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ABSTRACT Edge computing brings powerful computing ability to the proximity of IoT devices to guarantee
latency constraints, making it one essential technology for supporting intelligent applications in future
Internet of Things (IoT). Collaboration among edge computing servers (ECSs) with limited resources
is an efficient solution to enhance the capability of edge network, and placement of ECSs and service
functions (SFs) impose significant influences on system performance. This paper explores the collabora-
tion among ECSs by considering the simultaneous and heterogeneous consumption of different comput-
ing resources. The service deployment and application assignment in regional edge computing enabled
IoT (EdgeloT) are investigated. A collaborative service deployment and application assignment (ColSDA)
algorithm is proposed to render the final edge service deployment strategy, including the placement of ECSs
and SFs as well as the assignment of applications to ECSs. In ColSDA, the minimum number of ECSs to be
placed is obtained by the proposed minimum resource ration increase (MinRI) algorithm. Computing loads
are then balanced by the load-balancing reassignment (LBRA) algorithm. After placing ECSs, a search and
swap (SeSw) algorithm is proposed to further increase the number of tasks processed by locally deployed
ECSs. Simulation results demonstrate that the number of required ECSs under the premise of guaranteeing
the quality of service (QoS) can be significantly reduced by establishing collaboration among ECSs. Besides,
the proposed ColSDA algorithm can provide the service deployment and application assignment strategy for

a given region EdgeloT as expected.

INDEX TERMS Edge computing, service deployment, application assignment, the Internet of Things.

I. INTRODUCTION

Edge computing moves the capability of processing sophis-
ticated tasks generated by emerging intelligent applications
to the proximity of applications, making it promising archi-
tecture for future Internet of Things (IoT) to remedy the
deficiency of cloud computing about latency that is more dif-
ficult to address in next-generation mobile networks [1], [2].
So, edge computing has attracted sights from both academic
and industrial areas, and result in tons of works that have
contributed to the development of edge computing [3]-[5].
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In early research related to task offloading strategies,
each radio access network (RAN) was pre-installed with an
edge computing server (ECS) with computing ability [6]-[8].
An ECS is set to provide computing services only for the
IoT devices in the RAN where it is located, even in studies
considering a multi-server system [9]. A cloud server is usu-
ally deployed to assist the processing of overloaded-tasks that
cannot be accomplished by capacity-limited ECSs. However,
the collaboration provided by a remote cloud server may be
insufficient to satisfy the latency and reliable requirements of
intelligent applications due to unpredictable network latency
and jitter, and expenditure would be significantly increased.
Collaboration among a set of adjacent ECSs is a feasible
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and economical solution that can both enhance the capability
of edge network and ensure latency [10]-[13]. Especially
in such typical regional networks as industrial Internet of
Things (IIoT) and campus network.

In real IoT system with multiple RANSs, the number of
IoT devices and kinds of applications are heterogeneous in
different RANs, which results in geographical unevenly dis-
tribution of computing loads [14]-[17]. Some computation
tasks in load-heavy RANs may hardly be satisfied due to the
limited capacity of ECSs, while ECSs deployed in RANs with
light loads may have abundant unoccupied resources. More
applications will be satisfied in edge network if ECSs with
unoccupied resources can release part overloaded tasks from
other RANs. Then, fewer ECSs are required if computing
tasks from RANs with extremely light loads are released by
other ECSs with idle resources, which can reduce the cost
of network deployment. Besides, service function (SF) with
dedicated code and database is indispensable for the task pro-
cessing of intelligent applications [18], [19]. The running of
an installed SF also require considerable computing resources
that can be named as base resources [20]. An installed SF
can serve multiple same kind applications from different
IoT nodes by allocated dedicated resources and processing
threads. So, the number of deployed SF can be decreased
by distributed placing SF and allow IoT nodes to offload
their task to SFs installed on the ECSs deployed in other
RAN, which can reduce the consumption of base resources.
Then, more resources can be spared to task processing, which
can lead to considerable improvement in the system perfor-
mance and resource-utilization for computation. In addition,
during the processing of a computing task, multiple types
of computing resources (i.e., CPU and memory) are con-
sumed simultaneously. Apart from the difference in resource
consumption between task processing of different kinds of
applications, the task processing of a certain application may
also expose obvious consumption-preference for a certain
type of resource, which may lead to low resource utilization
and system performance. For example, if tasks’ processing
of an application are rather sophisticated but little temp data
generated, a large amount of CPU is occupied while a little
memory is required [21]. Due to limited resources of the
ECS, CPU will quickly be depleted when existing too many
similar applications in the RAN, while unoccupied memory
is still ample. Therefore, the resource efficiency and system
performance can be improved by establishing collaboration
among ECSs and assigning application tasks according to
their resources-consumption properties, which also provide
the potential of reducing the cost of network deployment.

Although collaboration among ECSs indicates potential
advantages, network deployment cost and system perfor-
mance are significantly influenced by edge service deploy-
ment policy which includes the placement of ECSs and SFs,
as well as the assignment of application tasks to ECSs [22].
Similar to cloudlet placement in previous mobile cloud
computing [23], [24], current ECS placement works con-
sider deploying ECS for large area network like wireless
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metropolitan area networks (WMAN), in which, computing
load composed by all applications in a RAN is treated as
an entirety and can only be mapped to be processed by
one server [25]-[28]. Besides, the capability of a server
is assumed sufficient to handle the computation require-
ments of multiple RANs. These settings are reasonable
in WMAN:-like networks, while intelligent applications in
future IloT-like regional systems are rather sophisticated
and densely deployed but may be prior known and work-
ing continuously. The resources of an ECS may not be
always sufficient to handle the total computing load from
one RAN. The SF placement (SFP) refers to placing SFs
on pre-deployed ECSs and scheduling of the transmission
or assignment of tasks from applications to correspond-
ing SFs [19], [20], which can provide flexible edge ser-
vice management to obtain optimal system performance like
service latency, the number of applications processed in
edge network, and data volume further offloaded to cloud
server [29]-[32]. However, many of them consider every
RAN is equipped with an ECS, which may not be economical.
Besides, the simultaneous consumption of multiple kinds of
computing resources has not been investigated, which may
restrict the feasibility and efficiency of their mechanisms.

