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ABSTRACT Images captured underwater usually suffer from weak illumination, color cast, fuzz and noise,
which severely degrade the visibility. Numerous methods have been proposed to improve the quality of
underwater images, but rarely of them can give a comprehensive consideration to all these problems,
which makes them hard to adapt for various and complex real-world underwater scenes. Herein, a novel
multi-purpose oriented approach for real-world underwater image enhancement is proposed. To manipulate
different information on the corresponding layers, we firstly decompose the input image into illumination
layer and reflectance layer. Subsequently, compensation of the brightness is carried out on the illumination
layer, while color correction and contrast enhancement are implemented on the reflectance layer through a
multi-scale processing strategy. Benefiting from this strategy, the proposed approach is provided with high
control flexibility, which can significantly improve the visibility of underwater images while efficiently
suppress the amplification of noise. Both qualitative and quantitative evaluations demonstrate that the
proposed method has superior robustness, accuracy and effectiveness for complex marine circumstance.

INDEX TERMS Real-world underwater image enhancement, multi-purpose oriented, various water types,
gradient domain.

I. INTRODUCTION
Due to the shortage of resources on land, undersea world has
obtained considerable attention. Acquisition of clear under-
water images and videos play a pivotal role in a wide range
of ocean applications. However, since the light received by a
camera suffers from strong wavelength-dependent absorption
and scattering, images and videos acquired under water are
typically degraded with weak illumination, color distortion
and low contrast. What’s more, large amounts of suspended
particles and marine snow introduce obvious noise. These
unfavorable visibility further decreases the accuracy rate of
underwater object detection and pattern recognition. Thus,
developing an effective method to restore such images is
desirable.

To solve the problems mentioned above, a variety of
underwater image enhancement and restorationmethods have
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been proposed. Earlier methods mainly rely on hardware
processing, such as range-gated laser imaging sys-
tem [1] or polarization filters [2], which are limited in prac-
tical applications. Recently, the vast majority of methods
focus on utilizing the information from a single image to
improve the visual quality. In order to correct the color
cast and enhance the visibility, many image enhancing tech-
niques, such as white balance, color correction, histogram
equalization, fusion-based methods [3] and Retinex-based
methods [4]–[6], are developed. Without considering the
physical imaging process, this kind of method is less applica-
ble for underwater scenario with complex physical properties.
What’s more, noise that is less obvious in the raw underwater
image will be significantly amplified.

Inspired by the similarity between the distortion process
of outdoor hazy and underwater scenes, attempts have been
made using the image formation model (IFM), in which the
transmission is usually estimated by the well known Dark
Channel Prior (DCP) [7]. However, since the attenuation of
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light under water is wavelength-dependent and less homo-
geneous than in outdoor, DCP-based methods show severe
limitations. Although physical characteristics of water are
incorporated in the improved DCP [8]–[10], it still hard to
adapt for various water types.

With the remarkable success achieved by deep-learning
in computer vision, more and more deep models are pro-
posed. But in fact, the performance of these methods remains
unsatisfactory due to the lack of dataset, which contains both
the real-world underwater images and their corresponding
ground truths for different water types. Although several
strategies are introduced to simulate underwater image, there
still exists a gap between synthetic and real-world underwater
images [11].

Even though great progress on underwater restoration has
been made, the existing algorithms focus solely on com-
pensating either light scattering or color distortion, rarely
of them concern about the low-light and noisy circum-
stance, which are ubiquitous during deep-sea exploration.
To address the aforementioned problems, a novel multi-
purpose oriented framework is proposed for real-world under-
water image enhancement, which aims at handling diverse
images captured under complex marine circumstances. First,
we separate the input image into illumination and reflectance.
The estimated illumination represents the luminance, while
the reflectance illustrates the actual contrast and color.
Subsequently, according to the visual quality of the input
image, a pair of improved illumination and reflectance is pro-
duced using different post-processing strategies. In this way,
the brightness, contrast and color can be restored simultane-
ously. Meanwhile, noise caused by suspended particles and
marine snow is also significantly suppressed. Since guided by
the actual optical process, the proposed method is suitable for
different water types and shown superior robustness, accuracy
and flexibility. The specific contributions are summarized as
follows:
• To deal with the limitations faced by existing under-
water image restoration methods in complex real-world
scenes, a multi-purpose oriented approach is proposed.
It can comprehensively address the challenging prob-
lems of real-world underwater images. By capturing
different information into the corresponding layers,
the proposed approach can effectively compensate
brightness, color and contrast simultaneously without
the significant amplification of noise.

