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ABSTRACT Multi-set canonical correlation analysis (MCCA) is a famous multi-modal coherent subspace
learning method. However, sample-based between-modal and within-modal covariance matrices of MCCA
usually deviate from real covariancematrices due to noise information and limited sample size. The deviation
will weaken the performance of MCCA, especially in image recognition. Aiming at this challenging issue,
we correct singular values of sample covariance matrices with the employment of Cauchy estimate theory
and further obtain Cauchy covariance matrices that are closer to real covariance matrices. On the basis of
Cauchy covariance matrices, we develop a novel multi-modal subspace fusion method, i.e. Cauchy multi-set
canonical correlations. By maximizing Cauchy correlations between different modalities and constraining
Cauchy scatters of within-modal data, the method can learn a Cauchy coherent fusion subspace with well
discriminative power from a few images. Experiment results have shown the effectiveness of the proposed
method, promising to the aims of this research.

INDEX TERMS Multi-modal subspace fusion, coherent fusion subspace learning, correlation projection
theory, image recognition.

I. INTRODUCTION
One object usually possesses multiple data representations
in real-world applications. For instance, we can collect face
data, fingerprint data, and iris data of one person, so these data
can be treated as multi-modal data [1] of a person. Rawmulti-
modal data are usually high-dimensional data with a lot of
noise and redundant information, and how to effectively fuse
these multi-modal data is still a challenging task. Canonical
correlation analysis (CCA) [2] is a classical multi-modal
subspace fusion method that can achieve the multi-modal
fusion in a learned coherent fusion subspace. CCA aims
at simultaneously learning correlation projection directions
of two-modal data on the basis of maximal between-modal
correlations, and then raw multi-modal data can be projected
into the coherent fusion subspace. Up to now, many vari-
ants of CCA have been proposed for different applications,
such as visual evoked potential classification [3], process
monitoring [4], blind source separation [5], stress
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recognition [6], defect prediction [7], brain data process-
ing [8] and so on.

As an unsupervised subspace fusion method, CCA is dif-
ficult to enhance the discriminative power of the coher-
ent subspace through class labels. Thus, generalized CCA
(GCCA) [9] utilizes class labels to constrain the coherent
subspace learning by further minimizing the within-modal
scatter of each modality, and the fused low-dimensional data
obtained by the method show well class separability in image
recognition. Besides, Sun et al. constructed discriminative
between-modal correlations with the help of supervised
covariance matrices, and proposed a novel discriminative
CCA (DCCA) [10] method. From different viewpoints, unsu-
pervised discriminant CCA based on spectral clustering
(UDCCASC) [11] utilizes the class information obtained
by spectral clustering, which can achieve self-supervised
subspace learning of multi-modal high-dimensional data on
the unsupervised cases. By using class information, GCCA,
DCCA, and UDCCASC can improve the fusion performance
between two-modal datasets. However, the three supervised
methods belong to the linear subspace fusion method, which
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will have difficulty capturing nonlinear structure information
hidden in raw multi-modal data. Aiming at this issue, local-
ity preserving CCA [12] exploits local geometry structures
from neighbor graphs, which will make the coherent fusion
subspace preserve the geometry structure information as soon
as possible. Based on the graph regularization technique,
Chen et al. [13] proposed graph CCA that encodes the under-
lying manifolds of a common source graph on the basis
of the maximal between-modal correlation. In image-based
pose estimation, there is a pixel modality and a pose modal-
ity, and the pixel modality can be divided into many local
patches. Inspired by patch alignment idea, a novel local CCA
alignment [14] method firstly implements CCA to learn the
coherent fusion subspace from each type of patches, and then
low-dimensional local data of the coherent fusion are aligned
to obtain global fusion data. Besides supervised variants and
graph-based variants, some other CCA-related variants have
been proposed, such as dual multi-kernel discriminating cor-
relation analysis [15], complete CCA [16], fractional-order
embedding CCA [17], and uncertain CCA [18] and so on.

CCA can only deal with two-modal data, but the num-
ber of modalities corresponding to one same object is usu-
ally more than two in real-world applications. Aiming at
three-modal image data, color image CCA (CICCA) [19]
constructs a correlation coherent subspace learning model
of three color components, and the optimization problem of
the model is theoretically derived to solve three equations.
The model with analytical solutions is a classical correlation
coherent subspace learning model, and its effectiveness has
been shown in real-world image recognition tasks. For bet-
ter fusing multi-modal data, multi-set CCA (MCCA) [20]
can simultaneously learn a coherent fusion subspace from
more than two modalities using correlation analysis theory.
In essence, CCA and CICCA are special examples ofMCCA,
and MCCA is a multi-modal extension of CCA and CICCA.
Similar to CCA and CICCA, MCCA is also an unsupervised
linear subspace fusion method.