Therefore, given the above motivation, this paper inves-
tigates the edge service deployment in regional IoT like
IIoT where facilities running sophisticated applications are
pre-deployed and working continuously. A collaborative
service deployment and application assignment (ColSDA)
algorithm is proposed to find a service deployment and appli-
cation assignment policy for a given regional IoT. Required
ECSs for guaranteeing the quality of service (QoS) of
all applications are obtained and placed by exploring the
collaboration among ECSs with considering the SFP and
resources-consumption properties of applications. The con-
tributions of our work are concluded as follows:

« We investigate the problem of edge service deployment
for required ECS minimization in regional edge comput-
ing enabled IoT (EdgeloT). Particularly, the collabora-
tion among ECSs is explored by considering the prop-
erties of task processing and SFP on the simultaneous
consumption of different computing resources.

o A collaborative service deployment and application
assignment (ColSDA) algorithm is proposed. A mini-
mum resource ratio increase (MinRI) greedy algorithm
is designed for the required ECS minimization problem.
Local search based algorithms are proposed to further
increase the tasks processed by locally deployed ECSs.

« Simulations are conducted and results demonstrate that
collaboration among ECSs can significantly reduce the
number of required ECS and the ColSDA method can
provide service deployment tactics as expected.

The rest of this paper is organized as follows. Related
works are discussed in section II. Section III introduces the
collaboration in regional IoT. Section IV depicts the sys-
tem model and service deployment problem. The proposed
ColSDA algorithm is illustrated in section V. We evaluate
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the proposed ColSDA method in section VI. The paper is
concluded in section VII.

Il. RELATED WORKS

The deployment of ECS provides physical platform and
resources for task processing, which plays a significant role
in service capacity of EdgeloT and guaranteeing QoS of
applications. In recent years, few works have contributed to
ECS placement. In [33], the problem of minimizing total
energy consumption is studied and a particle swarm opti-
mization based energy-aware ECS placement algorithm is
proposed to find locations for ECSs and map of the work-
load from base stations (BS) to ECSs. In [25], ECS place-
ment and BS to ECS association is studied to promise a
certain end-to-end service latency with the minimum ECSs.
Yang et.al [34] studied how to place ECSs and allocate each
requested task to ECSs and the public cloud with the mini-
mum total energy consumption without violating each task’s
latency requirement. Wang et al. [28] investigated the ECS
placement problem in large-scale edge computing systems to
achieve workload balance between ECSs and access delay
minimization. In [26], a greedy low-cost ECS placement
algorithm is proposed for WMAN to minimize the num-
ber of required ECS while ensuring access delay. A server
placement and application configuration in WMAN is studied
in [35] to minimize the system cost, however, the capacity
of ECSs is simplified as the number of applications that
can be processed, and the differences in QoS and resource
requirement of applications are not considered. Cao et al. [27]
studied the deployment of heterogeneous ECSs to optimize
the expected response time of both the whole and individual
BSs.

Most of the above works consider WMANS, in which,
the capacity of an ECS is assumed sufficient to process
computing loads from multiple RANs. Besides, RAN is con-
sidered as the minimum generator of computing load. Com-
puting load from one RAN can only be assigned to one ECS
as a whole. However, regional IoTs like IIoT is one of the
main application scenarios of edge computing in the future.
In such systems, computing tasks are rather sophisticated.
And applications in a RAN are heterogeneous in types, QoS,
and resources’ requirements. Besides, due to economical or
environmental limitations, the computing resources of an
ECS are usually limited and may be insufficient to handle
all applications in a RAN. Moreover, SFs are necessary for
the task processing of future intelligent applications, and SFP
plays an impose significant influence on QoS of applications
and system performance.

Recent works have investigated the SFP and applica-
tion task assignment in edge computing systems to improve
system performances. Fan and Ansari [10] studied the work-
load allocation problem to ensure the service latency of
application tasks and balance computation loads among
ECSs. Guo et al. [36] proposed an energy-efficient workload
allocation in an IoT-edge-cloud computing system for min-
imizing the total energy consumption while guaranteeing
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latency constraints of users. Chen et al. [29] investigated SFP
in MEC-enabled dense small-cell networks and proposed a
collaborative service placement method to optimize the utility
of MEC operators. Every RAN in this study is assumed
to be equipped with can be associated with each reachable
BS. Poularakis et al. [30] studied multi-cell edge comput-
ing networks where every RAN is equipped with an ECS,
and a joint service placement and request routing policy is
designed to maximize the number of tasks served by ECSs.
However, the base resources of SFs are not considered and
required resources of applications are randomly generated
rather than estimated based on their QoS and network state.
In [32], SFP is investigated to maximize the total reward
in a heterogeneous MEC system with a fixed number of
ECS. However, base resources and latency caused by network
transmission are not considered. Yu et al. [20] investigated the
collaborative service placement in edge computing systems
with the objective to minimize the traffic load caused by
computing task forwarding. Each BS is installed with an
ECS and only one computing resource is considered for task
processing. Besides, the increase in the required computing
resource of task processing that may be introduced by net-
work latency is neglected. In [19], a machine learning-based
SFP is proposed based on the prediction of traffic demand
to satisfy the user with end-to-end latency and data rate
requirements.

Different from previous works, this paper aims at providing
edge computing service for a given region IoT by placing
both ECSs and SFs. Besides, the simultaneous consump-
tion of multiple kinds of computing resources is consid-
ered for establishing collaboration among ECSs to improve
resource-efficiency and reduce the number of ECS to be
placed.

Ill. COLLABORATION IN REGIONAL loT

Considering a regional IoT consisting of multiple RANs as
shown in figure 1, in which the number of IoT nodes and type
of applications in each RAN are different from each other.
So, the computing loads in RANSs are heterogeneous. Assum-
ing that every RAN is deployed with an ECS installed with
SFs to provide edge computing service and covered IoT nodes
can offload their incapable tasks to the ECS [37]. Then ECSs
deployed in RANs with intensive loads undertake heavier
computing burden than that deployed in RANs with light
loads. Particularly, the computing load generated within one
RANs may exceed the capacity of one ECS, and the QoS
of some applications may not be satisfied. In contrast, ECSs
deployed in RANs with a light load may have considerable
idle resources left.