• Rather than relying on specific assumptions or priors
to accurately estimate parameters derived from IFM,
the proposed approach only uses the optical properties to
measure the attenuation rate of the input image, thereby
indicating the amplitude of compensation.Without solv-
ing the IFM, the proposed method takes advantages
of both enhancement-based and physical-model-based
categories, which can adapt to various water types.

• Due to suspended particles and weak illuminance in
real underwater world, the captured images and videos
suffer from large amount of noise. Existing methods

tend to enhance noise substantially when restoring the
contrast. Motivated by our previous work in dealing
with outdoor hazy scenes, the proposed method captures
different level of details into the corresponding layers.
By controlling the enhancement amplitude of different
layers, we can generate visually appealing results while
limit the amplification of noise.

The rest of the paper is organized as follows. In Section II,
numerous related works are reviewed. The proposed method
is detailed in Section III. Section IV reports the qualitative
and quantitative experimental results. Section V summarizes
the conclusion.

FIGURE 1. Underwater imaging model [12].

II. RELATED WORK
A. UNDERWATER IMAGING MODEL
According to the underwater imaging model proposed by
McGlamery [13], as shown in Figure.1, it is believed that
the total optical radiation received by the underwater imaging
system consists of three parts: (1) the direct component Ed ,
that is the light reflected by the object without scattering;
(2) the forward-scattering component Ef , that is the light
scattering away from the propagation trajectory and finally
reaching the imaging device; (3) the back-scattering compo-
nent Eb, which is the ambient light scattered by suspended
particles. The total optical radiation ET can be represented as
the linear superposition of the above three components and
shown as follows:

ET (x, y) = Ed (x, y)+ Ef (x, y)+ Eb(x, y) (1)

where (x, y) is the coordinate of the pixel. Since the dis-
tance between the camera and the underwater scene is
relatively close, the forward-scattering component can be
ignored [8], [14].

If we define J (x, y) as the scene radiance, t(x, y) as the
transmission (decreasing exponentially with the depth of the
scene) and B as the background light. Then the scene I (x, y)
captured by the camera can be represented as:

I c(x, y) = Ed (x, y)+ Eb(x, y)

= J c(x, y)tc(x, y)+ Bc(1− tc(x, y))

c ∈ {r, g, b} (2)
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Generally, Eq.2 is considered as the simplified underwa-
ter imaging model (IFM), which is similar with the optical
imaging model in the atmosphere. Therefore, outdoor image
restoration technologies are gradually applied into the under-
water scenes.

In addition, the attenuation of light under water is
wavelength-dependent [8], [14]. When traveling through
water, the red light having a longer wavelength is absorbed
faster than blue and green light, which leads to the blue-
green tone of underwater images. It worth mentioning that
the strong attenuation of one color channel can dramatically
affect the performance of most existing outdoor restoration
techniques [15].

Numerous approaches have been proposed to improve the
visual quality of underwater image. With different core con-
cept, they can be lumped into three categories.

B. UNDERWATER IMAGE ENHANCEMENT METHOD
In this line of research, methods aim at correcting the color
cast and enhancing the contrast bymanipulating image pixels.
Iqbal et al. [16] stretch the histogram in RGB color space
and balance the saturation in HSV color space. Fu et al. [17]
proposes a two-step enhancement method, which carries out
a color correction process followed by a contrast enhance-
ment process. In order to utilize the complementary infor-
mation of multiple images to generate high-quality result,
Ancuti et al. [3] employ a multi-scale fusion method by
fusing a contrast enhanced image and a color corrected
image derived from the single input image. Most recently,
to improve image enhancement in terms of color appearance,
Ancuti et al. [15] introduce a fundamental color channel
compensation (3C) pre-processing step for image enhance-
ment. They observe that information contains in at least on
color channel of images with non-uniform color spectrum
distribution is close to completely lost. By reconstructing the
lost channel based on the opponent color channel, the 3C
algorithm consistently improves the outcome of conventional
restoration methods.

