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ABSTRACT Acoustic scene classification (ASC) is a problem related to the field of machine listening
whose objective is to classify/tag an audio clip in a predefined label describing a scene location (e. g. park,
airport, etc.). Many state-of-the-art solutions to ASC incorporate data augmentation techniques and model
ensembles. However, considerable improvements can also be achieved only by modifying the architecture
of convolutional neural networks (CNNs). In this work we propose two novel squeeze-excitation blocks
to improve the accuracy of a CNN-based ASC framework based on residual learning. The main idea of
squeeze-excitation blocks is to learn spatial and channel-wise feature maps independently instead of jointly
as standard CNNs do. This is usually achieved by combining some global grouping operators, linear operators
and a final calibration between the input of the block and its learned relationships. The behavior of the block
that implements such operators and, therefore, the entire neural network, can be modified depending on the
input to the block, the established residual configurations and the selected non-linear activations. The analysis
has been carried out using the TAU Urban Acoustic Scenes 2019 dataset presented in the 2019 edition of
the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge. All configurations
discussed in this document exceed the performance of the baseline proposed by the DCASE organization
by 13% percentage points. In turn, the novel configurations proposed in this paper outperform the residual
configurations proposed in previous works.

INDEX TERMS Acoustic scene classification, deep learning, machine listening, pattern recognition,
squeeze-excitation.

I. INTRODUCTION
The analysis of everyday ambient sounds can be very use-
ful when developing intelligent systems in applications such
as domestic assistants, surveillance systems or autonomous
driving. Acoustic scene classification (ASC) is one of the
most typical problems related to machine listening [1]–[4].
Machine listening is understood as the field of artificial intel-
ligence that attempts to create intelligent algorithms capa-
ble of extracting meaningful information from audio data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiqing Zhang .

Therefore, ASC can be defined as the area of machine listen-
ing that attempts to tag an audio clip in one of the predefined
tags related to the description of a scene (for example, airport,
park, subway, etc.).

The first approaches to the ASC problem were centered
on the design of proper inputs to the classifier, this is, fea-
ture engineering [5]. Most research efforts tried to create
meaningful representations of the audio data to later feed
gaussian mixture models (GMMs), hidden Markov mod-
els (HMM) or support vector machines (SVMs) [6]. In this
context, a wide range of input representations were proposed
such asMel-frequency cepstral coefficients (MFCCs) [7], [8],
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Wavelets [8], constant-Q transform (CQT) or histograms of
oriented gradientes (HOG) [9], among others.

With the years and the emergence of convolutional net-
works in the field of image and computer vision, CNNs have
become a preferred option for the design of machine listening
systems, usually fed with a 2D audio representation such as
log-Mel spectrograms [1], [10]. These networks have shown
very satisfactory results, especially when they are trained on
large datasets. This is why data augmentation techniques are
commonly applied, such as mixup strategies [11] or temporal
cropping [12]. In addition, to improve the final accuracy,
many studies use ensembles, combining the output from dif-
ferent classifiers to obtain a single more robust prediction.
Unfortunately, the use of ensembles makes it more difficult
to analyze the contribution to the classification performance
of a new CNN architecture integrated within the proposed
ensemble. To avoid such issue, this work considers isolated
contributions of several CNN architectures implemented with
different residual blocks based on squeeze-excitation, with-
out any extra modifications during the training or inference
phases.

CNNs are built with stacked convolutional layers. These
layers learn its filter coefficients by capturing local spatial
relationships (neighbourhood information) along the input
channels and generate features maps (filtered inputs) by
jointly encoding the spatial and channel information. In all
application domains (image classification/segmentation,
audio classification/tagging, etc.), the idea of encoding
the spatial and the channel information independently
has been less studied, despite having shown promising
results [13], [14].