To effectively constrain the class separability of the coher-
ent fusion subspace using class labels, discriminativemultiple
CCA (DMCCA) [21] constructs a label-induced coherent
fusion subspace learning model, and multi-modal data in
the learned subspace possess the maximal between-modal
discriminative correlation. Also, DMCCA is a multi-modal
extension of DCCA to some extent. Different from DMCCA,
labeled MCCA [22] considers the intra-class scatter matrix
of each modality under the multi-modal correlation analysis
framework, and its effectiveness has been verified in image
recognition tasks.

Graph technique has been widely applied to MCCA-
related variants. Graph regularized multi-set canonical cor-
relations [23] constrains the local discriminative scatters
of the same modalities under the maximal between-modal
correlations. Similarly, graph regularized MCCA [24] min-
imizes the distances between wanted low-dimensional corre-
lation data and projected low-dimensional correlation data,
and low-dimensional fusion data in the coherent fusion

subspace will embed the geometry structure of the common
sources by regularization of a common graph. According
to the advantages of Hessian, Liu et al. [25] developed a
novel Hessianmulti-set canonical correlationsmethod, which
exploits graph-based geometry manifolds of rawmulti-modal
data and effectively integrates the manifold structure into
the coherent fusion subspace. To effectively reduce the
redundant information of the learned coherent subspace,
fractional-order orthogonal MCCA [26] embeds orthogo-
nality constraints into the correlation analysis framework
with fractional-order correction, and the effectiveness of
the method has been verified in image recognition tasks.
Based on different purposes and different applications, multi-
set globality locality preserving CCA [27], two-dimensional
MCCA [28], view-consistent collaborative multi-set cor-
relation projection [29], and multi-modal hybrid centroid
CCA [30] have been proposed.

Above mentioned correlation analysis methods are based
on between-modal and within-modal covariance matrices
constructed by training samples. However, due to noise infor-
mation and insufficient sample size, these sample covari-
ance matrices usually deviate from real covariance matrices,
which will affect the performance of the correlation analysis
methods in many applications, especially recognition tasks
of high-dimensional data. To solve the challenging problem,
we correct the singular values of these matrices with the help
of Cauchy estimate theory [31] and develop novel Cauchy
between-modal and within-modal covariance matrices that
are closer to real covariance matrices. As far as we know,
it is novel for correcting singular values of sample covari-
ance matrices using Cauchy estimate theory. Besides, Cauchy
covariance matrices can effectively reduce the derivation of
sample covariance matrices, which is beneficial to improve
the recognition performance of correlation analysis meth-
ods. In this paper, we embed Cauchy covariance matrices
into the correlation analysis framework and then propose a
novel Cauchy subspace fusion method for multi-modal high-
dimensional data, i.e. Cauchymulti-set canonical correlations
(CauMCCs). By maximizing Cauchy correlations between
different modalities and simultaneously constraining Cauchy
scatters of within-modal data, the proposed method can learn
a Cauchy coherent fusion subspace with well discriminative
power from a few training high-dimensional samples. In the
Cauchy coherent fusion subspace, multi-modal data can be
effectively fused, and the fused low-dimensional data possess
well class separability, which is beneficial to final recogni-
tion tasks. Cauchy covariance matrices of our method may
be also utilized to improve the recognition performance of
other methods with covariance matrices, such as locality pre-
serving projections, principal component analysis, and linear
discriminant analysis. On one synthetic dataset and three
real-world image datasets, the proposed method exhibits
the superior recognition performance, and the experimental
results and the parameter influence are analyzed in detail.

Next, MCCA is briefly reviewed in Section II, and then
our proposed method is described in detail. In Section IV, we
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discuss multiple aspects of experiments. Finally, conclusions
are given in Section V.

II. PRINCIPLE OF MCCA
Suppose that

{
Z (p)
= [z(p)1 , z

(p)
2 , . . . , z

(p)
N ] ∈ Rdp×N

}M
p=1

are

the M modality datasets corresponding to N objects and dp
represents the dimension of samples. z(p)k is the kth (k =
1, 2, . . . ,N ) sample of the pth modality dataset ( i.e. Z (p)),

and
{
z(p)k
}M
p=1

correspond to the same object. η(p) ∈ Rdp×1 is

a correlation projection direction of Z (p)(p = 1, 2, . . . ,M ).
MCCA aims at learning the correlation projection direc-
tions of

{
Z (p)

}M
p=1 so that the projected low-dimensional

data
{
η(p)TZ (p)

}M
p=1 possess maximal between-modal corre-

lations. Concretely, the objective function of MCCA is as
follows:

max
{η(p)}Mp=1

∑M

p=1

∑M

p=1

η(p)T S(pq)η(q)√
η(p)T S(pp)η(p)