With the same goal of our proposed method, Retinex-
based methods have been proposed. Zhang et al. [4] apply
multi-scale retinex into underwater image enhancement.
Fu et al. [5] firstly correct the color cast, and then enhance the
contrast using retinex-based model. In order to adapt to both
low illumination image and underwater image, Dai et al. [6]
employs different strategies on the incident light and then
improves the contrast of the reflectance.

These enhancing-based methods do not consider the phys-
ical properties of underwater imaging mechanism, so that the
results tend to bring out artifacts, over-enhancement or color
distortion. Meanwhile, noise caused by suspended particles
and marine snow will be significantly amplified.

C. UNDERWATER IMAGE RESTORATION METHOD
Due to the high similarity between the optical imaging pro-
cess of underwater and outdoor hazy scenes. The simpli-
fied image formation model (IFM) as shown in Eq.2 has

been introduced to describe the underwater scene. To esti-
mate the derived parameters, the well known Dark Channel
Prior (DCP) [7] is used. However, owing to the wavelength-
dependent absorption and inhomogeneous medium under
water, traditional DCP shows significant limitations, leading
to erroneous transmission estimation and poor restoration
results. Therefore, physical properties of water are embed-
ded into the modified DCP. In [8], Chiang et al. combine
wavelength compensation with a classic dehazing algorithm
to restore underwater image. Galdran et al. [18] propose a red
channel prior, whose DCP is carried on green, blue and the
inverted red channels. While in [19]–[21], DCP is applied on
only the green and blue channels. Since the information of
red channel is not dependable in diverse underwater scenes
based on the analysis of UDCP [9], the maximum inten-
sity prior (MIP) [22] and blurriness-based [23] approaches
are proposed. To dealing with the low-light deep-sea cir-
cumstance, Li et al. [24] proposes an adaptive bright-color
channel based low-light underwater enhancement method
followed by a denoising and a color correction method
to enhance such images and remove noise and artifacts.
In [10], Yang et al. combine maximum scene depth estima-
tion and adaptive color correction to accurately estimate the
background light. To taking advantage of both the image-
based and model-based approaches, Chang [25] compute
two transmission maps from distinct perspectives and fuse
them weighted by their saliency maps. Also, two different
approaches are used to integrate the background light into
a more accurate estimation. The final outcome is dissolved
through a point spread function deconvolution and color com-
pensation. Based on the assumption that the depth of patches
changes gradually in a local neighborhood for outdoor scenes,
Mandal and Rajagopalan [26] introduces a local proximity
method for hazy image enhancement. By considering the
effect of atmospheric model parameters, local haziness is
reformulated and parameters are estimated locally depending
on the haze condition. Without relying on any empirical
assumption of airlight, they also adopt the local proximity
method into underwater image restoration but obtain obvious
over-saturated results.

With regards to the optical properties under water,
the model-based methods aim at estimating the transmission
map (or depth map) and background light as accurate as pos-
sible to solve the IFM model for image restoration. However,
even if the transmission or background light is relatively well
estimated by these methods, undesired color shifts or visually
unpleasing results are still inevitable. This is because that
specific assumptions and priors may not always hold in the
diverse and complex marine circumstance.

D. DEEP-LEARNING BASED METHOD
This kind of method concentrate on learning the mapping
function between synthetic underwater images and their
corresponding ground truths. Nevertheless, it is practically
impossible to obtain the ground truth for image captured
under different water types. Benefit from the Generative
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FIGURE 2. Flowchart of the proposed method. (Detail layers are reversed in order to facilitate the display).