In order to provide insight about the behaviour of CNNs
when analyzing spatial and channel information indepen-
dently, several squeeze-excitation (SE) blocks have been pre-
sented in the image classification literature [13], [14]. In [14],
a block that ‘‘squeezes’’ spatially and ‘‘excites’’ channel-wise
with linear relationships was presented. The idea behind this
block, denoted as cSE in this work, is tomodel the interdepen-
dencies between the channels of feature maps by exciting in a
channel-wise manner. This type of block showed its effective-
ness in image classification tasks, outperforming other state-
of-the-art networks only by inserting it at a specific point
of the network. Following this idea, two more blocks were
presented in [13]. The first one, denoted as sSE, ‘‘squeezes’’
along the channels and ‘‘excites’’ spatially, whereas the last
block, scSE, combines both strategies. The scSE block recali-
brates the feature maps along spatial and channel dimensions
independently (cSE and sSE) and then combines the infor-
mation of both paths by adding their outputs. This last block
showed the most promising results in image-related tasks.
According to [13], this block forces the feature maps to be
more informative, both spatially and channel-wise.

This work analyzes the performance of conventional SE
blocks for addressing the ASC problem and proposes two
novel block configurations in this context. The new con-
figurations are intended to enhance the benefits of residual

learning and feature map recalibration in a jointly fash-
ion. This is achieved by a double short-cut connection that
enforces residual learning both with and without recalibrated
outputs. The use of SE techniques allows the network to
extract more meaningful information during training, while
residual learning facilitates the training procedure by miti-
gating vanishing gradient problems. The results show that,
by using the proposed block configurations, results are con-
siderably improved.Moreover, it is shown that all the residual
SE configurations perform better than a classical convolu-
tional residual block in the considered task.

The following of the paper is organized as follows.
Section II presents the the background for the tech-
niques used in this work in the context of ASC, namely
Squeeze-Excitation and residual learning. Section III intro-
duces the different SE blocks analyzed in this work and the
baseline CNN architecture. Section IV describes the dataset
used in the experiments, the audio pre-processing and the
training procedure of the CNN. SectionV discusses the exper-
imental results, while Section VI concludes our work.

II. BACKGROUND
This section summarizes the technical background for this
work and describes the ideas underlying SE blocks and resid-
ual networks.

A. RELATED WORK
Some previous works have shown that the use of SE mod-
ules can be a simple and effective approach to tackle audio
classification problems. In [15], a multi-scale fusion and
channel weighted CNNwas proposed within an ASC context.
The framework consists of two stages: a multi-scale feature
fusion scheme that integrates a hierarchy of semantic-features
extracted from a simplified Xception architecture, and a final
SE-based channel weighting stage. However, such work con-
siders only channel recalibration by using a cSE-like block
at a final stage, without further integration of other SE-based
calibration modules. In contrast, the configurations proposed
in this work consider both spatial and channel-wise weighting
within a residual learning framework jointly and at multiple
depths within the network architecture.

Another work using SE techniques in the audio domain
is [16], which presented a VGG-style CNN and compared
its performance with an enhanced version including residual
connections and SE modules. In contrast to the work pre-
sented in this paper, an end-to-end 1D architecture accept-
ing raw audio inputs was proposed, with cSE channel-wise
recalibration. The results over three different tasks (music
auto-tagging, speech command recognition and acoustic
event detection) confirmed the superiority of the enhanced
network.

Finally, although some technical reports could not corrob-
orate the improvements offered by SE modules over plain
residual networks in audio-oriented tasks [17], few details
were given, which motivates further the analysis carried out
in this work.
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B. SQUEEZE-EXCITATION BLOCKS
Squeeze-excitation (SE) blocks can be understood as mod-
ules for channel recalibration of feature maps [13]. Let’ s
assume an input feature map, X ∈ RH×W×C ′ , that feeds any
convolutional block, usually implemented by convolutional
layers and non-linearities, and generates an output feature
map U ∈ RH×W×C . Here, U could also be expressed as
U = [u1,u2, . . . ,uC ], being ui ∈ RH×W a channel output.
Considering this notation, H and W represents the height
and the width, while C ′ and C defines the number of input
and output channels, respectively. The convolutional process
function can be defined as F(·), so that F(X) = U. The output
U is generated by combining the spatial and channel informa-
tion of X. The objective of SE blocks is to recalibrate U with
FSE (·) to generate Û, i.e. FSE (·) : U→ Û . This recalibrated
feature map, Û, can be stacked after every convolutional
block and then used as input to the forthcoming pooling
layers. This recalibration can be carried out with different
types of block functions FSE (·), as it is next explained.

