitoring
approach totally failed to identify the memberships of the
30 normal images and 50 abnormal images. The reason why
the CNMF failed in this experiment may be that the centroids
generated by the CNMF are far away from each group of
samples since the values in the indicator matrix are relatively
small.

FIGURE 7. Monitoring results by GNMF.

Besides NMF, CNMF and SNMF, we also take GNMF
and TSNMF proposed by [21] and [19], respectively
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for comparison. Figure 7 and 8 show the experiment results by
GNMF and TSNMF, respectively. Note that GNMF give an
inverse experiment result compared with the other methods.
TSNMF shows a correct experiment result, which is consider-
able close to the experiment result from GSNMF. Compared
to TSNMF, GSNMF consumes less time.

FIGURE 8. Monitoring results by TSNMF.

In conclusion, the experimental results indicate that the
proposed GSNMF-based safety monitoring approach can
accurately identify the membership of the testing images,
which means that any potential risks for safety in the
steel coil marking process can be found by the proposed
monitoring approach. Moreover, the proposed approach out-
performs the other monitoring approaches such as SNMF-
and CNMF-based monitoring approaches. Although NMF,
TSNMF, and GSNMF-based monitoring approaches gener-
ate higher monitoring precision than the other monitoring
approaches, GSNMF has a higher computational efficiency
compared with NMF and TSNMF.

V. CONCLUSIONS
We have proposed GSNMF to perform safety monitoring
and have successfully applied it to a steel coil marking
process. Compared with the existing approaches, the new
approaches have some unique features. For example, the pro-
posed approach can fully make use of the labelled data to
implement semi-supervised learning in the framework of
NMF, and the geometry of sample data is maintained at the
same time. In addition, the nonlinear structure of sample data
can be described, and make the low dimension representation
of samples have a better separability.We have also introduced
the safety monitoring methods developed by GSNMF, which
make use of images, instead of traditional data collected
from different types of sensors, to find the safety risk for
workers. The use of images allows us to perform monitoring
more easier than traditional methods since images are easy
to collect. Finally, the superiorities of our approach over the
existing approaches have been demonstrated through a case
study on a steel coil marking process.
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