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ABSTRACT Network dismantling techniques have gained increasing interest during the last years caused
by the need for protecting and strengthening critical infrastructure systems in our society. We show that
communities play a critical role in dismantling, given their inherent property of separating a network into
strongly and weakly connected parts. The process of community-based dismantling depends on several
design factors, including the choice of community detection method, community cut strategy, and inter-
community node selection. We formalize the problem of community attacks to networks, identify critical
design decisions for such methods, and perform a comprehensive empirical evaluation with respect to
effectiveness and efficiency criteria on a set of more than 40 community-based network dismantlingmethods.
We compare our results to state-of-the-art network dismantling, including collective influence, articulation
points, as well as network decycling. We show that community-based network dismantling significantly
outperforms existing techniques in terms of solution quality and computation time in the vast majority of real-
world networks, while existing techniquesmainly excel onmodel networks (ER, BA)mostly.We additionally
show that the scalability of community-based dismantling opens new doors towards the efficient analysis of
large real-world networks.

INDEX TERMS Complex networks, network dismantling, communities.

I. INTRODUCTION
Assessing and characterising the resilience of real-world
systems is an important endeavour, especially when such sys-
tems form economical and social backbones of our societies.
The last decade has witnessed an alarming number of wide-
ranging network failures, for instance, large-scale power out-
ages in the United States [1], air traffic disruptions caused by
volcano eruptions [2], computer virus spreading [3], or the
Japanese 2011 tsunami aftermath [4]; all these with major
economical and social consequences [5]. The challenge here
resides in the increasingly complexity and inter-dependencies
of these systems, such that the failure of a single element can
cause a cascade of disruptions. In this context, network sci-
ence, and complex network theory in particular, allows for a
systemic approach to tackle this problem. Given a structure of
interconnections (or of functional relationships) between the

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

elements composing a system, a complex network approach
entails estimating how the connectivity of the network is
affected by specific node (or link) removals, due to random
(unintentional) failures and targeted (intentional) attacks.
Note that this approach implies a coarse-grained and abstract
view to the problem, as the dynamics of individual elements
is disregarded; the system’s ability to keep performing its
intended function is then estimated through its connected-
ness. Example of existing studies on real-world networks
include, among others, transportation [6]–[8], energy [9],
communication [10], [11], economics [12], and social
networks [13].

While finding the most destructive attacks in model net-
works (being them regular, random, or scale-free) is a
well-understood problem, things become more complicated
in real-world systems, due to the presence of non-trivial
connectivity patterns. Since the identification of the best
attack becomes an NP-hard problem, a common practice
is to use node centrality measures (betweenness, closeness,
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FIGURE 1. Overview on community-based and interlink-based dismantling. a) Original network. b) Condensed community network with
four nodes. c) Dismantling of the largest community (red) from the condensed community network. d) Mapping from community links to
removed nodes in the real network (red). e) Dismantling of the top inter-community links (red) from the condensed community network.
f) Mapping from community links to removed nodes in the real network (red). Inter-community nodes in the original network are colored
in green.

eigenvector, to name a few) and specific network dismantling
techniques (for instance, based on MinSum [14], articulation
points [15], or Laplacian operator [16]).

Among these non-trivial connectivity patterns, one that has
recently attracted attention is the presence of communities,
i.e. groups of nodes densely connected between them but
loosely connected with other nodes. Such interest is two-fold.
On one hand, most real-world networks present a strong
community structure [17], [18]; any network dismantling
technique thus ought to take this element into account. On the
other hand, the presence of a community structure intuitively
affects the network’s vulnerability, as communities are by
definition easy to isolate. In other words, the weak connec-
tivity between communities gives rise to attacks that break
the network at its weakly connected parts first. In spite of this
increasing interest, no comprehensive study of community-
based dismantling strategies has hitherto been proposed, and
several major questions remain open. Firstly, there is a wide
variety of community detection algorithms, all of which com-
pute slightly different results and come with quite different
computation costs. Secondly, the order in which communities
have to be attacked is often arbitrarily defined, depending
on the goal of the dismantling process. For instance, one
might choose to break the network into two roughly equal-
sized components first or, alternatively, cut out the largest
community as the first step. Thirdly, once the decision is
made about which community to attack, one has to iden-
tify strategies to select the set (and order) of nodes to be

removed from the network, in order to disconnect those
communities. The dismantling framework in our study is
sketched in Figure 1; details can be found in the Methods
section.