1) SPATIAL SQUEEZE AND CHANNEL EXCITATION BLOCK
(cSE)
In a cSE module (depicted in Fig. 1(a)) for spatial squeeze
and channel excitation, a unique feature map of each channel
from U is first obtained by means of global average pooling.
This operator produces a vector z ∈ R1×1×C . The kth element
of such vector can be expressed as:

zk =
1

H ×W

H∑
i

W∑
j

uk (i, j), k = 1, . . . ,C, (1)

where uk (i, j) denotes the (i, j) element of the kth channel
feature map.

As suggested by Eq. (1), global spatial information is
embedded in vector z. This representation is then used to
extract channel-wise dependencies using two fully-connected
layers, obtaining the transformed vector ẑ. Therefore, ẑ can
be expressed as ẑ = W1(δ(W2z)), where δ represents ReLU
activation. W1 ∈ RC×C

ρ and W2 ∈ R
C
ρ
×C are the weights

of the fully-connected layers, and ρ is a ratio parameter.
As last step, the activation range is compressed to the inter-
val [0, 1] using a sigmoid activation function, σ . This final
step indicates the importance of each channel and how they
should be rescaled. The purpose of this recalibration is to
let the network ignore channels with less information and
emphasize the ones that provide more meaningful informa-
tion. Then, the rescaled feature maps, Û, can be expressed
as [13], [14]:

ÛcSE = FcSE (U) = [σ (ẑ1)u1, . . . , σ (ẑC )uC ], (2)

where ẑk are the elements of the transformed vector ẑ.

2) CHANNEL SQUEEZE AND SPATIAL EXCITATION BLOCK
(sSE)
In the case of an sSE block [13], as shown in Fig. 1(b),
a unique convolutional layer with one filter and (1, 1)

FIGURE 1. Diagram of different SE blocks: (a) describes cSE block
procedure, (b) ilustrates sSE block framework and (c) shows scSE block
by combining (a) and (b).

kernel size is implemented to obtain a channel squeeze
and spatial excitation effect. Here, it is assumed an
alternative representation of the input tensor as U =

[u1,1,u1,2, . . . ,ui,j, . . . ,uH ,W ] where ui,j ∈ R1×1×C . The
convolution can be expressed as q = W ? U, being W ∈
R1×1×C×1 and q ∈ RH×W . Each qi,j represents the combi-
nation of all channels in location (i, j). As done with cSE,
the output of this convolution is passed through a sigmoid
function. Each σ (qi,j) determines the importance of the spe-
cific location (i, j) across the feature map. Like the previous
block, this recalibration process indicates which locations are
more meaningful during the training procedure. As a result,
the output of the SE block can be expressed as [13]:

ÛsSE = FsSE (U ) = [σ (q1,1)u1,1, . . . , σ (qH ,W )uH ,W ]. (3)
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3) SPATIAL AND CHANNEL SQUEEZE & EXCITATION BLOCK
(scSE)
The scSE block [13] is implemented by declaring cSE and
sSE blocks in parallel and adding both outputs (see Fig. 1(c)).
It has been reported that the scSE block shows better perfor-
mance than cSE and sSE used independently. In this case,
a location (i, j, c) gets a higher sigmoid or activation value
when both channel and spatial recalibration get it at the same
time [13]:

ÛscSE = ÛcSE + ÛsSE . (4)

In this case, the network focuses on feature maps that are
meaningful from both a spatial and channel-wise point of
view.

C. RESIDUAL NETWORKS
Residual networks were first proposed in [18]. A network
of this kind replaces the standard stacked convolutional lay-
ers [19] by residual blocks. Residual layers are designed to
approximate a residual function: F(X) := H(X)− X, where
H(·) represents the mapping to be fit by a set of stacked
layers and X represents the input to the first of such stacked
layers. The original function H can therefore be defined as
H(X) = F(X) + X. The main motivation of choosing this
kind of network corresponds to the intuition that optimizing
a residual mapping may be easier than optimizng the original
unreferenced one, as in a classical convolutional network.
A simple way of implementing residual learning in CNNs is
by adding a shortcut connection that performs as an identity
mapping, adding back the inputX to the output of the residual
block F(X). In the first proposition of the residual block,
Rectified ReLU activation is applied after the addition and
the result of such activation becomes the input for the next
residual block. Note, that in the first configuration, shortcut
connections do not add more parameters nor extra compu-
tational cost. Therefore, deeper networks can be trained with
little additional effort, reducing vanishing-gradient problems.
As it will be later explained, in this work, the identitymapping
is replaced with a 1× 1 convolutional layer as it is explained
in Section III. Therefore, this work function can be expressed
as H(X) = F(X) + g(X), where g(·) represents the convo-
lutional process with the learnt filter coefficients.