Besides, different computing resources are consumed
simultaneously during task processing, and the amount of
resources consumed by different applications are diverse.
Especially, the task processing of some applications
may have an obvious preference for a certain kind of
resource. For example, application tasks whose computa-
tions are relatively simple, but require database support.
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FIGURE 1. Regional edge computing enable loT.

Meanwhile, tremendous temp data are generated during the
computation. A small amount of CPU and huge memory
are consumed. These kinds of applications can be named
as memory-hungry applications in this paper. On the other
hand, CPU-hungry application requires massive CPU as
compared to memory. The CPU of an ECS may quickly be
exhausted, while a proportion of memory is still unoccupied
if assigning too many CPU-hungry applications to the ECS.
Then the ECS is unable to provide computation service for
more applications, although memory is still abundant. Such
conditions may often occur in IIoT, since the same kind of
facilities are usually placed in a concentrated area.

Moreover, SFs are software platforms consisting of ded-
icated codes and data to accomplish the task processing of
corresponding intelligent IoT applications. Applications for
industrial manufacturing are usually working continuously,
so ECSs are always able to receive tasks offloaded from IoT
nodes. Therefore, SFs should be pre-installed and launching,
and private resources should be pre-allocated to guarantee
the QoS of task processing. Otherwise, the SF needs to per-
form time-consumed data reloading and resources requesting
operations each task arrives. An ECS is usually installed
with different SFs to provide service for relevant applica-
tions simultaneously, and installed SFs are usually designed
with the ability to handle multiple concurrent task requests.
Considerable amounts of base resources are required for the
working of a SF. For a certain application, the private data
are stored in allocated dedicated memory space, and pro-
cessing operations are accomplished by the allocated CPU.
Then resources consumed by SFs can be reduced if tasks
are assigned to SFs that have already been installed on other
ECSs without instancing a new SF.

Inspired by the above backgrounds, we illustrate the
feasibility and benefits of collaboration among ECSs by
considering the properties of applications, and introduce
three conceivable collaboration methods here, as shown
in figure 2. Firstly, the ECS with idle resources can col-
laborate to release the computing load of the overloaded
ECSs. We define such collaboration as the load-release col-
laboration, as shown in figure 2(a). Secondly, as exhibited
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FIGURE 2. Collaboration among ECSs. (a) load releasing collaboration.
(b) resources-complementary collaboration. (c) integration processing
collaboration.

in figure 2(b), collaboration can also be established among
ECSs by taking the resources-consumption properties of
applications into account, which is named in this paper
as the resources-complementary collaboration. As shown
in figure 2(b), the CPU required by the application indicated
by green is more than the residual CPU. Meanwhile, if the
application represented by blue is processed at the right-side
ECS, the memory will be exhausted while left a lot of free
memory. However, both of these two applications can be
satisfied if exchanging their processing location. Moreover,
the resources of each edge server are utilized more balance,
and both of these two ECSs may have idle resources for
processing other tasks. Figure 2(c) displays the integration
processing of congeneric applications, in which the same
kind of applications can be processed by one deployed SF
to reduce the resource occupation of instancing a new SF.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the EdgeloT system model
and the computing service model in our work. Then, we for-
mulate the service deployment and application assignment
problem investigated in this paper.

A. REGIONAL EDGE COMPUTING IloT

In this paper, we investigate a regional EdgeloT net-
work, as revealed in figure 1, in which, IoT nodes
U = {u1,u, ..., u,} operating intelligent applications are

VOLUME 8, 2020



Y. Chen et al.: ColSDA Method for Regional EdgeloT

IEEE Access

distributed in the network to provide various services. A set
of access points (APs) P = {p1,p2,...,pr} are deployed
to provide communication support for IoT nodes in their
coverage, and IoT nodes are associated with their correspond-
ing APs. Besides, there are j kinds of applications A =
{a1, az, ..., a;} are installed on the IoT nodes. In this paper,
we assume that only one application can be installed on an
IoT node. An IoT node with multiple applications installed in
the real world can be represented by multiple nodes installing
a single application. Therefore, each IoT node in figure 1
also represents an application. Then, considering the geo-
graphical distribution of computing loads and collaboration
among ECSs, a set of ECSs G = {ey, e, ..., ¢} can be
deployed to some of RANs to provide computing services.
Besides, the data transmission is managed by a soft-defined
network (SDN) switch [38], [39] since the data are usually
required to be gathered to the data center in regional networks
such as campus networks, networks for industrial plants.

Due to limited computing capacity and resources, [oT
nodes will offload their incapable tasks to ECSs for efficient
processing. SFs are installed on ECSs, and only one SF for
each type of application is installed on each ECS. The edge
computing service for an application can be represented by a
tuple (u, p, a, e), which indicates the [oT node u with applica-
tion a installed is associated with AP p. And the computing
tasks are offloaded and forwarded to ECS e for execution.
We define a binary indicator x,, , = 1 to represent u is connect
to p, x; = 1 means the type of application installed on u
is a, and y, . = 1 indicates task of application installed on
u is assigned to be processed by ECS e. Besides, there are
two kinds of relationships between AP p and ECS e, which
is indicated by a binary indicator ¥ .. ¥p . = 1 means that
ECS e is placed and associated with AP p. v, . = 0 means
ECS e is not placed to the RAN covered by AP p.

Applications generate and offload computing tasks from
IoT nodes to associated AP continuously. Then tasks are for-
warded to assigned ECSs and be processed by corresponding
SFs. Following a computation, the result is generated and
replied to the IoT node along the reverse path. All related
symbols are listed in table 1.

B. EDGE COMPUTING SERVICE

To guarantee QoS of continuously working applications,
the task stream for each application is handled by a sepa-
rate thread with dedicated resources. To simplify our work,
we assumed that the offloaded tasks from [oT u arrival into the
system follows a Poisson process with an average rate of A,,.
The data size of computing tasks and results for application
a is uniformly distributed with means [, and /. The required
computing intensity for tasks of application a is exponentially
distributed with means P. For a certain computing group
(u, p, a, e), ECS e allocate ¢, , computing capacity to the
processing of tasks from u. Then, the task processing of an
application can be modeled as an M/M/1 queueing system.
The average service rate under given CPU resource and
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TABLE 1. Table of notation.

Symbol | Definition

u Set of IoT nodes.