√
η(q)T S(qq)η(q)

(1)

where S(pq) = 1
N

∑N
k=1 (z

(p)
k − z̄

(p))(z(q)k − z̄
(q))

T
is the

between-modal (p 6= q) or within-modal (p = q) covari-
ance matrix. Additionally, z̄(p) = 1

N

∑N
k=1 z

(p)
k is the sample

mean of Z (p), and z̄(p) and z̄(q) have the same definition.
As pointed in [32], the between-modal covariance matrix
S(pq) is capable of revealing the correlation between Z (p)

and Z (q), and the within-modal covariance matrix S(pp) can
capture the within-modal scatter information of Z (p). There-
fore, the objection function of Eq. (1) can be treated as the
maximum of the between-modal correlations and minimum
of the within-modal scatters.

III. CAUCHY MULTI-SET CANONICAL CORRELATIONS
A. MOTIVATION
The correlation analysis methods are common multi-modal
subspace learning methods that can achieve the multi-modal
fusion in a learned coherent fusion subspace. Covariance
matrices are essential and crucial to the correlation analysis
methods. In the correlation analysis methods, between-modal
covariance matrices can reveal the correlations between dif-
ferent modalities, and within-modal covariance matrices can
capture the scatter information of each modality. Besides,
samples are usually employed to construct sample covariance
matrices that will take the place of real covariance matrices,
since real covariance matrices cannot be obtained in many
real-world applications. However, samples from real-world
applications have a lot of redundant information and noises,
which will cause that sample covariance matrices deviate
from real covariance matrices. The deviation can weaken
the correlation and scatter structures of the coherent fusion
subspace. Cauchy estimate theory has been used to correct
some distortion and deviation problems of data with noises.
From different viewpoints, we try to correct singular values
of sample covariance matrices by Cauchy estimate theory
so that the corrected covariance matrices are closer to real

FIGURE 1. The deviation degree versus the number of samples.

covariance matrices. Besides, we further construct a novel
multi-modal coherent subspace learning model on the basis
of the corrected covariance matrices.

B. DISCUSSION OF COVARIANCE MATRICES
Covariance matrices are vital to many pattern recognition
methods. The deviation of Covariance matrices weakens the
performance of many pattern recognition methods, shown
in [33], [34]. For evaluating covariance matrices based on
samples, we give a deviation degree ε between sample covari-
ance matrices and real ones:

ε =

∥∥∥H − H̃∥∥∥2
F
/

∥∥∥H̃∥∥∥2
F

(2)

where H represents a sample covariance matrix and H̃ is
the corresponding real covariance matrix. The smaller the
deviation degree is, the closer the sample covariance matrix
is to the real one. In Fig.1 and Fig. 2, we exhibit the deviation
degree of sample covariance matrices based on the same
synthetic samples, and it can be seen that sample covariance
matrices deviate from real ones, especially on the cases of
high dimension and small sample size. In real-world image
recognition tasks, the dimension of image samples is very
large, but the number of training image samples is often small.

As a result, covariance matrices based on image samples
will have a great deviation degree, which is an important
reason whyMCCA and many feature learning methods based
on covariance matrices show the bad performance of image
recognition.

C. CONSTRUCTION OF CAUCHY COVARIANCE MATRICES
The deviation degree of sample covariance matrices is cru-
cial to the discriminative power of the low-dimensional
data learned by MCCA. As pointed out in [17], the
smaller the deviation degree is, the better MCCA holds
the between-modal correlations and the within-modal scat-
ter information, which will be beneficial to enhance the
recognition performance ofMCCA andMCCA-relatedmeth-
ods. To decrease the deviation degree of sample covariance
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FIGURE 2. The deviation degree versus dimension of samples.

matrices, we construct Cauchy covariance matrices with the
help of Cauchy estimate theory. Taking the within-modal
covariance matrices as an example, we describe how to
construct Cauchy within-modal covariance matrices. Firstly,
we decompose within-modal sample covariance matrices by
singular value decomposition [3]:

S(pp) = P(pp)3(pp)Q(pp)T (3)

In Eq. (3), P(pp) (orQ(pp)) is the left (or right) singular matrix.
3(pp)

= diag(λ(pp)1 , λ
(pp)
2 , . . . , λ

(pp)
dp ) denotes the diagonal

matrix of singular values. Then, the singular values are cor-
rected using the Cauchy estimate theory, and we can further
construct the Cauchy within-modal covariance matrix R(pp)Cau:

R(pp)Cau = P(pp)3(pp)
CauQ

(pp)T (4)

where 3(pp)
Cau = diag(log(1 + (

λ
(pp)
1
c )2), log(1 + (

λ
(pp)
2
c )2), . . . ,

log(1+ (
λ
(pp)
dp
c )2)), and c is a scale parameter.