III. CONFIGURATIONS FOR SQUEEZE-AND-EXCITATION
RESIDUAL NETWORKS
According to [14], SE blocks exhibit better performance
when deployed on networks with residual configuration than
on VGG-style networks. Therefore, two novel residual blocks
implementing scSE modules are presented in this paper. The
performance of these two newly proposed blocks is com-
pared against other state-of-the-art residual configurations
that incorporate SE modules.

A. SE BLOCK DESCRIPTION
All the configurations analyzed in this work are depicted in
Fig. 2. In the following, we describe in details these blocks.

1) Conv-RESIDUAL
Shown in Fig. 2(a), is inspired by [18]. It is used as a baseline
in order to validate the network performance without any
SE and how much it can be improved when incorporating
these blocks. In the present work some slight modifications
for a more convenient implementation were introduced: the
shortcut connection was implemented with a 1 × 1 convolu-
tional layer and the activation after the addition was set to an
exponential linear unit (ELU) function [20], [21].

2) Conv-POST
Shown in Fig. 2(b), is inspired by the block referred to as se-
POST in [14]. The scSE block is included at the end and is
equivalent to a recalibration of the Conv-residual block.

3) Conv-POST-ELU
Shown in Fig. 2(c), is very similar to the above Conv-
POST block, but the recalibration is performed over the
ELU-activated output of the residual block.

4) Conv-STANDARD
Shown in Fig. 2(d), is inspired by [14], where the scSE block
is stacked after the convolutional block for recalibrating prior
to adding the shortcut branch.

5) Conv-StandardPOST
Shown in Fig. 2(e) is proposed in this work to create a double
shortcut connection, one before SE calibration and one after.
The idea is to let the network learn residual mappings simulta-
neously with and without SE recalibration, thus, affecting the
way in which the block optimizes the residual by considering
jointly standard and post SE-calibrated outputs.

6) Conv-StandardPOST-ELU
Shown in Fig. 2(f) is the other proposed block, correspond-
ing to the above explained Conv-StandardPOST block, but
followed by ELU activation.

To summarize, the output Xl+1 of each block for an input
X is given by:

a) Xl+1 = R (F(X)+ g(X))) , (5)

b) Xl+1 = FSE (F(X)+ g(X))) , (6)

c) Xl+1 = FSE (R (F(X)+ g(X)))) , (7)

d) Xl+1 = F(SE)(X)+ g(X), (8)

e) Xl+1 = FSE (R (F(X)+ g(X))))+ g(X), (9)

f) Xl+1 = R (FSE (R (F(X)+ g(X))))+ g(X)), (10)

whereR(·) refers to ELU activation function with α parame-
ter set to 1 andF(SE) denotes a residual function that includes
SE calibration. As it will be discussed in Section V, the two
proposed configurations have been shown to outperform the
rest in the considered acoustic scene analysis task.

In order to avoid possible duplications or expansion pro-
cesses in the channel dimension, the identity branch is
replaced by a convolutional layer with a (1, 1) kernel size
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FIGURE 2. Different residual squeeze-excitation blocks analyzed in this work: (a) is inspired by the first residual block proposed in [18];
(b), (c) and (d) are inspired by the work done in [14]; (e) and (f) are the two novel configurations proposed in this work.

and with the same number of filters as the residual branch.
Including such convolutional layer in the shortcut branch
creates a projection that avoids dimensionality conflicts in the
residual block addition.

By looking at Fig. 2, it can be clearly observed that
the most representative feature of the two proposed blocks,
(e) and (f), resides in the use of two skip connections:
one before SE re-calibration and one after. This double
short-cut connection leads the network towards the learn-
ing of a global residual function embedding an inner and
SE-calibrated partial residual. The objective is to facilitate the
learning of calibration weightings by using the same residual
rationale.