P Set of APs.

g Set of deployed ECSs.

A Set of applications.

s Binary indicator that indicate if application a is in-
stalled on IoT node u.

Tu,p Binary indicator that indicate if IoT node w is connect
to AP p.

Yu,e Binary indicator that indicate if application of w is
assigned to ECS e.

Ppe Binary indicator that indicate if ECS e is placed to
RAN covered by p.

Se Binary indicator that indicate if SF for a is deployed to
ECS e.

P Average computing intensity of tasks offloaded from
application a.

P Memory for processing tasks from application a.

€q Required CPU for running an SF for a.

eq Required memory resource for running an SF for a.

1 Average task size of application a.

I Average computing result size of application a.

Ta Service latency constraint of application a.

Va Tolerable percentage of tasks from application a ex-
ceeding latency constraint.

Au Average task arrival rate from IoT node .

L Average service rate for tasks from IoT node wu.

Cu,e CPU that ECS e allocate to process tasks from u.

Mou,e Memory that server e allocate to process tasks from w.

C. CPU occupied on the ECS e.

M. Memory occupied on the ECS e.

C CPU capacity of an ECS.

M Memory capacity of an ECS.

R Network transmission rate.

computing intensity condition can be expressed as

C,
P = o (1)

a

Although mean response time can reflect the performance,
long-term service reliability is more important for continu-
ously working applications and average response time cannot
promise QoS of each task. Therefore, in this paper, the QoS
of an application is set as the percentage of tasks that satisfy
the latency constraint. For application a, latency constraint
of task service is represented by t,, and V, is the tolerable
proportion of tasks whose computing period exceeds t.

The distribution of computing service time (¢) for a com-
puting task stream offloaded from u follows [40]

Fo(t) = (py — hy)e™ =, 2)

The percentile of tasks whose computing duration (D)
exceed the computing latency constraint (7;) can be expressed
as [41]

P(D > tg) = 1— Fp(tq)

= ePu—tila 3)

112663



IEEE Access

Y. Chen et al.: ColSDA Method for Regional EdgeloT

Then, if application a installed on IoT node u is assigned
to be processed by ECS e, the required service rate is
InV,
Mu = Ay — ————, “
Tg — du,e
where d, . represent the average transmission delay of the
computing tasks from IoT nodes u to ECS e and computing
responses from e to u.

du,e = du,p + dp,e + de,p + dp,u
Q+g+@+g

Tup Fpe
I+ I+
R R U AR SEC)
Tu,p R

where r, p is the transmission rate from the IoT node to AP,
and R is the network transmission rate. If executed by a
remotely deployed ECS, computing tasks of an application
will experience two-hop transmission from AP to the SDN
switch and then from the SDN switch to the ECS. Otherwise,
there is no network transmission delay since ECS is directly
associated with AP. It should be noted that the average trans-
mission delay can be obtained by tracing and statistics in real
networks.

C. COMPUTING RESOURCES OCCUPATION

To guarantee the QoS, ECSs should provide sufficient com-
puting service rate required by task processing of applica-
tions. If application a installed on u is assigned to be executed
at ECS e, according to (1) and (4), the CPU allocated to task
stream offloaded from it should be

a c
Cue = E nyu,eMuPa

acA
InV,
= D WuePou = —— ). 6)
aEA a u,e

The memory resource required for the processing of tasks
from a installed on IoT node u is

My,e = ngyu,ep’an- @)
acA

Then, under a specific application assignment condition,
computing resources occupied on ECS e are

Ce=) cuct »  Stes. (8)

ueld acA
M, = Zmu,e+ nggzn’ ©))
ueld acA

where ¢ and ¢/ are the base CPU and memory resources
required for running a SF for application a. S¢ represents
whether a SF for application a is installed on ECS e.

1, if Y} x%ue>0
S¢ = ueld (10)
0, otherwise
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D. SERVICE DEPLOYMENT PROBLEM

In this paper, we investigate the deployment of service and
assignment of application with considering the collaboration
among ECSs in regional IoT where edge computing technol-
ogy is to be implemented. The service deployment includes
the placement of ECSs and SFs. Considering a given regional
IoT, as shown in figure 1, where intelligent applications are
installed. The deployed ECSs and SFs should promise task
processing of all applications in the system. The primary
objective of this paper is set to minimize the number of
required ECSs to be placed so that the network deployment
cost can be reduced. In this paper, we consider two common
computing resources(i.e., CPU and memory), then, the pri-
mary objective can be formulated as follows.

Pl: min) N, (1)
peP
s.t. Co<C, Ve, (11a)
M, <M, Ve, (11b)
D oxi=1, vu, (11c)
acA
> xup =1, Vu, (11d)
peP
> Yue=1, Vu, (11e)
ecG
> Ype=1.Vp, (1)
eeG
Y Ype=1, Ve, (11g)
peP
N, € {0, 1}, (11h)

in which N, indicates whether an ECS is deployed to the
RAN covered by AP p. Constraints (11a) and (11b) are the
resource constraints. Expression (11c) represents that only
one application is installed on an IoT node. Constraints (11d)
and (11e) represent that an IoT node can only be covered by
one AP and assigned to one ECS. Constraints (11f)~(11h)
indicates that only one ECS can be deployed to one RAN.
Besides, one ECS can only be mounted to one RAN.

After obtaining the minimum number of ECS to be placed,
we can also get an initial application assignment result. How-
ever, some applications may be assigned to ECS remotely
placed in other RAN, which increases the network forwarding
load. By moving those application tasks to ECSs locally
placed in RANs where they are oriented if required comput-
ing resources can be satisfied, the network transmission load
can be reduced [42], [43]. Therefore, after determining the
minimum number of required ECSs, we further decide the
ascription of both ECSs to RANs and applications to ECSs to
maximize the number of application tasks served by locally
deployed ECSs.! This objective can be written as

P2 : max Z Z qu,pyu,e‘ﬂp,e)\u (12)

ueld peP ecG

Lother objectives like reducing service latency and QoS violations can also
be investigated.
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V. COLLABORATIVE SERVICE DEPLOYMENT AND
APPLICATION ASSIGNMENT

This section describes our proposed collaborative service
deployment and application assignment (ColSDA) heuristic
algorithm. The purpose of edge service deployment is to find
ECSs placement, SFP, and application assignment policy for a
given regional IoT. Therefore, the ColSDA algorithm consists
of four main steps: (1) obtain the minimum number of ECS
to be placed. (2) balancing the computing load of ECSs and
prepare for further operation. (3) placing ECSs to RANSs.
(4) moving and swapping some applications to improve the
number of tasks assigned to locally deployed ECSs. The
whole work procedure is revealed in algorithm. 1.