Property 1: The rank of Cauchy covariance matrices
is equivalent to that of sample covariance matrices, i.e.
rank(R(pp)Cau) = rank(S(pp)).

If λ(pp)k = 0
(
k = 1, 2, . . . , dp

)
, log(1+ (λ(pp)k /c)

2
) is also

equal to zero. Additionally, log(1 + (λ(pp)k /c)
2
) 6= 0 when

λ
(pp)
k is not equal to zero. Thus R(pp)Cau and S(pp) have the

same rank, i.e. rank (R(pp)Cau) = rank (S(pp)), which reveals that
Cauchy covariance matrices still preserve the basis property
of sample covariance matrices.

Similar to the definition of Cauchy within-modal
covariance matrix, Cauchy between-modal covariance

matrix R(pq)Cau is

R(pq)Cau = P(pq)3(pq)
CauQ

(pq)T (5)

In Eq. (5), S(pq) = 1
N

∑N
k=1 (z

(p)
k − z̄

(p))(z(q)k − z̄
(q))

T
is

the between-modal covariance matrix of the two modal-
ity datasets Z(p) and Z(q)(p 6= q), and P(pq) and
Q(pq) are the left and right singular matrices of S(pq).

3
(pq)
Cau = diag(log(1+ (

λ
(pq)
1
c )2), log(1+ (

λ
(pq)
2
c )2), . . . , log(1+

(
λ
(pq)
τpq
c )2)), where 3(pq)

= diag(λ(pq)1 , λ
(pq)
2 , . . . , λ

(pq)
τpq ) is the

diagonal matrix of singular values corresponding to S(pq). τpq
is the rank of S(pq), i.e. τpq = rank(S(pq)). As far as we know,
it is novel for correcting singular values of sample covari-
ance matrices using Cauchy estimate theory. Besides, Cauchy
between-modal and within-modal covariance matrices are
closer to real covariance matrices, which can effectively
enhance the recognition performance of many multi-modal
pattern recognition methods.

D. ANALYSIS OF CAUCHY COVARIANCE MATRICES
Besides the deviation degree of sample covariance matrices,
Fig.1 and Fig.2 also intuitively exhibit the deviation degree of
Cauchy covariance matrices. When the dimension of samples
is increasing, the deviation degree of Cauchy covariance
matrices has an increasing trend. Also, with the decrease of
samples, the increasing trend of the deviation degree appears
in Cauchy covariance matrices. However, Cauchy covariance
matrices are always closer to real covariance matrices than
sample covariance matrices.

To further analyze the reasons why Cauchy covariance
matrices are closer to real ones, we implement the singular
value decomposition on real covariance matrices, sample
covariancematrices, and Cauchy covariancematrices. For the
three categories of covariance matrices, singular values are
arranged from small to large, and Fig.3 exhibits these ordered
singular values. In Fig.3, we observe that Cauchy covariance
matrices correct singular values and the corrected singular
values are closer to singular values of real covariance matri-
ces, which is an important reason that Cauchy covariance
matrices are superior to sample ones on the deviation degree.

E. FORMULATION AND OPTIMIZATION OF CauMCCs
Based on Cauchy between-modal and within-modal covari-
ance matrices and the correlation analysis theory, we fur-
ther propose a regularized Cauchy correlation function of
CauMCCs as (6), as shown at the bottom of this page where
τ ≥ 0 denotes a regularization parameter. From Property 1,
we can observe that the correction of the singular values has
not been changed the rank of covariance matrices. That is,

max
{η(p)}Mp=1

M∑
p=1

∑M

q=1

η(p)TR(pq)Cauη
(q)√

η(p)TR(pp)Cauη
(p) + τη(p)Tη(p)

√
η(q)TR(qq)Cauη

(q) + τη(q)Tη(q)
(6)
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FIGURE 3. Singular values of the real covariance matrix, sample
covariance matrix, and Cauchy covariance matrix.