In this contribution, we tackle these three questions
to provide a global framework guiding the design of
community-based dismantling methods. The major goal of
using community-based dismantling was to speed up the
computation of harmful targeted attacks for a given complex
network; by reducing the the complexity of the input through
a transformation into a condensed community graph. In addi-
tion, community structures, by definition, are very relevant
for the robustness of a network; leading to rather effective
attacks in short computation time. All results are framed
against state-of-the-art network dismantling methods, and
tested on a large range of random and real-world networks.
We find that specific combinations of design choices lead
to superior solutions, maintaining a high quality while being
scalable to very large networks; thus providing not only a
trade-off, but excelling at both properties. Our results point
at important considerations for assessing (complex) network
designs of systems that must remain functional under random
failures and targeted attacks. Moreover, our study provides
a new perspective on the design of efficient complex net-
work dismantling approaches leveraging on the importance
of communities in networks [19], [20], and can be extended to
similar processes such as propagation phenomena [21], [22]
and immunisation strategy selection [23], [24].
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II. METHODS
A. NETWORK RESILIENCE
Percolation is a commonly-used concept in statistical physics,
analyzing the process of network dismantling, often in pres-
ence of a sudden disintegration of a network, also described
as cascading failure [25]–[28]. Accordingly, the resilience
of a network is usually defined as the critical fraction of
nodes that, when removed, causes a sudden break down [29].
Here, the disintegration of a network is measured as the rel-
ative reduction in the size of the largest (or giant) connected
component as the shrinkage of the latter implies a reduced
capacity to maintain the cohesion of the system, and hence
of its functionality [30]. In this study, we use the robustness
measure R [31]. Given a network composed of N nodes, R is
defined as R = 1

N

∑N
Q=1 s(Q), where s(Q) is the size of

the giant component after removing Q nodes. This metric
assesses the size of the giant component when one node
is removed, iterating the process over all possible nodes.
Naturally, if we want to compute R of a network, we need
a ranking which induces a node order, and hence an attack
strategy. In general, we would like to identify the minimum
R over all possible node orders. Since the computation of
this optimal node order is NP hard, researchers resort to sub-
optimal and approximated methods, either tailored specifi-
cally for network dismantling [14]–[16], [32]–[34], or based
on traditional network metrics [35]–[38].

B. COMMUNITY-BASED NETWORK DISMANTLING
The rationale behind COM (COMunity-based attacks) is
to iteratively cut a network based on information derived
from communities. With each cut, the network breaks into
smaller components. Afterwards, once no communities are
left, the remaining network is simply attacked by decreasing
node degree. In general, we could apply the same method
recursively. In our experiments, however, the dismantling
of initial communities was sufficient to break down most
networks completely. The details of these steps are described
in the following subsections.

Step 1: Choice of community detection method One
problem when identifying communities in a network is that
there exist a wide range of methods, proposed throughout the
last decades, including Louvain [39], Girvan–Newman [40],
Clauset-Newman-Moore greedy modularity maximiza-
tion [41], label propagation [42], Walktrap [43], Infomap
[44], [45], fluid communities [46]; see [47]–[51] for com-
parison. With the design of the first community detection
methods, there came a discussion about which method works
best and how to choose a ground truth for evaluation, which
is not easy, given different goals [52].

Note that the problem of the resolution limit [53], accord-
ing to which most algorithms fail to detect small communi-
ties, is here not tackled, as such communities are expected to
have a negligible impact on the dismantling process. For the
purpose of network dismantling, the identification of large,
loosely-connected components is of importance, given that

the disconnection of such components has the largest impact
on the size of the giant component. In the present study,
the following five methods are evaluated, for being regarded
as the best performing ones:

1) Louvain method (LV) [39]: The core idea is to itera-
tively optimize local communities until the modularity
score cannot be improved further. The Louvain method
is parameter-free, resulting in a deterministic commu-
nity division.