Algorithm 1 ColSDA Algorthim
Input: N, A, C, M, Uiy
Output: "

1: Mli"i =MinRIUns, Apro, Uing) 1** Obtaining the mini-
mum number of ECSs to be placed and the initial assign-
ment of applications to ECSs.

2: Z/Ié’“l =LBRAWU™, Apro, Uine) 1#* Balancing the com-
puting load of ECSs and spare resources for further oper-
ations.

3: Determining the placement locations of ECSs by
employing branch and bound algorithm with the objec-
tive of maximizing the number of tasks allocated to
locally deployed servers.

Updating the resource occupations information on ECSs
and add the location information into A/

4 U =SeSWUL, Apo, N, Uin) /#¥Maximizing the

number of tasks processed by locally deployed ECSs.

in which, V is the network information including topology
and application installing information. .A,,, is the properties
of applications including the average computing resources
required for task processing (P, PJ'), the base resources of
SFs (&5, €J'), average size of computing tasks and results
(l;, 1), and the QoS (74, V,) of applications. U;,s is the
resource requirement information of task processing that can
be estimated according to (5) and (6). L{[’;’” , Z/lg“l and UL are
application assignment results. The details of each procedure
are specified below.

In the work procedures of ColSDA algorithm, a min-
resource ratio increase (MinRI) algorithm is proposed to
determine the minimum number of ECSs to be placed.
Then, in step 2, a load-balancing application block reas-
signment (LBRA) is designed to balance loads and get an
initial application assignment result. After that, the branch
and bound algorithm [44] is employed to find locations for
placement of ECSs to maximize the number of application
tasks assigned to their locally deployed ECSs. At last, a search
and swap (SeSw) algorithm is designed to further increase
the number of tasks assigned to locally deployed ECSs by
considering the locations of both ECSs and applications. The
proposed algorithms are illustrated in the following part.
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The primary objective of this paper is to determine the
minimum number of ECSs to be placed considering the
simultaneous consumption of CPU and memory. Since the
required resources for task processing of all applications can
be pre-estimated, problem P1 is a normal vector bin packing
problem [45] without considering base resources for running
SFs. The vector bin packing problem that dimension more
than two is APX-hard [46]. Early first-fit decreasing (FFD)
greedy algorithm is one suggested method for this problem.
However, it hard to determine which element is the descend-
ing reference. Dot-product (DP) and norm-based greedy
(EL2) algorithms were proposed in [45] to obtain superior
performance by considering the relationship between residual
space and items to be packaged. However, the weight factors
of different required resources are hard to determine when
considering the influence of SFs. Considering the diversity
and preference property of resources’ consumption by task
processing of different applications, we propose a simple
minimum resource ratio increase (MinRI) greedy algorithm
to find an initial application assignment policy that can obtain
the minimum number of ECSs to be placed. The MinRI algo-
rithm can help to realize resources-complementary collabo-
ration among ECS to improve resource utilization. Besides,
by employing the normalized resource occupancy ratio, it is
unnecessary to consider the weight factors for different com-
puting resources.

Algorithm 2 MinRI Algorthim
Input: Z/{,-,,f', Apm, C,M
Output: U™
1: i =1 /**Initializing the number of ECS (7).
2: whiled # ¢ do
33 forueldo
4 (cy, my)<—Required resources for assigning u to
current ECS.
5:  end for
6: CU < 10T nodes whose required resources can be

satisfied by current ECS.
7. if CU = ¢ then
8: i=1i41 /**Creating a new ECS.
9: else
. . ect+Cyx ety _
10: u*: lf max(T, T) =

min {étfeu | wtmeu ) Selecting the application

in CU which can obtain the minimum resource
occupation ratio value after being packaged to

current ECS.
11: Assigning u* to the current ECS.
12: U=U\u*.
13:  endif
14 Updating ™ and resources occupation information of
current ECS.

15: end while
16: return U

Algorithm 2 is the pseudo-code of MinRI. The MinRI
algorithm iteratively selects the application that can minimize
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the maximum resource occupation ratio of all resources after
being packaged to currently opened ECSs. The MinRI firstly
finds all applications whose required computing resources
can be satisfied by the current ECS from unallocated appli-
cations. Assuming that the resources required by application
from u is (cy, my) and resource occupation of the current
opened ECS is (e, e;,;). Then the maximum resource ration
after packaging u to ECS is max((e. +¢,)/C, (e +my)/M).
When there is no left application that can be packaged
to the current ECS due to insufficient residual resources,
MinRI will create and open a new ECS. Otherwise, MinRI
selects the applications that can obtain the minimum resource
ratio increase (u#*) and assign u™* to the current ECS. Then,
the resource occupation information is updated. The MinRI
algorithm keeps running until every application is assigned to
an ECS.

Applications in the network will be initially assigned
to ECSs after executing the MinRI algorithm. However,
the location of applications is not considered in this step.
Besides, a new ECS is created only when resources of the
previous ECS is exhausted, which may lead to unbalanced
resource occupation [47]. After executing MinRI, the last
created ECS is usually unsaturated while other ECSs cre-
ated earlier are all saturated that cannot package any other
applications. Therefore, a load-balancing application block
reassignment (LBRA) algorithm is proposed to balancing
loads among ECSs and spare space for further application
reassignment.