Cauchy within-modal covariance matrices may be singular
matrices, especially for a small amount of high-dimensional
samples. Thus the projection regularization factor of Eq. (6)
is embedded for enhancing the robustness of the small sample
size problem [30]. The regularization parameter is set as
0.001 in this paper. Since correlation projection directions
possess the scale invariance [35], solutions of Eq. (6) are
unchanged when η(p)TR(pp)η(p) is constrained to one. Thus,
Eq. (6) is equivalently reformulated into the below Cauchy
multi-set correlation optimization problem:

max
{η(p)}Mp=1

∑M

p=1

∑M

q=1
η(p)TR(pq)Cauη

(q)

s.t. η(p)TR(pp)Cauη
(p)
+ τη(p)Tη(p)= 1, p = 1, 2, . . . ,M (7)

Using the Lagrange multiplier technique [36], Eq. (7) can be
solved by optimizing a multivariate eigenvalue problem [23].
However, the multivariate eigenvalue problem has no exact
solutions. Aiming at the issue, the constraint relaxation
strategy [23] is utilized for constructing a relaxed version
of Eq. (7):

max
{η(p)}Mp=1

∑M

p=1

∑M

q=1
η(p)TR(pq)Cauη

(q)

s.t.
∑M

p=1

(
η(p)TR(pp)Cauη

(p)
+ τη(p)Tη(p)

)
= 1 (8)

For the optimization of Eq. (8), its Lagrange functionL
(
η(p)

)
is first constructed as follows:

L
(
η(p)

)
=

∑M

p=1

∑M

q=1
η(p)TR(pq)Cauη

(q)

−
λ

2

(∑M

p=1

(
η(p)TR(pp)Cauη

(p)
+τη(p)Tη(p)

)
−1
)
(9)

where λ
2 is a Lagrange multiplier and λ is the corresponding

Lagrange multiplier factor. By setting
∂L
(
η(p)

)
∂η(p)

= 0, we can
obtain

∂L
(
η(p)

)
∂η(p)

=

∑M

q=1
R(pq)Cauη

(q)
− λ

(
R(pp)Cau + τ I

(p)
)
η(p)

= 0 (p = 1, 2, . . . ,M) (10)

where I (p) ∈ Rdp×dp denotes the identity matrix. Eq. (10) can
be equally translated into∑M

q=1
R(pq)Cauη

(q)
= λ

(
R(pp)Cau + τ I

(p)
)
η(p) (p = 1, . . . ,M )

(11)

We integrate the above MM equations of Eq. (11) into the
following integration form:

R(11)Cau R(12)Cau
R(21)Cau R(22)Cau

· · · R(1M )
Cau

· · · R(2M )
Cau

...
...

R(M1)
Cau R(M2)

Cau

. . .
...

. . . R(MM )
Cau



η(1)

η(2)

...

η(M)



= λ


R(11)Cau + τ I

(1)

R(22)Cau + τ I
(2)

. . .

R(MM )
Cau + τ I

(M )



×


η(1)

η(2)

...

η(M)

 (12)

The above equation is a generalized eigenvalue decomposi-
tion problem [35], and the Lagrange multiplier factor λ can
be also referred to as the eigenvalue in Eq. (12).
Property 2: The Lagrange multiplier factor λ is equivalent

to the optimized object, i.e. λ =
∑M

p=1
∑M

q=1 η
(p)TR(pq)Cauη

(q).
Proof: Both sides of Eq. (11) are multiplied by η(p)T at

the same time. We can obtain∑M

q=1
η(p)TR(pq)Cauη

(q)
= λη(p)T

(
R(pp)Cau + τ I

(p)
)
η(p)

(p = 1, 2, . . . ,M ) (13)

The M equations of Eq. (13) can be integrated into∑M

p=1

∑M

q=1
η(p)TR(pq)Cauη

(q)

= λ
∑M

p=1

(
η(p)TR(pp)Cauη

(p)
+ τη(p)Tη(p)

)
(14)

From Eq. (8), we can find that
∑M

p=1
(
η(p)TR(pp)Cauη

(p)
+

τη(p)Tη(p)
)
is one. Eq. (14) can be equivalently converted into∑M

p=1

∑M

q=1
η(p)TR(pq)Cauη

(q)
= λ (15)

Thus this property is turned out to be right.
According to Property 2, the optimization object of{
η(p)

}M
p=1 can equivalently translate from maximizing∑M

p=1
∑M

q=1 η
(p)TR(pq)Cauη

(q) to maximizing λ. In other words,

the optimal solutions to
{
η(p)

}M
p=1 are eigenvectors corre-

sponding to the largest d eigenvalues in Eq. (12). Thus, the
first d pairs of correlation projection directions will be got
by solving Eq. (12), i.e. ηTk =

[
η
(1)T
k , η

(2)T
k , . . . , η

(M )T
k

]
∈
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TABLE 1. The detailed steps of cauchy multi-set canonical Correlations (CauMCCs).