2) Girvan–Newman method (GN) [40]: Based on the
notion of edge betweenness, i.e. how many times
does an edge appear on a shortest path, a network is
gradually reduced by removing edges with high edge
betweenness, until the required number of communities
is reached.

3) Clauset-Newman-Moore greedy modularity maxi-
mization method (GM) [41]: Greedy modularity maxi-
mization starts with each node in a separate community.
Afterwards, pairs of communities are joined based on
highest modularity increase until a minimum is found.

4) Label propagation (LP) [42]: Generates communities
in a network with semi-synchronous label propagation
method, combining the advantages of both the syn-
chronous and asynchronous models. Label propagation
is parameter-free, resulting in a deterministic commu-
nity division.

5) Fluid communities (FC) [46]: A propagation-based
algorithm to identify a variable number of communities
in the network. It can quickly identify high quality
communities and get close to results of current state-
of-the-art methods.

Step 2: Selection of dismantling strategy Given the
partitioning of a network into communities, the next step
is to decide in which way a network should be disman-
tled. Intuitively, there are two extreme options: The first
one is to disconnect a single community; the second one
is to try to split the network into two subsets of communi-
ties (see Figure 1). Additional options could be considered
between these two extremes. In any case, our final goal is to
have all communities disconnected, such that no single inter-
community link remains. An important concept here is the
notion of a condensed community network, a representation
in which each node represents a community and two commu-
nities are connected if and only if the two communities have
at least one inter-community link in the original network. For
the condensed community network dismantling, we aim to
attack links. For dismantling the original network, our goal is
to attack nodes. Accordingly, we need to select critical links in
the condensed community network and then map these links
into node orders in the original network.

Step 3: Selection of importance measure For the first
case, targeting the cut-out of single communities, we need to
decide how to select a community for dismantling. We follow
two simple strategies: the first strategy selects the community
that has the largest degree (D) in the community network,
i.e. the largest number of connections to other communities;
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TABLE 1. Abbreviation of different community-based methods. The first two characters of a name indicate the community detection method
(LV=Louvain, GN=Girvan–Newman, GM=Clauset-Newman-Moore greedy modularity maximization, LP=Label propagation, FC=Fluid communities). For
community detection methods where the number of communities is an input variable, the third character indicates the number of communities compared
to LV (H=half, L=Louvain, D=double). The last two characters indicate the community dismantling method (CD=Community degree, CS=Community size,
ID=Interlink degree, IS=Interlink size, IF=Interlink frequency).

the second strategy selects the community which has the
largest number of nodes (S) in the original network. When
targeting inter-community links directly, with the goal of
splitting the community network into two, hopefully equal-
sized parts, we need to compute a community link importance
ranking, which guides the dismantling process. We distin-
guish three strategies for link selection, formalized as follows.
For each link (ci, cj) in the community network, we compute:
1) Di,j = deg(ci) ∗ deg(cj), where deg(X ) denotes the

degree of community X in the community network.
2) Si,j = size(ci) ∗ size(cj), where size(X ) denotes the

number of nodes in community X .
3) The frequency Fi,j of link (ci, cj) appearing on all short-

est paths in the community network.
Each of these strategies,D, S, and F , induces a community

link importance ranking, which is used for dismantling the
community network. The formal dismantling process pro-
ceeds by removing the community links in decreasing order
of link importance until the community network is discon-
nected. It should be noted that we have computed the link
importance first and used this to attack the links in the con-
densed community network (i.e., a static strategy). We have
also experimented with the interactive version, but did not
obtain significantly better results. While interactive methods
are expected to be stronger than static methods, this does not
seem hold strongly for the case of using the communities as
a proxy. We conjecture that this is caused by the significantly
smaller size of the community network, compared to the
original network. Moreover, the most important cuts in the
community network are those performed in the early stage
(which often coincide for static and interactive attacks to the
community network).