Adversarial Networks, Li et al. [27] proposes a WaterGAN,
which synthesis underwater images using inair clear image
and depth pairs to train the restoration network.Most recently,
an increasing number of deep-learning based methods are
introduced, e.g. UWCNNs [28], UGAN [29], Water Cycle-
GAN [30], DenseGAN [31] et al. These methods all try
hard to get rid of the limitation of dataset and broaden the
applicability of the algorithm. However, lacking sufficient
training data and uncertain outputs tend to make the perfor-
mance of deep-learning basedmethods largely unsatisfactory,
and whose robustness and generalization still fall behind the
conventional state-of-the-art methods. To solve the difficulty
in the deep-learning based underwater image enhancement,
Li et al. [11] construct a large scale real-world underwater
image enhancement benchmark dataset (UIEBD), which con-
tains totally 950 real-world underwater images for further
research.

III. THE PROPOSED METHOD
In this section, a multi-purpose oriented approach is proposed
to enhance real-world underwater images, which can restore
the brightness, color and contrast simultaneously. The pro-
posed method contains three main steps: estimation of the
illumination and the reflectance, multi-scale decomposition
of the reflectance, and post-processing on different image
layers for restoration of weak illuminance, color cast and
fuzz. The flowchart of the framework is shown in Figure.2.

A. ESTIMATION OF THE ILLUMINATION AND
THE REFLECTANCE
Since underwater images are generally captured under low-
light conditions, Retinex model is uniformly applied in this
case. According to the Retinex theory, a captured image can

be described as:

Sc(x, y) = Rc(x, y) · Lc(x, y), c ∈ {r, g, b} (3)

where S is the captured image,R is the reflectance andL is the
illumination. (x, y) is the coordinate of the pixel. c represents
the color channel in RGB color space.

In order to improve the brightness and the contrast jointly,
we separate the illumination, which is piece-wise smooth
and contains the illuminance variance, from the reflectance
using the Retinex theory. In this way, the global incident
light of the scenario is captured in the illumination, while
color information and details are preserved in the reflectance.
Subsequently, different post-processing strategies are applied
on the corresponding image layers to compensate the illumi-
nance, color and contrast separately.

To effectively estimate illumination and reflectance from
the single input image, most variational methods use the
logarithmic transformation for pre-processing to simplify the
ill-posed problem. However, the variation of gradient magni-
tude is typically suppressed in the logarithmic domain, which
leads to over-smoothed reflectance with much of the desired
edges and texture details lost. To this end, the weighted
variational model proposed by Fu et al. [32] is utilized to
estimate the illumination and the reflectance simultaneously.
The objective function is:

argmin
r,l
‖r+ l− s‖22 + c1‖e

r
· ∇r‖1 + c2‖el · ∇l‖22

s.t. r ≤ 0 and s ≤ l (4)

where s = log(S), r = log(R) and l = log(L), c1 and c2 are
two positive parameters. ∇ is the gradient variation and ‖ · ‖p
denotes the p-norm operator. The first term ‖r + l − s‖22 is
used tomaintain the fidelity, minimizing the distance between
(r+ l) and s. The second term ‖er · ∇r‖1 enforces piece-wise
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constant on r. And the third term ‖el · ∇l‖22 enforces spatial
smoothness on l.

To simplify the minimization of the objective function (2),
and eliminate the impact of theweights er and el, the objective
function can be rewritten as:

argmin
rk ,lk
= ‖rk + lk − s‖22 + c1‖R

k−1
· ∇rk‖1

+ c2‖Lk−1 · ∇lk‖22
s.t. rk ≤ 0 and s ≤ lk (5)

k represents the k-th iteration. Subsequently, an alternating
direction method of multipliers (ADMM) [33] is adopted to
solve the new objective function. Figure.3 shows the esti-
mated illumination and reflectance.

FIGURE 3. The estimated illumination and reflectance. (a) Raw
underwater images. (b) The estimated illuminations. (c) The estimated
reflectances. (d) Results of the proposed method.