R

(∑M
p=1 dp

)
×1

, k = 1, 2, . . . , d . According to
{
η
(p)T
k

}M
p=1

,

we can construct the correlation projection matrix 2(p)
=[

η
(p)
1 , η

(p)
2 , . . . , η

(p)
d

]
∈ Rdp×d of Z (p)(p = 1, 2, . . . ,M ), and

then projected low-dimensional data of Z (p) can be obtained
by 2(p)TZ (p)

∈ Rd×N .
These projected low-dimensional data in the Cauchy

coherent fusion subspace have the maximal between-modal
Cauchy correlations. That is, different low-dimensional
modality data corresponding to the same object have the good
consistency of the fusion structure and the fusion information.
Thus, in the Cauchy coherent fusion subspace, the projected
low-dimensional data of the training datasets can be fused
with

the help of the parallel fusion strategy [25]:

y(p)k =
∑M

p=1
2(p)T z(p)k (16)

where z(p)k is the kth (k = 1, 2, . . . ,N ) projected
low-dimensional data of Z (p), and y(p)k is the kth fused
low-dimensional data of the fused training low-dimensional

dataset Y (p)
= [y(p)1 , y

(p)
2 , . . . , y

(p)
N ] and

{
z(p)k
}M
p=1

are

a group of multi-modal training samples corresponding
to the kth (k = 1, 2, . . . ,N ) object. For the testing

datasets
{
Z̃ (p)
= [z̃(p)1 , z̃

(p)
2 , . . . , z̃

(p)
n ]
}M
p=1

, the fused testing

low-dimensional dataset
{
Ỹ (p)
= [ỹ(p)1 , ỹ

(p)
2 , . . . , ỹ

(p)
n ]
}M
p=1

can be obtained:

ỹ(p)k =
∑M

p=1
2(p)T z̃(p)k (17)

Finally, classification and recognition of multi-modal data
will be realized by implementing the classifier on these fused
low-dimensional data. To intuitively exhibit our proposed
method, we give the detailed steps of CauMCCs in Table 1.

IV. EXPERIMENTS
On one synthetic dataset and three real-world image datasets,
we design some experiments for evaluating the image
recognition performance of our method. CBSR NIR image

dataset, Georgia Tech Face dataset, and Semeion handwritten
image dataset are three frequently-used image datasets in
image recognition, and our experiments are implemented in
these datasets. In essence, these image datasets belong to
single-modal datasets. Therefore, the modality strategy [25]
is utilized to obtain three modalities corresponding to each
image. More concretely, three low-frequency sub-images
of each image can be obtained with the help of Symlets,
Daubechies, and Coiflets orthonormal wavelet transforms,
and then K–L transform is employed to reduce the dimension
of sub-images to 150 for each category of sub-images on
the CBSR and Georgia Tech image datasets. The dimension
of sub-images are reduced to 100 on the Semeion dataset
because the dimension of some sub-images on the Semeion
dataset is less than 150. The three-category low-dimensional
data (i.e. three modality data) can be obtained from each
image. Our method contains a scale parameter c, and the
parameter is chosen from the range of 0.1 to 2 with an inter-
val of 0.1. We compare our method with two representative
methods, i.e. MCCA and CICCA. In the final recognition
stage, recognition rates of each method are determined by
the nearest neighbor classifier [37], and the tables of this
section tabulate the best recognition rates under all the possi-
ble dimensions.

A. EXPERIMENTS ON SYNTHETIC DATA VISUALIZATION
To visually exhibit and analyze the differences between
our method and these compared methods, we construct a
three-modal synthetic dataset, and data distribution of pro-
jected data are visualized in a three-dimensional correla-
tion coherent subspace. The three-modal synthetic dataset{
F (p)
= [F (p)

1 ,F (p)
2 ]
}3
p=1

includes 400 samples with two

classes, where F (p)
1 is the sample set of the first class

with 200 samples and F (p)
2 represents the 200 samples of the

second class. More concretely, F (1)
1 and F (1)

2 respectively fol-
low Gaussian distributions N (µ1, σ1) and N (µ2, σ2), where

µ1 = [20,−20]T , σ1 =
[

15 3.75
3.75 2

]
, µ2 = [10,−5]T , and
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TABLE 2. The experimental results on the CBSR NIR image dataset.

σ2 =

[
15 3.75
3.75 2

]
. The second modal data F (2)

1 and F (2)
2 are

obtained by the following transformations:F (2)
1 = ω

T
1 F

(1)
1 +ξ

and F (2)
2 = ωT2 F

(1)
2 + ξ , where ω1 =

[
0.6 −

√
0.5

0.8 −
√
0.5

]
,

ω2 =

[
−0.5

√
1.5

−
√
1.5 −0.5

]
, and ξ is a Gaussian noise matrix.

The third modal data F (3)
1 and F (3)

2 will be generated by
F (3)
1 = ω

T
1 F

(2)
1 + ξ and F

(3)
2 = ω

T
2 F

(2)
2 + ξ .