LBRA is detailed in algorithm 3. LBRA firstly groups
the same kind applications assigned to the same ECS into
an application blocks Apjcr based on the initial assignment
result of MinRI (i.e., ). Then, LBRA adopts search and
move operations to move application blocks among ECSs
to balance computing load. Application blocks in saturated
ECSs can be moved to unsaturated ECSs and resources can
be spared for other movement operations. LBRA is continu-
ously running to find an application assignment result with
a smaller variance (o) of resource occupation until no better
result can be obtained within pre-defined search counts (7).
In our simulations, the number of application blocks gets
from MinRI is not too much since the same kind applica-
tions are usually allocated to one ECS. Therefore, we set
T = 10 in our simulation is enough to get an acceptable
result since this step is just an intermediate step to balance
load and spare space for further operation. Besides, whether
corresponding SF has been placed in the target ECS should
be considered when estimating the required resource for an
application or application block. For example (c,, m,) in
step 4 of MinRI. Algorithms will firstly check if a SF for
application installed on u has been deployed on e and indi-
cate by a temporary binary indicator (). Then, when trying
to assign a installed on u to e the required resources are
estimated by

Cue = cu+ (1 —a)e, (13)
Mye = my + (1 —a)el (14)

a
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Algorithm 3 LBRA Algorthim

Input: L{C’;”i, Apro, C, M
Output: U2
1: Apjock < Set of grouped application blocks.

2: G < Set of ECSs.

3: Sorting Apjock according to occupied resource ratio.
4: u‘};al: uéni, uéem — u{ini.

5: 0% < Variance of current occupied resource ratio.
6: t = 0 < /**Initializing search count.

7: whiler < T do

8: for A € Apjper do

9: es < ECS that A is assigned to.
10: Go = G\ea < other ECSs
11: fore € G, do

12: (¢4, m§) < Resources required by A if processed

ate.

13: °C,f,") < Residual resources of e.
14: if ¢ <fS && m§ < ff then

15: Moving applications in A from e4 to e.
16: Update U/™™.

17: break;

18: end if
19: end for

20:  end for
21:  Calculating current o.
22:  ifo < o then

23: o’ =o.

. bal __ 7 jtem
24: U =U;m.
25: t=0.

26:  end if

27: t=t+1.
28: end while
29: return U2

Following the above steps, the computing loads of ECSs
can be balanced, and every ECS may have some idle
resources. Then, following step 3 in CloSDA, we will place
ECSs to appropriate RANs and aim at maximizing the num-
ber of computing tasks processed by the locally deployed
ECSs. The problem is an obvious assignment problem and
can be solved by branch and bound algorithm [44].

After placing ECSs to RANs in the system, SFP and appli-
cation assignment imposed a significant influence on system
performance. Although similar objectives (i.e., P2) have been
investigated in previous work, multiple computing resources
and the increased resource requirements caused by network
latency have not been considered. These two facts increase
the difficulty of tackling this problem. Since applications
have been initially assigned by performing the above steps,
SeSw algorithm is designed to move and swap applications
to their locally deployed ECSs.

Figure 3 shows the sketch of move and swap operation,
in which, A and B are two deployed ECSs. L4 and Lp repre-
sent application blocks generated from RANs where ECSs A
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FIGURE 3. Sketch of move and swap operation.

and B are placed respectively. R, represents the application
block generated from a RAN without a deployed ECS. The
move operation is performed when a favorable reward (e.g.,
more locally processed tasks, fewer occupied resources.) can
be obtained by moving an application block and the required
resources can be satisfied by the target ECS. The swap oper-
ation is triggered under conditions when a favorable reward
can be obtained by moving the application block to a target
ECS but residual resources on the target ECS are insufficient
to satisfy the resources required by the application block to be
moved. Then the algorithm will search and check if an appli-
cation block assigning to the target server can be swap with
the application to be moved without causing an unfavorable
reward (e.g., more resources’ occupation.). Moreover, when
swapping the two application blocks, the required resources
can both be satisfied.

Algorithm 4 SeSw Algorthim

Input: U, Ao, N, Upal

Output: /" !
1: Apjock < Set of grouped application blocks.
2: G <« Set of ECSs.
3 uéem: ugal
4: repeat

5. for A € Apjper do

6

7

8

9

Performing move and swap operations.

Updating L™
end for
: until no block can be moved or swapped

10: repeat
1. Uy
12 forae Ado
13: Performing move and swap operations.
14: Updating ™.

15:  end for

16: until no application can be moved or swapped
opt

17: return U, .

The SeSw algorithm is illustrated in algorithm 4, in which,
move and swap operations are performed twice for consider-
ing application blocks and applications. In the first sub-step,
on each ECS, application blocks are constructed according to
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the following principles based on their types and locations.
1) The same kind applications from one same RAN with
an ECS deployed are grouped into one block. 2) The same
kind applications from RANs without a deployed ECS are
grouped into one block. SeSw can move an application block
to its locally deployed ECS if an application block requires
less CPU since network latency introduce a little more CPU
requirement. This sub-step can provide more swap oppor-
tunities since application blocks grouped by applications
from RANs without a deployed ECS usually occupy enough
resources for the swap of application blocks. In the second
step, the move and swap operations are conducted to move
and swap applications, which can further assign applica-
tions to their locally deployed ECS. In real operation, SeSw
will firstly check if an application (block) is from a RAN
with an ECS and assigned to a remotely deployed ECS.
Then, the algorithm attempt to move an application (block)
assigned to a remotely deployed ECS to its locally deployed
server. Otherwise, the algorithm will skip the current applica-
tion (block) and check the next one (step 6-9 and step 13-15).

It should be noted that, we only consider if the required
resources can be satisfied for moving a remotely processed
application to its locally deployed ECS. Whether fewer
resources are required is not considered since our aim is
maximize the tasks processed by locally deployed ECS rather
than minimizing resource occupation.

VI. PERFORMANCE EVALUATION

This section illustrates and discusses the simulations con-
ducted in matlab 2019 to evaluate our proposed algorithms.
Simulation parameters are detailed in table 2. In this paper,
the resource of CPU capacity is indicated by the number of
instructions that can be processed per-second (in MIPS). For
each simulation, 20 kinds of applications are constructed.
The properties of the application are randomly generated
according to the values given in the table. Once an IoT node
is created, the type of application installed on it and the RAN
to which it belongs are randomly selected. In addition, we set
the average task generation rate for IoT nodes to fluctuate
slightly around the mean value.