B. MULTI-SCALE DECOMPOSITION OF THE REFLECTANCE
Since conventional IFM-based methods strictly rely on the
accuracy of the estimation of derived parameters, even if
well estimated, the restored radiance after solving the optical
model may still present undesired color artifacts. Although
physical characteristics of water have been taken into con-
sideration, specific suppositions and priors are still limited
in diverse and complex water scenes. Herein, the ambition
of this paper is in an attempt to develop a new framework
for the restoration of complex real-world underwater images.
To take advantage of both enhancement-based and model-
based categories, a multi-scale gradient domain contrast
enhancement approach is extended into underwater image
restoration. Rather than estimating transmission or back-
ground light using modified DCP and solving the IFM,
the proposed method only regards the fast estimated trans-
mission as an indicator of the quality of the observed image,
further providing guidance for the setting of enhancement
coefficients. In this way, the proposed method can properly
restore the underwater images that make exceptions to the
conventional methods.

Firstly, to decompose the reflectance into multiple scales,
weighted least squares (WLS) based filter [34] is considered
to split the reflectance into a progressively smoother image
sequence, which can be obtained by:

u = Fλ(R) = (I+ λLR)−1R (6)

where u is the smoothed version of the reflectance R. I is the
identity matrix. LR = DTx AxDx +D

T
y AyDy, in which (x, y) is

the spatial location of a pixel,Dx andDy are discrete differen-
tiation operation, Ax and Ay contain the smoothness weights.
By increasing the positive parameter λ, the progressively
smoother image sequence u1, . . . ,uk−1 can be produced.

Secondly, by subtracting subsequent coarser images,
the multi-scale representation can be generated. The coarsest
image uk−1 is served as the base layer b, which consists the
color variation of the reflectance, while the detail layers di are
computed as:

di = ui−1 − ui, where i = 1, . . . , k − 1 and u0 = R. (7)

k = 3 is set in our experiments.
It is worth mentioning that a larger smooth parameter λ

can produce a smoother u1. By subtracting u1 from R, most
of small scale textures including noise and marine snow can
be captured in the detail layer d1. Therefore, by limiting the
enhancement degree of d1, significant noise amplification
which is inevitable in existing underwater restoration tech-
nologies can be prevented.

C. POST PROCESSING
After capturing information of brightness, color and contrast
into the corresponding layer, post-processing is adopted to
restore low-light, color distortion and fuzz problems simul-
taneously. As shown in the flowchart (Figure.2), brightness
adjustment is carried out on the illumination L. Color correc-
tion is applied on the base layer b of the reflectance, while
contrast enhancement is applied in the gradient domain of
detail layers di in order to avoid the generation of artifacts.

1) BRIGHTNESS ADJUSTMENT
Since the incident light variance is contained in the illumi-
nation, the frequent low-light problem is addressed on this
layer in order to improve the global brightness. The enhanced
illumination L′ is computed as:

L′(x, y) = sigmoid(αL(x, y)) (8)

where sigmoid(·) is the sigmoid function. Parameter α con-
trols the degree of luminance adjustment. In this paper,
according to the experimental performance, α is set to:

α = 10+ (1− Lmean)/Lmean (9)

where Lmean is the mean value of the illumination, which
indicates the under-exposure degree of the input underwa-
ter image. Thus, smaller value of Lmean guides a higher
magnitude of enhancement. Two examples of the brightness
adjustment are shown in Figure.4.

2) COLOR CORRECTION
Due to the wavelength-dependent attenuation of light under
water, most underwater images appear blue or green. After
decomposing the reflectance into multiple scales, the low
frequency color variance is contained in the coarsest version
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FIGURE 4. Brightness adjustment. (a) Raw underwater images. (b) The
estimated illuminations. (c) Illuminations after brightness adjustment.
(d) Final results of the proposed method.

of the reflectance, namely the base layer b. Thus, color correc-
tion is realized in this layer to further restore the color distor-
tion of the input underwater image. A Gaussian distribution
based linear mapping model is adopted for color correction.
Firstly, the maximum and minimum of b in each channel is
given by:

bcmax = bcmean + µb
c
var

bcmin = bcmean − µb
c
var (10)

where c ∈ {r, g, b}, bcmean and bcvar are the mean value and
the standard deviation of the base layer b in the c channel.
µ is a parameter controlling the image dynamic range and set
to µ = 2.3 in our experiments. Finally, the color corrected
base layer bccr is computed as:

bccr =
bc − bcmin
bcmax − b

c
min

(11)

3) CONTRAST ENHANCEMENT
In order to significantly improve the structure and details of
interest while avoid artifacts, the contrast of the underwater
image is enhanced by manipulating the gradient domain of
the reflectance, rather than solving the IFM. This strategy
shows excellent textural details enhancement performance
with efficient suppression of undesired artifacts and noise.