In general, the presence or absence of relevant acoustic
events within an input audio clip can be very impor-
tant when addressing the ASC problem. The use of spa-
tial and channel-wise recalibration at different depths of
the network adds a mechanism to allow the network
weight properly, according to their importance, the differ-
ent dimensions of the information flowing throughout the
network. Therefore, SE modules are expected to add flex-
ibility for identifying relevant acoustic textures or events,
making easier to infer the type of underlying acoustic
scene.

B. NETWORK ARCHITECTURE
The CNN implemented in order to validate the behaviour
of the different SE configurations has been inspired on [22]
where a VGG-style [19] network with 3 convolutional blocks
followed by different max-pooling and dropout [23] operators
is implemented. In the present work, the original convolu-
tional blocks have been replaced with the different residual
squeeze-excitation blocks proposed in this study. The max-
pooling, dropouts and linear layers are configured with the
same parameters as in [22]. The network architecture can be
found in Table 1.

As the database used in the current work is much smaller
than the one in [14], some of the hyperparameters that define
the components of the scSE block had to be modified. The
number of elements in the Dense layer with ReLU activation
in Fig. 1(a) has been set to 16 in the first Residual-scSE
block, the same as in [14] in its cSE block, but the number
of filters at the input, C , has been set to C = 32. Therefore,
the ratio between these parameters throughout the network is
two, as observed Table 1. The number of network parameters
that implement SE residual blocks, i.e. those represented in
Fig. 2(b)-(f), is 528,334. On the other hand, the network that
does not integrate SE modules has 506,606. Note, therefore,
that there is only a slight increase of approximately 4% in the
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TABLE 1. Proposed network for validating the scSE configurations of
Fig. 2. Values preceeded by # correspond to the number of filters. Kernel
sizes are set as indicated in Fig. 2. This architecture is inspired by the
work in [22].

SE networks. Table 2 shows as well the number of floating
point operations (FLOPs) involved in each network.

IV. EXPERIMENTAL DETAILS
This section describes in detail the experimental implemen-
tation carried out to conduct the analysis of the presented
SE residual blocks, including the datasets, the audio rep-
resentation selected to feed the network and the training
configuration.

A. DATASET
To check the behavior of these implementations in an ASC
problem, the TAU Urban Acoustic Scenes 2019, Develop-
ment dataset presented in Task 1A of the 2019 edition of
DCASE has been used [10]. The database consists of 40 hours
of stereo audio-recording in different urban environments and
landscapes such as parks, metro stations, airports, etc. making
a total of 10 different scenes. These have been recorded in
different cities such as Barcelona, Paris or Helsinki, among
others. All audio clips are 10-second long. They are divided
into two subsets of 9185 and 4185 clips for training and val-
idation, respectively. Although there are a slightly different
number of samples available for each class, the data set is not
severely unbalanced.

B. AUDIO PROCESSING
The input to the network is a 2D log-Mel spectrogram repre-
sentation with 3 audio channels. The three channels are com-
posed of the harmonic and percussive component [24], [25]
of the signal converted to mono and the difference between
left (L) and right (R) channels. That is, the first channel cor-
responds to the log-Mel spectrogram of the harmonic source,
the second channel corresponds to the same representation
but over the percussive source and the last one to the log-Mel
spectrogram of the difference between channels calculated by

TABLE 2. Parameters and FLOPs analysis from the studied network
configurations.

subtracting left and right channels (L − R). This represen-
tation, known as HPD, was presented in [22]. The log-Mel
spectrogram is calculated using 64 Mel filters with a window
size of 40 ms and 50% overlap. Therefore, an audio clip
becomes a 64×T × 3 array with T being the number of time
frames. In this specific dataset, the input audio representation
corresponds to an array of dimension 64× 500× 3.

C. TRAINING PROCEDURE
The training process was optimized using the Adam opti-
mizer [26]. The cost function used was the categori-
cal crossentropy. Training was limited to a maximum
of 500 epochs but early stopping is applied if the validation
accuracy does not improve by 50 epochs. If this same metric
does not improve in 20 epochs, the learning rate is decreased
by a factor of 0.5. The batch size used was 32 samples.