Our method and these compared methods are implemented
on the synthetic dataset, and Fig.4 visualizes the first data
pair (2(1)TF (1),2(2)TF (2),2(3)TF (3)) extracted by differ-
ent methods in the three-dimensional space. In Fig.4, the
projected data of the three-dimensional space show linear
relationships, which can reveal linear correlations of the
three-modal datasets. However, different methods exhibit dif-
ferent discriminative performance in Fig.4. The projected
data of CICCA and MCCA have some overlaps in two
classes. For CauMCCs, two classes are completely separated,
and there exists a clear decision boundary. In a word, how to
learn a discriminative space from samples with noises is a
challenging task under unsupervised cases, and our method
can effectively improve the discriminative power to achieve
better class separability, which can be intuitively observed.

B. EXPERIMENTS ON THE CBSR NIR IMAGE DATASET
In the CBSR NIR image dataset, a NIR camera with active
NIR lighting took pictures of 197 persons, and 3940 face
images with 480 by 640 pixels were obtained. In our exper-
iments, we utilize a subset of the dataset, i.e. all the NIR
images of the first thirty individuals. Each person ran-
domly chooses b(b = 6, 8, 10, 12) images for training,
and the remaining images are referred to as testing images.
The random experiments are independently implemented ten
times, and Table 2 tabulates the average recognition rates
and the corresponding standard deviations of ten random
experiments.

As covariance-based multi-modal subspace fusion meth-
ods, MCCA and CICCA have the same objective function
and similar constraints. For CICCA, the within-modal global
scatter of each modality is constrained to one. The correla-
tion optimization problem with these constraints is usually

FIGURE 4. Visualization of the first-pair projected data from different
methods: (a) CauMCCs, (b) CICCA, and (c) MCCA.

transformed into a multivariate eigenvalue problem that has
no exact solutions. However, when the number of modalities
is limited to three, the three-modal correlation optimization
problem is derived into three general eigenvalue problem,
which is capable of obtaining exact solutions. Different from
CICCA, MCCA employs a relaxed version of constraints,
i.e. the sum of the within-modal global scatters of all the
modalities is equivalent to one. The correlation optimization
problem of MCCA can be obtained exact solutions of cor-
relation projection directions. Although CICCA solves the
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FIGURE 5. Curves of recognition rates under different dimensions when the number of training samples in each class is respectively (a) six,
(b) eight, (c) ten, and (d) twelve on the CBSR NIR image dataset.

FIGURE 6. average recognition rates under the values of c (i.e. the
number of the training samples per class) on the Semeion handwritten
image dataset.

issue of inexact solutions through theoretical derivation,
different optimization models of MCCA and CICCA lead
to different recognition performance. For the CBSR NIR
image dataset, MCCA possesses higher recognition rates

than CICCA in most cases of Table 2. In the two methods,
within-modal covariance matrices capture the global scatter
information of each modality, and between-modal covariance
matrices reveal correlations between different modalities.
Between-modal and within-modal covariance matrices are
constructed by training samples, and noise information and
insufficient sample size will cause the deviation of these
covariance matrices, which will weaken the recognition per-
formance of MCCA and CICCA. Our method exploits the
relaxed version of constraints, and the correlation projection
directions of our method also have exact solutions by the
theoretical derivation. Different from the two methods, our
method corrects between-modal and within-modal covari-
ance matrices using the Cauchy estimate theory, and the
Cauchy covariance matrices from our method are closer
to real covariance matrices. Also, our method constructs
a novel Cauchy correlation optimization modal with Cauchy
covariance matrices, and the Cauchy coherent fusion sub-
space with well discriminative power is learned by our
method. These are important reasons why our method
has higher recognition rates than these compared methods.
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FIGURE 7. recognition rates versus the scale parameter c on the CBSR NIR image dataset when the
number of the training samples per class is (a) six, (b) eight, (c) ten, and (d) twelve.

FIGURE 8. recognition rates versus the scale parameter c on the Georgia Tech Face dataset when the
number of the training samples per class is (a) six, (b) eight, (c) ten, and (d) twelve.

To analyze the influence of dimension on recognition rates,
we further show the recognition performance of each method
under different dimensions in Fig.5. Besides, the dimension
of covariancematrices in Fig.2 is determined by the raw train-
ing samples. The higher the dimension of the raw training
samples is, the more the noise and redundancy information
hidden in the covariance matrices will be. Different from the
dimension of Fig.2, the dimension in Fig.5 is the number
of the correlation projection directions, i.e. the dimension
of the learned coherent subspace. The learned discrimina-
tive structures will be more complete with the increasing
of the correlation projection directions. The two categories
of dimensions in Fig.2 and Fig.5 are different. The small
dimension of the raw training samples and the small number
of the correlation projection directions don’t have a causal
relationship of the recognition rates. Next, we focus on the

analysis of Fig.5. For all the methods of Fig.5, recognition
rates sharply improve when the dimension begins to increase.
With the continuous increase of the dimension, recognition
rates of our method trend to be more stable than those of
the compared methods. Although the dimension cannot be
exactly determined, the stabilization of the recognition rates
corresponding to the relatively high dimensions gives the
possibility that the dimension can be directly set as a large
constant in the real-world image recognition tasks. Thus
our method possesses better practicality and operability for
real-world image recognition.