According to the IFM in Eq.2 [8], the contrast of the input
image can be measured as:∑

x

‖∇I(x)‖ = t
∑
x

‖∇J(x)‖ ≤
∑
x

‖∇J(x)‖ (12)

in which, x is the coordinate of the pixel. I is the input image
and J is the scene radiance. Transmission t conforms to t ≤ 1.
∇ is the gradient operator. This equation indicates that the
attenuation of ‖∇J‖ is associated with the transmission value.
Since directly using the reciprocal of t as the enhancement
coefficient, the denominator may close to zero causing severe
artifacts, the average of t is applied instead of t . Therefore,
contrast enhancement manipulated on the gradient domain of
multi-scale detail layers of the reflectance is defined as:

∇d′i =
ωi

t̄
∇di (13)

where ωi are non-negative parameters controlling the
enhancement strength. t̄ is the average of t , in which t

FIGURE 5. Overview of the post-processing on the reflectance. (Detail
layers are reversed to facilitate the display).

is calculated by the fast method proposed by Tarel and
Hautière [35]. As analyzed in Section III-B, d1 contains the
most of tiny details including noise, which is desired to be
enhanced slightly. While d2 captures significant structures
and strong edges, it should be enhancedwith a larger strength.
That is, ω1 ≤ ω2 is set in most cases of our experiments.
In this way, the proposed method is equipped with high con-
trol flexibility, which can simultaneously restore the visibility
efficiently and suppress the significant amplification of noise.
Figure.5 illustrates an overview of the post-processing on the
reflectance.
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FIGURE 6. The performance of noise suppression with different parameter settings.

By solving a Poisson equation on the modified gradients,
two enhanced detail layers d′1 and d′2 are obtained. Accord-
ingly, the improved reflectance is given by:

R′ = bcr + d′1 + d
′

2 (14)

and the restored result can be output by:

S′ = R′ · L′ (15)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the performance of the proposedmethod, compar-
isons are carried out against several state-of-the-art underwa-
ter image enhancement methods, including retinex-based [5],
two-step [17], UDCP [9], UIBLA [23], GDCP [36], red
channel [18] and fusion-based [3], both qualitatively and
quantitatively. What’s more, in order to further prove the
adaptability of the proposed method in real-world com-
plex underwater scenes, comparisons with several represen-
tative deep-learning based methods, i.e. WaterGAN [27],
UGAN [29], UWCNN [28] and Water-Net [11], are also
presented. The experiments are carried out on the Underwater
Image Enhancement Benchmark (UIEB) [11] dataset, which
includes 950 real-world underwater images in all. 890 of them
have corresponding reference images which are considered to
be the best restoration results selected by 50 volunteers, while
the rest 60 underwater images cannot obtain satisfactory ref-
erences and are treated as challenging data. In order to evalu-
ate the performance of different methods fairly, source codes
and the recommended parameter settings are applied in the
experiments. For quantitative evaluation, full-reference cri-
teria: peak signal to noise ratio (PSNR), patch-based contrast
quality index (PCQI) [37], non-reference criteria: underwater
image quality measure (UIQM) [38], underwater color image
quality evaluation (UCIQE) [39] are used. For both the larger
the metrics, the better the quality. Bold values represent the
best results.

It takes about 15.9 seconds to process a color image with
size of 1024× 768. Three of the most time consuming steps:
estimation of the illumination and the reflectance, multi-scale
decomposition of the reflectance and manipulation of the
gradient take about 20% (3.2 s), 33% (5.3 s) and 12% (1.9 s)
of the whole running time, respectively.