V. RESULTS
In order to analyze the contributions of this work with respect
to other state-of-the-art approaches, the results obtained with
the different configurations presented in this work (see Fig. 2)
are compared to the ones obtained by different authors in Task
1A ofDCASE 2019 using the same dataset. For a fair compar-
ison, only submissions not making use of data augmentation
techniques are considered. In the case of submissions that
presented an ensemble of several models, only the results of
the best performing model making up the ensemble are taken
into account. For example, in [27] a global development
accuracy of 78.3% is reported, but that value was obtained
by averaging 5 models. The best individual model obtained
72.4%, so this is the value presented in Table 3. This said,
please be aware that the accuracy of the final submission1

may differ from that presented in Table 3. Next, we summa-
rize some important features of the competing approaches.

• Wang_NWPU_task1a [27]: the audio representation
considers two channels using a log-Mel Spectrogram
from harmonic and percussive sources similar to our
representation. The number of Mel filters is set to 256.
The window size is set to 64 ms and the hop size
to 15 ms. Mel filters are calculated with cutoff frequen-
cies from 50 Hz to 14 kHz. A VGG-style CNN [19] is
used as a classifier.

1http://dcase.community/challenge2019/task-acoustic-scene-
classification-results-a
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TABLE 3. Accuracy results from the validation partition in development
phase.

• Fmta91_KNToosi_task1a [28]: wavelet scattering
spectral features are extracted from the mono audio
signal. A random subspace method is used as classifier.

• MaLiu_BIT_task1a [29]: Deep Scattering Spectra fea-
tures (DSS) are extracted from each stereo channel.
Classification is performed with a Convolutional Recur-
rent Neural Network (CRNN). For this network, Table 3
does not report the accuracy on the development set
(only on the evaluation set). This is because of some
mismatch reported by the authors in the validation pro-
cedure with the configuration of the dataset.

• DSPLAB_TJU_task1a [30]: this submission
approaches the problem in a more classical way extract-
ing audio statistical features such as ZRC, RMSE, spec-
trogram centroid, etc. A GMM is used as a classifier.

• Kong_SURREY_task1a [31]: this submssion can be
defined as the state-of-the-art framework in ASC prob-
lem. The audio representation considers also the log-Mel
spectrogram. The classifier is a VGG-based [19] CNN.
This network is a fully convolutional network with
no linear layers implemented. The feature maps are
reshaped into a one dimensional vector using a global
average pooling before the decision layer.

• Liang_HUST_task1a [32]: in this method, the log-Mel
spectrogram is first extracted after converting the audio
signal to mono. Interestingly, the log-Mel spectrogram
is divided into two-seconds spectrograms, that means
that spectrogram shapes change from [F × T × 1] to
[F× (T/5)×1]. This configuration allows training with
audio samples consisting of 5 different spectrograms
instead of one. A CNN with frequency attention mecha-
nism is implemented as classifier. For more detail of the
attention implementation, see [32].

• Salvati_DMIF_task1a [33]: unlike the other submis-
sions, this one works directly on the audio vector.

To this end, a 1D convolutional network is implemented.
Although some recent efforts have been made in this
direction [34], the state-of-the-art literature shows that
2D audio representations, such as spectrograms, still
obtain the better classification results [35].

• DCASE baseline [10]: the audio is first converted to
mono and a log-Mel spectrogram is extracted. In this
case, only 40 Mel bins are calculated instead of 64,
which is the typical state-of-the-art choice. A CNN is
used as a classifier with 2 convolutional layers. The 1D
conversion before classification layers is performed by a
flatten layer. A dense layer is stacked before the decision
layer.