TABLE 2. Simulation parameters.

parameter | value parameter | value

C 200 KMIPS I3 [5 20] Kbyte
M 128 GB I, [10 80] Byte
e [10, 50] MIPS Ta [20 100] ms
o [600, 1000] MByte || V, 1% ~ 10%

€S [800 1800] MIPS Au [2 10]/ second
eqr [800 1500] Mbyte R 54 Mbps

Figure 4 shows the minimum number of ECSs required
for satisfying all applications obtained by different meth-
ods. Figure. 4(a) shows the statistical result of each sim-
ulation, in which 10 RANs and 800 IoT nodes are cre-
ated. We can find that the number of required ECSs can be
greatly reduced by establishing collaboration among ECSs.
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FIGURE 4. Average number of required ECSs.

Without collaboration, the required ECSs more than RANs
since the computing loads of some RANs exceed the capacity
of an ECS. However, the computing loads of overloaded
ECSs can be released by collaborative ECSs, which reduce
the number of ECS to be placed. Besides, comparing with
other algorithms, our proposed MinRI algorithm can package
all applications with minimum ECSs, which can be observed
from the differences between MinRI and DP, EL2 as well as
FFD [45]. Figure 4(b) is the relationship between the average
result of minimum number of required ECSs and IoT nodes.
During this simulation, we create 800 network scenarios for
each IoT number condition and 500 times simulations with
different application properties for every network scenario.
We can also observe that the number of ECSs required for
the original network is directly related to the number of
RANSs. And since the computational load of some RANS is
easily overloaded, the number of ECSs required is easily over
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the number of RANs in the network. When collaboration
established, the number of required ECSs is decided by the
number of IoT nodes rather than the RANSs in the network.
The number of ECSs to be placed obtained by FFD is far
more than others, and results get by DP and EL2 are almost
the same which in compliance with results declared in [45].
Since SFs are required and affect the total amount of required
resources, the weight for different resources in DP and EL2 is
hard to decide. So, this paper sets the weights of the different
resources in the comparison algorithm DP and EL2 to be
equal. The minimum number of ECSs to be placed can be
obtained by our proposed MinRI algorithm as compared with
FFD, DP, and EL2 algorithms.

Apart from the minimum number of required ECS,
the resource occupation of saturated ECSs can also reflect
whether the heterogeneous resource-consuming applications
on the ECS are placed appropriately to fully utilize the
resources. The saturated ECS defined in this paper is ECSs
whose residual resources are insufficient to satisfy any other
application in the network. We define the resource occupation
as the average ratio of occupied resources to total resources of
an ECS. Figure. 5 shows the average resource occupation of

1000 1000

FIGURE 5. Average resource occupation of saturated ECSs.
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saturated ECSs under different IoT node numbers (500-1000).
Simulation is conducted with 100 groups of generated appli-
cation properties for each node number, and 300 network
scenarios under each application properties. We conduct three
experiments with different range of P¢ and P'. In figure 5,
the left side are the average resource occupation rations and
right side are the corresponding average variance of resource
occupation ratio. Since SFs require base resources, more SFs
may be installed by algorithms and more ECSs are created.
To avoid the effect of resources occupied by SFs, and demon-
strated that MinRI could adapt to the discrepancy of resource
preferences between applications. We select the first three
created ECSs since simulations always require more than
four ECSs in our simulations. We can learn that our proposed
MinRI algorithm can achieve higher resource utilization on
saturated ECSs as compared to FFD, DP, and EL2. The reason
is that resource-complementarity is considered in MinRlI,
which can make resources are utilized more balanced and
reduce the possibility that one kind of resource of edge servers
is exhausted quickly. The result indicates that the allocation
of applications finished by MinRI is more appropriate to
fully utilize resources, which is beneficial to package all
applications with fewer ECSs.

In addition, to evaluate the effectiveness of the operation
after placing the ECS, simulations are conducted to compare
the ratio of computational tasks assigned to locally deployed
ECSs and the number of installed SFs. Since we consider
multiple kind of computing resources that have not been
considered in previous works, we only compare the results
of three operations: before SeSw, SeSw with the goal of
maximizing the number of tasks handled by locally deployed
ECS (MaxLocal), and SeSw seeking minimum resources
occupation (w/o MaxLocal).
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FIGURE 6. Ratio of application tasks assigned to be processed by locally
deployed ECSs.

Figure 6 shows the ratio of tasks assigned to be pro-
cessed by locally deployed ECSs. The upper sub-figure
is the result considering all applications in the system.
The lower sub-figure is the result that only considering
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applications from RANs with an ECS deployed. For simple
presentation, we use global-local (GL) to indicate the ratio
of tasks assigned to locally deployed ECSs when consid-
ering the whole system, and local-local (LL) to indicate
that when only considering applications from RANs with
an ECS deployed. We generate 300 groups of application
properties for every point and 150 random network topol-
ogy under each application properties condition. The number
of RANs is set to be 12. We can find that a small num-
ber of tasks are assigned to locally deployed ECSs before
performing SeSw. Lots of applications are set to be inte-
grate processed to reduce resource occupation by MinRI,
and resources-complementary collaborations are established
to reduce the number of ECSs. Before performing SeSw,
LL decreases as IoT nodes increase. Because more appli-
cations lead to more ECSs deployed, which results in a
great increase in the total number of related tasks while
less increase in tasks assigned to local servers. The GL
experiences a slight decrease as IoT nodes increase since
some more overloaded applications have to be assigned
to remote ECSs. After performing SeSw, the number of
tasks assigned to local ECSs is significantly improved, espe-
cially when employing Maxlocal. When only considering to
reduce resources-consumption (w/o MaxLocal), an applica-
tion block or application assigned to a remote ECS can only
be moved to the local ECS when requiring less resources.
So, some applications can not be moved to local ECSs when
corresponding SFs are not installed since considerable base
resources are required. Both GL and LL are greatly improved
after executing SeSw with MaxLocal. While GL tends to
be stable when IoT nodes more than 800 while the LL still
experiences a decrease. ECSs are usually placed in RANs
with heavier loads to maximize the number of tasks assigned
to locally deployed ECSs. Then, the later created ECSs are
placed to RANs with lighter loads. Applications in these
RANS contribute more to the total number of related tasks as
compared with tasks assigned to local ECSs. Besides, RANs
with overloaded applications increases as IoT nodes increase,
which contributes more to the ration of tasks being processed
by remote ECSs. In addition, more applications will result
in more saturated ECSs, which decreases the feasibility of
performing move and swap operations. Finally, GL will be
equal to LL when every RAN with an ECS placed.