A. ANALYSIS OF THE NOISE SUPPRESSION
PERFORMANCE
In this section, the excellent effectiveness of the proposed
method in suppressing the amplification of noise is pre-
sented and analyzed in detail. Generally, when generating
the progressively smoother image sequence via Equation 6,
λ1 = 0.125, λ2 = 0.50 are set. Subsequently, by subtracting
the subsequent coarser images we can obtain the multi-scale
representation. As mentioned above, detail layer d1 contains
most of the tiny details and noise, while d2 captures strong
edges and significant structures. This mechanism brings up
the high control flexibility of the proposed method. In order
to present the big advantage, an experiment in extreme noisy
condition is carried out in Figure.6. Firstly, zero-mean Gaus-
sian noise with standard deviation δ = 0.01 is added on
the raw real-world underwater image. To capture most noise
in detail layer d1, the smoother parameter λ1 is adjusted
to λ1 = 0.25 when producing u1, which makes u1 more
smoother than the input R. Secondly, to prevent noise from
being boosted significantly, the enhancement coefficient ω1
of d1 can be set to a sufficient small value (e.g. ω1 = 0.01).
Thus, visibility of the fuzzy input underwater image could
be restored efficiently, and significant amplification of noise
can be avoided. PSNR values of the input noisy underwater
image and restoration results obtained by different parameter
settings are illustrated in Figure.6.

As can be seen in Fig.7, noise is easily amplified by
existing underwater restoration methods. While both subjec-
tive and objective results reveal that the proposed method
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FIGURE 7. The performance of noise suppression among different methods.

TABLE 1. PSNR values of different methods in Figure.7.

can effectively improve the visibility of the raw underwater
images without significant amplification of noise, as shown
in Figure.7 and Table.1.

B. QUALITATIVE EVALUATION
In Figure.8, the results of different methods and the corre-
sponding reference images are shown. These test images are
selected from the UIEB [11] and represent different underwa-
ter color tones and lighting conditions.

Due to the severe absorption of light, underwater images
are usually captured in low-light conditions, as shown
in Figure.8(a). It can be seen from the results, the retinex-
based [5], two-step [17], fusion-based [3] and the pro-
posed methods can generate visually pleasing results, while
UIBLA [23], GDCP [36] and red channel [18] tend to pro-
duce unnatural appearance since the results are too bright
for visual perception. UDCP [9] cannot handle the low-light
circumstance properly. However, in the dark background
region, the proposed method shows excellent performance
in detail enhancement, even better than the reference image.
Since light attenuation under water is wavelength-dependent,
red light disappears firstly followed by green light and
blue light, which results in greenish or bluish underwater
images, as shown in Figure.8(b)(c)(d)(g). Due to the limi-
tations of assumptions and priors, UDCP [9], GDCP [36]
and UIBLA [23] aggravate the effect of color distortion.
Two-step [17] and red channel [18] methods have less
positive effect on the contrast enhancement, especially in
Figure.8(c)(d). Haze still remains in the results. Fusion-
based [3] method can effectively improve the contrast of
underwater images but fails in color correction when dealing
with the bluish image like Figure.8(g). The proposed method
gains comparable results to the retinex-based [5] method,
but is superior to it in terms of preserving details. What’s
more, as shown in Figure.8(e)(f), the proposed method can
effectively remove the effect of haze and improve visibility.

In Figure.9, comparisons with above mentioned meth-
ods on restoring the challenging images in UIEB dataset

are presented. As can be seen, challenging underwater
images have relatively low visibility and weak illumination.
Under these conditions, all the physical-model basedmethods
(e.g., UDCP [9], UIBLA [23], GDCP [36] and red chan-
nel [18]) fail to estimate transmission and veiling light accu-
rately, which results in visually unpleasing restoration results.
For the scenes in Fig.9(c), both green seaweed and red fish
exist in the bluish and low-light circumstance, two-step [17]
and red channel [18] methods cannot handle this case
properly. Although retinex-based [5] and fusion-based [3]
methods can effectively remove color cast, improve contrast
and brightness, unnatural artifacts in the high backscatter
region (e.g., distant region in Figure.9(e)) and reddish color
deviation (e.g., reddish rock in Figure.9(e)) are tend to be
introduced.