A. GLOBAL PERFORMANCE
Although the results of the DCASE challenge only report
the mean accuracy value, we consider 10 runs to provide
not only the mean accuracy value, but also the standard
deviation. As it can be seen in Table 3, all the configurations
detailed in Fig. 2 obtain better accuracy than the DCASE
baseline. The contribution of the scSE block is easily justified
as Conv-Residual gets the lowest performance among the
studied configurations. In general,POST configurations show
a slight improvement compared to the Standard configura-
tion. This behaviour differs from what was reported in the
original paper, [14], in which these blocks were analyzed
in the image domain, where the Standard block outperforms
the POST block. There is no remarkable difference between
Conv-POST and Conv-POST-ELU. It is also shown that the
networks that incorporate the two novel blocks presented in
this work, the ones depicted in Figs. 2(e) and (f), exhibit the
best accuracy values. The shortcut addition at two differente
points of the residual block, this is, before and after the
scSE block, allowed the network to obtain a more precise
classification in this ASC task.

B. CLASS-WISE PERFORMANCE
Fig. 3 shows confusion matrices for each of the analyzed
residual blocks in this work. In general, the performance
across the different classes is considerably balanced. The
‘‘Public square’’ class is the one showing the worst perfor-
mance, tending to be misclassified as ‘‘Street, Pedestrian’’.
Other similar classes such as ‘‘Airport’’ and ‘‘Shoppingmall’’
or ‘‘Tram’’ and ‘‘Bus’’ or ‘‘Metro’’ tend also to produce
common errors in the analyzed networks.

By analyzing the class-wise performance of the two pro-
posed blocks with respect to the conventional Conv-Residual
block, substantial improvements are observed. Consider-
ing the proposed Conv-StandardPOST block, a significant
improvement is observed for the classes ‘‘Metro station’’ and
‘‘Street, Pedestrian’’. Other classes showing slight improve-
ments are ‘‘Shopping mall’’, ‘‘Park’’ or ‘‘Public square’’. The
class showing the worst relative result was ‘‘Airport’’. On the
other hand, the second proposed block Conv-StandardPOST-
ELU provides substantial improvements in ‘‘Street traffic’’
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FIGURE 3. Confusion matrices for the generated models over the evaluation dataset.

and ‘‘Park’’, but other classes like ‘‘Airport’’ or ‘‘Bus’’ were
degraded.

Finally, when considering the performance of networks
implementing SE blocks together, from a general perspective,
it is noticed that classes like ‘‘Street, Pedestrian’’, ‘‘Park’’
or ‘‘Public square’’ are improved with respect to the con-
ventional residual network. Only the class ‘‘Airport’’ shows
the best performance in the conventional network, followed
by ‘‘Bus’’. The remaining classes are improved or worsened
across all configurations in a degree not as significant as the
aforementioned ones.

C. SIGNIFICANCE TEST
To determine if there are statistically significant differences
in the performance of the different blocks analyzed in this
work, a McNemar’s test has been carried out [36]. This test,
which is a paired non-parametric hypothesis test, has been
widely recommended for evaluating deep learning models,
which are often trained on very large datasets. The test is
based on a contingency table created from the results obtained
for two methods trained on exactly the same training test and
evaluated on the same test set. The null hypothesis of the test
is that the performance of the two analyzed systems disagree
to the same amount. If the null hypothesis is rejected, there
is evidence to suggest that the two systems have different

FIGURE 4. Pairwise analysis of the studied residual networks using
McNemar’s test. Gray cells indicate p-values below a 0.05 significance
level.

performance when trained on a particular training set. Given
a significance level α, if p < α, there may be sufficient
evidence to claim that the two classifiers show different
proportions of errors. The result of applying the McNemar’s
test to all the available system pairs is shown in Fig. 4.
Gray cells indicate p-values below a significance level of
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0.05. It is confirmed that the two proposed blocks, Conv-
StandardPOST and Conv-StandardPOST-ELU, show signif-
icant differences in performance with respect to all the other
blocks but Conv-POST, which was the third best performing
block. However, no significant differences can be observed
between these new blocks, which only differ in the final ELU
activation.

VI. CONCLUSION
The use of squeeze-excitation blocks in convolutional neural
networks allows to perform a spatial and channel-wise recal-
ibration of its inner feature maps. This work presented the
use of squeeze-excitation residual networks for addressing
the acoustic scene classification problem, and presented two
novel block configurations that consider residual learning
of standard and recalibrated outputs jointly. Results over
the well-known DCASE dataset confirm that the proposed
blocks provide meaningful improvements by adding a slight
architecture modification, outperforming other competing
approaches when no data augmentation or model ensembles
are considered.
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