C. EXPERIMENTS ON THE GEORGIA TECH FACE DATASET
Images of the Georgia Tech Face dataset have different light-
ing conditions and different facial expressions. Resolutions
of these images are normalized to 70 by 50 pixels. The
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FIGURE 9. recognition rates versus the scale parameter c on the Semeion handwritten image dataset
when the number of the training samples per class is (a) seventy, (b) eighty, (c) ninety, and (d) One
hundred.

images are taken from fifty individuals. Table 3 reports the
average recognition rates (%) of ten random experiments
when training samples are random b(b = 6, 8, 10, 12) images
per class. In Table 3, CICCA still shows the worse recognition
performance than MCCA, and our method has the highest
recognition rates, which are consistent with the experimental
results of the CBSR dataset. The standard deviation in the ran-
dom experiments reflects the difference degree of the recog-
nition rates under different training samples. The smaller
the standard deviation is, the more stable the recognition
performance is for different training samples. The stability
for random training samples is beneficial to many real-world
applications, and thus we further tabulate the standard devia-
tion corresponding to the average recognition rates in Table 3.
In this table, the recognition performance of our method is
more stable than that of the compared methods under dif-
ferent random experiments, which reveals that our method
possesses the better robustness than the other methods in
sample random.

D. EXPERIMENTS ON THE SEMEION HANDWRITTEN
IMAGE DATASET
The Semeion handwritten image dataset is a handwritten
digit image dataset widely used in image recognition, and
the handwritten digit images are written by 80 individuals.
Fig.6 intuitively exhibits the average recognition rates (%)
of ten sample random experiments when the training sam-
ples are random b(b = 20, 30, 40, 50, 60, 70, 80, 90, 100)
samples of each class. The experimental results in Fig.6
are consistent with those on the above datasets. As the
number of the training samples is increasing, each method
shows an increasing tendency in recognition rates, and
the recognition rates of our method are always the
highest. In summary, extensive experimental results on

TABLE 3. The experimental results on the Georgia Tech Face dataset.

all the datasets can give a reasonable observation that
our method can improve the recognition performance of
images.

E. ANALYSIS OF THE SCALE PARAMETER
In pattern recognition, the exact determination of parameters
is usually an open problem. Our method also includes a
parameter, i.e. the scale parameter c. The parameter is crucial
to the construction of Cauchy covariance matrices. In Fig.7,
Fig.8, and Fig.9, we give the recognition rates corresponding
to the different values of the parameter. The variation of the
recognition rates under the different parameter values can
reflect the impact of the parameter on the recognition rates.
From the three figures, we can find that the recognition rates
have a small variation with the change of the parameter.
Although the parameter values cannot be exactly determined
on different datasets, the parameter has a small impact on
the recognition rates. The relative stability of the recognition
rates on the parameter not only provides the possibility that
the parameter is directly set as a fixed value but also remedies
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the disadvantages that it is difficult to determine the exact
values of the parameter in real-world applications.

V. CONCLUSION
Image samples belong to high-dimensional data with a lot of
redundant information and noises, and the number of image
samples is limited in the training stage of many real-world
applications. Thus, between-modal and within-modal covari-
ance matrices based on image samples will seriously deviate
from real ones, which will weaken the image recognition
performance of correlation analysis methods. To re-estimate
covariance matrices, we correct the singular values of sample
covariance matrices by the Cauchy estimate theory. As far as
we know, it is novel for this singular value correction, and
the corrected Cauchy covariance matrices are closer to real
covariancematrices, which is beneficial to improve the recog-
nition performance of the correlation analysis methods. Then,
bymaximizing Cauchy correlations between different modal-
ities and constraining Cauchy scatters of within-modal data,
we further propose the novel multi-modal subspace fusion
method, i.e. CauMCCs. In our method, the Cauchy coherent
fusion subspace with well class separability can be learned
from a small number of images. We design some experiments
on one synthetic dataset and three biometric image datasets,
and the good experimental results reveal the superiority of
our method. Besides, Cauchy covariance matrices of our
methodmay be also utilized in other methods with covariance
matrices, such as locality preserving projections, principal
component analysis, and linear discriminant analysis. In the
future, we will explore how to improve the performance of
these methods using Cauchy covariance matrices.
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