Step 4: Mapping of links to nodes in the original net-
work Given an abstract strategy for attacking the condensed
community network, we need to translate attacks to the origi-
nal network for dismantling. Given a to-be-attacked commu-
nity link (ci, cj), we extract all inter-community links between
community ci and community cj from the original network.
Nodes in the induced subnetwork are then attacked by degree
in decreasing order for simplicity and efficiency considera-
tions. Future studies could investigate other strategies based
on alternative local properties. The rationale for choosing
degree is that it can be computed fast. Betweenness and other
alternatives need a time complexity at least quadratic, if not

cubic in the number of nodes. The goal of our study is to
derive a fast, efficient dismantling method. Computing the
betweenness of all nodes at any stage of our algorithm would
significantly deteriorate the superiority of our method in run
time. And as we report, the attack quality of our method
outperforms the state of the art. Future studies could aim for
rigorous analysis of other back-mapping methods; yet our
own preliminary experiments did not show qualitative gains
by using other methods than degree.

Given these selections and implementations above,
we obtain a collection of more than 40 community-based
dismantling methods. Table 1 summarizes these methods and
their abbreviations, which are used in the evaluation section
below.
Additional Methods for Network Dismantling:
In order to evaluate the effectiveness and efficiency of

community-based network dismantling, we compare against
a set of network dismantling methods established in the liter-
ature. Each of them is briefly summarized as follows:
• APTA: The Articulation Points Targeted Attack [15]
targets articulation points in a network. An articulation
point (AP) is a node whose removal disconnects a net-
work. All APs can be identified by performing a variant
of depth-first search, starting from a random node in the
network; see [54] for a linear-time implementation. If a
network instance does not have an AP, as is for instance
the case of circle graphs, then nodes are attacked by
decreasing degree.

• BETW: Betweenness centrality [37], [55] measures
the number of times a node appears on the short-
est paths between any pairs of nodes, using Brandes’
algorithm [56].

• BETWILC: An iterative variant of BETW, introduced
to account for dynamic changes in the betweenness of
nodes while the attack is being executed [35]. At each
iteration, the node with the highest betweenness in the
largest component is attacked.

• CI: The collective influence (CI) [32] of a node is
measured by the number of nodes within a ball size k .
Intuitively, this measure is an extension of degree metric
to take into account neighbors at a distance of k . A max
heap data structure is used for speed-up [33].

• DEG: Degree is a simple local network metric, which
quantifies the importance of a node by counting its
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FIGURE 2. Properties of real-world networks in this study.

number of direct neighbors. A static attack DEG is based
on sorting nodes by descending degrees and removing
them accordingly.

• DEGILC: An iterative variant of DEG, introduced to
account for dynamic changes in the degree of nodes
while the attack is being executed [35]. At each iteration,
the node with the highest degree in the largest compo-
nent is attacked.

• ND: At the core of ND (also referred to as min-sum) [14]
is the assumption that the problem of dismantling a
network is strongly related with decycling. The authors
proposed a three-stage Min-Sum algorithm for disman-
tling, composed of decycling [57], [58], tree-breaking
and cycle closing.

III. RESULTS
A. EXPERIMENTAL SETUP
We compare community-based network dismantlingmethods
with state-of-the-art ones. This is initially performed against
a collection of real-world networks obtained from the website
http://networkrepository.com [59]. From these approximately
4,000 networks, a subset was selected which satisfies the
following two criteria. First, we only analyze networks with
at most 1,000 nodes. Since some methods need more than
three hours to analyze a single network in this collection and
given more than 50 competitors and limited computational
resources, this decision is necessary. Selected dismantling
methods are compared on much larger networks in later
subsections. Second, we choose networks with a density less
than 0.2 only, given that higher densities induce very robust
networks (gradually towards being fully connected), which
are not interesting from a network dismantling point of view.
In total, 609 networks matched our filter criteria and were
used for this study. Figure 2 visualizes the distribution of
four standard network properties over all networks. It can
be seen that most networks are rather sparse (density less
than 0.02). Furthermore, the majority of networks has few
articulation points only, with some notable exceptions where
40% of nodes are all articulation points. There is a slight trend
in the selected networks towards a higher modularity, this is
reasonable since many real-world networks have observable
community structures.