Figure 7 shows the number of installed SFs, in which,
the simulation settings are same as that in figure 6. We can
find that collaboration among ECSs can reduce the number
of installed SFs since required ECS is reduced and part con-
generic applications are integrated assigned to one SF. In our
simulations, applications are randomly installed so almost
all types of applications are installed in a RAN. Therefore,
in the systems without collaboration and the systems adopt
collaboration with MaxLocal, the numbers of installed SFs
are significantly higher than that before performing SeSw,
and present obvious increases as the IoT nodes increases.
The reason is that corresponding SFs is required by an ECS
for providing services for all applications assigned to it.

112669



IEEE Access

Y. Chen et al.: ColSDA Method for Regional EdgeloT

200 T T T .
D
180 W
» ¢
s
0 160 - —&— W/o collaboration 4
é’,’ —-A-—Before SeSw
%, 140 b SeSw W{o MaxLocal i
o - & —SeSw with MaxLocal
< -4
(] - =
© 120 - T -¢ 4
5 _.e-
@ L o= |
o 100 P o
§ o~ ol
c - |
° 80¢
o)
o
o 60 : ]
P43
40 i A
e i |
207‘ L L L L
500 600 700 800 900 1000

Number of 1oT nodes

FIGURE 7. Average number of deployed SFs.

In original network and collaboration with Maxlocal, most
applications are assigned to locally placed ECSs. When col-
laboration employed, as compared to SwSw with MaxLocal
SeSw without MaxLocal can obtain far less installed SFs and
installed SFs only increase slightly as IoT nodes increase.
These two results benefit from integration processing collab-
oration in which the congeneric applications are integrally
processed by one SFE. The results demonstrate that collabora-
tion can provide the potential to reduce deployment and man-
agement expenditure. Besides, better results can be expected
to be acquired in real networks where the distribution of
intelligent applications are not randomly deployed.

Figure 8 shows the average resource utilization ratio of
ECSs. We can observe that collaboration can significantly
improve the resource occupation rate of ECSs, which reflect
the resources of ECSs are more fully utilized because com-
puting tasks are gathered to be processed by fewer ECSs.
The resource utilization in systems without collaboration
increased obviously as application increase. The reason is
that unsaturated ECS in systems undertake more computa-
tion work as applications increase. The resource utilization
when employing collaboration without MaxLocal is slightly
higher than that before SeSw, while resource utilization
when employing collaboration with MaxLocal is obviously
higher than that before SeSw. The reason is that SeSw with
MaxLocal move and exchange applications with the objec-
tive of maximizing the number of computing tasks, which
makes it reassign applications to their locally deployed ECSs
without considering whether required resources are more
than currently occupied resources. The amount of occupied
resource may increase if moving an application from a remote
ECS to its locally deployed ECS, especially when a new
SF is required to be installed. In comparison, SeSw with-
out MaxLocal only reassigns an application to its locally
deployed ECS when its required CPU resource is less or equal
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FIGURE 8. Average resource utilization. (a) CPU. (b) memory.

than currently occupied resource, which greatly reduces the
number of applications that can be moved. Thus, the resource
occupation after executing SeSw without MaxLocal is almost
equal to that before SeSw, and the memory occupation ratio
presents a little improvement.

Figure 9 displays an instance of resource occupation
results during the procedure of finding the service deploy-
ment and application assignment result, where figure 9(a)
shows the resources required by every RAN in the origi-
nal system. Figure 9(b)~ 9(e) are the resource occupation
results obtained by performing FFD, EL2, DP, and MinRI to
determine the number of required ECSs. Compared with the
original method of deploying ECSs for every RAN, the col-
laboration among edge servers can satisfy QoS of all appli-
cations in regional IoT with fewer ECS. Besides, comparing
with FFD, DP, and EL2, our proposed MinRI can obtain
minimum ECSs to be placed, which has been demonstrated
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(g) SeSW without MaxLocal. (h) SeSw considering MaxLocal.

in figure 4. Also, the resource occupation of saturated ECSs
obtained by MinRI is more balanced and fulfilled, which has
been demonstrated in figure 5. Figure 9(f) is the balanced
resource occupation after performing LBRA and placing
ECSs, in which data of figure 9(e) are the input information.
We can find that resource occupation are balanced and space
for the following SeSw operation are obtained. Figure 9(g)
and figure 9(h) are the final deployment results obtained by
SeSw without MaxLocal and with MaxLocal, respectively.
RAN index represents the RAN where the ECS is placed to.

VIl. CONCLUSION

In this paper, we investigated the service deployment in
regional EdgeloT by exploring the collaboration among
ECSs. Three feasible collaboration methods were introduced
by considering the resources-limitation of ECSs, the hetero-
geneous resources’ consumption of applications, and base
resources’ consumption of SFs. Then, we formulated the
service deployment problem, and the ColSDA algorithm
was proposed to obtain the service deployment policy for
a give EdgeloT, including the placement of ECSs and SFs,
as well as the assignment of applications to ECSs. We for-
mulated the primary objective of minimizing the number of
ECSs to be placed as a vector bin packing problem, and
the MinRI algorithm was proposed to obtain the minimum
ECSs. Then, computing loads of ECSs were balanced by the
LBRA algorithm to prepare for further operation. After that,
ECSs were placed to RANs by employing the branch and
bound algorithm. At last, the SeSw algorithm was proposed
to further increase tasks assigned to locally deployed ECSs.
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Simulations results demonstrated that collaboration among
ECSs can significantly reduce the number of required ECSs.
Comparing with previous algorithms, the proposed MinRI
algorithm in the ColSDA solution can obtain minimum ECSs
and higher resource utilization. The forwarding load of net-
work switch can be greatly released by performing SeSw
with Maxlocal to assign most of the tasks to locally deployed
ECSs. Therefore, ColSDA can be employed to deploy edge
computing services for regional [oT.

For future work, network transmission capacity that sim-
plified in this paper and more general network can be inves-
tigated. Besides, more real applications that require different
edge computing service procedure can be investigated. Apart
from maximizing the number of tasks processed by locally
deployed ECSs that studied in this paper, more optimization
objectives can be explored for ECSs and SFs placement after
obtaining the minimum ECSs to be placed, such as minimiz-
ing system delay and maximizing the average QoS.
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