B. ROLE OF COMMUNITY RESOLUTION
Community in complex networks can be discovered at
multiple resolutions [60], with implications on network
attacks [61]. All experiments above on LV community
detection have been performed with the usual resolution of
γ = 1.0. The effect of the resolution parameter on network
dismantling is investigated next. All networks from the previ-
ous sections are attacked with LVIF and a varying resolution
threshold γ (between 0.4 and 2.8). The results are shown
in Figure 3. The best median R is obtained for γ = 1.0. This is
a rather interesting observation, given that it supports the idea
that 1.0 is a good default value for community computation,
at least from the perspective of network dismantling. Values
larger than 1.0 reduce the dismantling quality slightly, but not
in every case; even γ = 2.8 can induce best attacks in some
cases, particularly for networks with very small modularity.
These results show that finely tuning γ for a given network
can further boost network dismantling based on communi-
ties. We recommend to use gamma equal to 1.0 in future
studies.

C. RUN TIME COMPLEXITY
The run time complexity of methods with growing networks
is analyzed next. We compare the median run time of each
method for networks with 800–1000 nodes with the median
run time of networks with 80-100 nodes. A method with
linear run time will get a factor of around 10, if the network
size is increased by a factor of 10. Methods with quadratic
time complexity should receive a factor of around 100, and
so on. The results are visualized in Figure 4. DEG is the
fastest method; the measured time complexity is sub linear,
caused by limited resolution of time measures (DEG needs a
few milliseconds for most experiments only). ND and APTA
exhibit a clear linear time complexity. The community-based
dismantling methods using FC, LP and LV all show a linear
complexity; GM is on the edge between linear and quadratic
and GN is cubic or worse. BETW/DEGILC and BETILC
require quadratic and cubic run time, respectively. Accord-
ingly, the run time of our community-based dismantling
method can be nicely controlled by an appropriate choice
of the community detection method. However, it should be
noted that in our experiments, the slowermethods did not lead
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FIGURE 3. Effect of resolution on dismantling quality. Median normalized R are smallest for γ = 1.0, but other values of γ can
induce best strategies for some networks (left). With an increasing modularity, smaller values of γ become more effective for
attacking, given that smaller communities lead to better attacks (right, the color of a cell corresponds to the median R value, dark
blue indicates better attacks).

FIGURE 4. Estimated time complexity of competitors. Experiments are based on multiplicative computation time increase from
80–100 to 800–1000 nodes. Methods exhibit characteristic time complexities, ranging from linear (O(N)) to cubic (O(N3)) and beyond.

TABLE 2. Network properties for large real-world networks.

to any significant improvements in quality. It is noteworthy
that BETWILC is faster than most GN-based instances.

D. LARGE REAL-WORLD NETWORKS

The results for small network instances suggest that
community-based methods are highly competitive regarding

effectiveness and efficiency for dismantling networks. In this
section, selected community-based network dismantling
methods are compared with state-of-the-art algorithms on
much larger networks: petster-hamster, facebook, power, hep-
th, condmat, astroph, internet, twitter, and roadnet-tx; see
Table 2 for selected properties for large real-world networks
in this study.
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FIGURE 5. Comparison of R and run time for large networks. The legend is shown in chart for dataset power only.

These networks come from a wide range of domains,
including infrastructure, social interaction, collaboration and
communication networks. For each network, we disman-
tle the largest component and obtain the R value. Again,
we focus on the trade-off between dismantling quality and
computation time. The largest network in our study has
more than one million nodes, which excludes us to use any
competitor requiring at least quadratic run time complexity.
Specifically, it is not feasible to compute the results for
BETWILC in a reasonable amount of time, given its cubic
run time complexity: Experiments which take one hour on a
network with 10,000 nodes will take approx. 1.5 months on a
network with 100,000 nodes. We have chosen the following
six competitors for the larger networks, to make experiments
computationally feasible: DEG, APTA, ND, LVCS, LVIF,
FCLIS. The results are shown in Figure 5. In six out of
nine networks, our community-based dismantling methods
LVCS and LVIF compute the smallest R value and are also
the fastest competitors, except from DEG. Only on hep-th,
condmat, and internet, the R values obtained by the state-
of-the-art (ND/APTA) are smaller. The differences in run
time are remarkable. For twitter, with 80,000 nodes, ND and
APTA need around 10 hours to execute, while the results
for LVIF and LVCS can be obtained in a few minutes (with
R values reduces almost to a half). It should be noted that
roadnet-tx and twitter have the highest modularity, larger than
0.9, which explains the excellent performance of community-
based network dismantling on these two datasets.

We believe that APTA and ND mainly excel for networks
with a large number of articulation points and fewer cycles.
In these cases, they might indeed perform slightly better; but
at the price of significantly longer run time (a factor of 5-10).
Nevertheless, it should also be noted that the community-
based network dismantling performs well on all of the large
real-world networks, while APTA as well as ND, both, have
networks for which their computed R is far from the best.

E. MODEL NETWORKS
Next, selected dismantling competitors are compared on ran-
dom model networks. These competitors have to dismantle
a collection of networks with 500 nodes each, following
four standard complex network models: Barabási-Albert
(BA) [62], Erdös-Rényi (ER) [63], Watt-Strogatz (WS) [64],
and Regular Graphs (RG). The results with different model
parameters are reported in Figure 6. BETWILC is the most
effective dismantling method for all network types and
parameter combinations. For BA networks APTA and ND
perform better than community methods. For ER and RG net-
works, all competitors show similar performance. Commu-
nitymethods perform better thanAPTA/ND onWS networks.
This highlights the differences between real-world networks
and model networks. Our results suggest that state-of-the-art
methods, such as APTA and ND, are well-suited for model
networks with clear structure, particularly for BA. However,
when it comes to real-world networks, which usually have
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FIGURE 6. Results for model networks. BETWILC is the best method for BA/ER/WS. For RG, there are some competitors outperforming
BETWILC.

FIGURE 7. Sensitivity analysis for community quality (left) and network modularity (right).

deviations from model-like behavior, community-based dis-
mantling methods reveal their strength.

F. SENSITIVITY ANALYSIS FOR COMMUNITY QUALITY
AND NETWORK MODULARITY
In the next set of experiments, sensitivity of the community-
based dismantling methods towards community quality and
network modularity is analyzed. First, we simulate commu-
nity detection with increasing errors as follows: We create
two random networks with 100 nodes each and a link density
of 0.5. We add a specific number of links (10) between
both networks. An accurate community detection method
will compute two communities, given the two densely con-
nected sub-networks and a few interlinks only. We simulate

a handicapped community detection method which assigns
a given fraction of nodes wrongly and then dismantles the
network. Each experiment was repeated 300 times. The result
is visualized in Figure 7 (left). With an increasing fraction of
wrongly assigned nodes, the community-based dismantling
method performs worse, as measured by the observed R
value; note that the R value does not change for the network
in question, but is around 0.27.

Second, we investigate the sensitivity of community-based
dismantling to the modularity of a network. We create three
random networks of size 100 with density of 0.5 first. After-
wards, a specific number of links (10–3,000) is added ran-
domly between these three networks; an increasing number of
links reduces the modularity of the network. All experiments
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FIGURE 8. Effect of resolution on dismantling time.

FIGURE 9. Effect of network properties on the best γ for dismantling. Comparison on modularity (upper left), link density
(upper right), assortativity (lower left), and transitivity (lower right).

have been repeated 10 times. The result is visualized
in Figure 7(right). We compare the sensitivity towards modu-
larity of LVID, ND, and BETWILC. LVID can exploit modu-
lar networks much better than ND; in fact, ND only responds
to very highly-modular networks, when the attack becomes
very obvious, with a few inter-community links only.

BETWILC, as a reference, is even better in exploiting
the modularity. But, as discussed in previous sections,
BETWILC’s computational costs are too high and prevent
it from being used on even medium-sized networks. Exper-
iments for APTA reveal similar results to those of ND, being
unable to exploit modularity early.
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FIGURE 10. Normalized R values (left) and normalized run times (right) aggregated by community method and dismantling method.

G. SENSITIVITY ANALYSIS FOR RESOLUTION
THRESHOLD γ

All small real-world networks are attacked with LVIF and a
varying resolution threshold γ (between 0.4 and 2.8). The
results are shown in Figure 8. The running time for the
community-based attack is smallest for gamma around 1.0:
Smaller γ lead to more communities and large overhead
for dismantling, while larger γ yield ineffective dismantling
strategies (data not shown).

For each network, the best γ leading to the smallest R is
identified. The best γ is then compared against four different
network properties: Modularity, link density, assortativity,
and transitivity. The results are shown in Figure 9.

H. DIFFERENT COMMUNITY DETECTION AND
DISMANTLING METHODS
We evaluate the impact of the choice of community detection
and community dismantling methods on the quality of net-
work dismantling. The results are shown in Figure 10 (left).
The quality of dismantling depends on the choice of the com-
munity detection method, but slightly less on the breaking
method. FC and LP perform particularly poor in our study,
obtaining significantly higher median normalized R values
than the other methods. The only exception is LPIF, which
performs much better than its group neighbors. We evaluated
the run time of community-based methods as well, regarding
the choice of community detection method and breaking
method. The results of our experiments, aggregated over all
networks, are shown in Figure 10 (right). It can be seen
that GN is by far the slowest of all competitors. Comput-
ing the edge-betweenness centrality and updating it during
edge removal is a time-consuming task. The competitors
based on other community detection methods are all rather
fast.

IV. CONCLUSIONS
The analyses here presented highlight the importance of the
community dimension in any network dismantling attempt.

Two ideas are especially worth being discussed. First of all,
the precision of the chosen community detection algorithm
is the most critical factor towards an efficient network dis-
mantling. This has been observed both in real-world networks
and in an ad-hoc toy model; the latter one shows that the
proportion of wrongly assigned nodes has a direct linear
effect on the resulting R. This is not surprising, as the basic
assumption is that communities are easy to isolate due to their
low connectivity with external nodes; yet, if a community is
wrongly identified, additional highly-connected nodes may
have to be attacked. Secondly, the choice of the subsequent
dismantling strategy is relatively less important; choices like
which communities to isolate, and in which order, have a
marginal impact on the final R.

These two results have important implications for network
analysis, both at a theoretical and a practical level. They sug-
gest a clear parallelism between the development of improved
algorithms for network dismantling and community detec-
tion, such that new results in the latter will feed back into
the former ones. They also suggest a clear opportunity for
creating scalable network dismantling methods. While the
computational cost of classical approaches is usually propor-
tional to the square (or the cube) of the number of nodes,
many solutions have been proposed to identify communities
with an almost linear cost. To illustrate the magnitude of the
impact, the introduction of a community-based strategy can
reduce the computation time for a network of approximately
105 nodes from 10 hours to 5 minutes, i.e. by two orders
of magnitude. Hybrid strategies can be designed, exploiting
community structure at the high level, and attacking smaller
parts of the network by other methods. Still, some questions
remain open. For instance, many real-world networks have
been shown to have a multi-scale and hierarchical structure,
in which communities are themselves composed of smaller
communities [65], [66]. In these cases, at which resolution
level one needs to switch from a community-based attack to a
conventional one? First steps towards answering this question
have been taken in this study.
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To conclude, some limitations of the present study ought to
be discussed. Specifically, all algorithms have been tested on
a set of 609 medium-sized real-world networks, and the most
efficient ones on nine large networks. While special care has
been devoted to perform an unbiased selection, and to include
instances with heterogeneous properties and representing a
variety of real systems, benchmarks on even larger reposito-
ries could be executed. Additionally, some results here pre-
sented, like the weak dependence of the results to the choice
of the dismantling strategy, would benefit from an analytical
treatment, at least in some simplified cases. It is nevertheless
possible to conclude that the community-based approach to
network dismantling represents a major step towards the
understanding of network resilience. We believe that our
work on community-based network dismantling frames a fur-
ther step towards understanding network resilience. In fact,
we envision that the results of this study will lead towards
a novel, scalable network dismantling method, when being
combined with other state-of-the-art techniques, e.g. APTA
and ND. A clever combination of these techniques, exploiting
community structure at the high level and attacking smaller
parts of the network by other methods seems a highly promis-
ing research direction. Such a method will require further
advances to analyze sub-networks at different scales and
possibility to identify and exploit interactions between dif-
ferent dismantling strategies. In addition, further extensions
of our method to exploiting the community structures in inter-
dependent networks [67] can be conceived.
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