To demonstrate the advantages achieved by the proposed
method, we also compare it against several representative
deep-learning based methods in Figure.10. As can be seen
from the results produced by WaterGAN [27], obvious
artifacts are introduced and the visibility of the restored
images is severely unsatisfactory. In addition, UGAN [29]
and UWCNN [28] have very little effect on color correction
and contrast improvement, even increase the color cast. It is
because that lacking sufficient training data will severely
limit the performance of deep-learning based algorithms in
the diverse water types and light conditions. By training
the network using the real-world underwater dataset UIEB,
the Water-Net [11] tends to produce visually pleasing results.
However, it is noticeable that the proposed method achieves
better visual quality than it with more natural appearance and
better details.

In summary, the proposed method has a relatively decent
performance for diverse water types and lighting conditions.

C. QUANTITATIVE EVALUATION
Furthermore, in order to quantitatively evaluate the perfor-
mance of the proposedmethod, both full-reference evaluation
and non-reference evaluation are performed.
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FIGURE 8. Subjective comparisons on underwater images from UIBE testing set.

FIGURE 9. Subjective comparisons on underwater images from UIBE challenging set.

For full-reference evaluation, we treat the reference images
supported by UIEB as the ground truths and compute the
PSNR, PCQI between the restored results and the correspond-
ing reference. A higher PSNR value means the result is closer

to the reference in terms of image content, while a higher
PCQI score denotes better contrast variations for human per-
ception. Table.2 represents the full-reference image quality
evaluation of different methods on Figure.8.
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FIGURE 10. Subjective comparisons with deep-learning based methods.

TABLE 2. PSNR and PCQI values of different methods in Figure.8.

TABLE 3. UIQM and UCIQE values of different methods in Figure.8.

As shown in Table.2, the fusion-based method [3] tends
to have the relatively decent performance on both the PSNR
and PCQI values. That is because most of reference images
in UIEB are selected from the restoration results produced
by the fusion-based technology. Beyond that, the proposed
method ranks the second results. Although several values
of two-step [3] and red channel [18] methods are higher
than other methods, it can be seen from the corresponding
subjective results that they are not consistent satisfactory.

Table.3, Table.4 and Table.5 quantitatively evaluate the
performance of different methods on Figure.8, Figure.9

and Figure.10 in terms of non-reference criteria, e.g. UIQM
and UCIQE. A higher UIQM value indicates a visually
appealing result in human visual perception, while a higher
UCIQE value means the result has better chroma, saturation
and contrast.

In Table.3, the proposed method obtains almost the
best scores of UIQM, while UCIQE values are compara-
ble or slightly higher than fusion-based method [3]. We note
that UDCP yields the best scores in Figure.8(a)(e)(f), but
causes over-saturation or shortcoming in brightness adjust-
ment actually.

112966 VOLUME 8, 2020



Z. Mi et al.: Multi-Purpose Oriented Real-World Underwater Image Enhancement

TABLE 4. UIQM and UCIQE values of different methods in Figure.9.

TABLE 5. UIQM and UCIQE values of different methods in Figure.10.

It’s also worth mentioning that the proposed method stands
out as the best performer across the two metrics in Table.4 as
before. However, the phenomenon that the assessments are
biased towards over-enhancement results still exists in other
methods.

Consistent with the subjective performance, the pro-
posed approach receives the highest scores of both UIQM
and UCIQE comparing with deep-learning based methods
in Table.5, which indicates that our method has more robust
performance.

In summary, unless the gap between the current image
quality evaluation criteria and the subjective visual qual-
ity, the proposed method shows excellent performance in
improving the visibility of underwater images meanwhile
suppressing the amplification of noise. Both qualitative and
quantitative experiments demonstrate the effectiveness of the
proposed method.

V. CONCLUSION
In this paper, a multi-purpose oriented method is proposed
to restore real-world underwater images. To compensate the
attenuation of brightness, color and contrast, we try to cap-
ture different information into the corresponding layer in
order to carry out the post-processing respectively. Firstly,
a retinex model is used to separate the illumination which
represents the variance of brightness from the reflectance.
Then, the reflectance is decomposed into multiple scales.
Color correction is implemented on the most smoothed base
layer, while contrast enhancement is enforced on the gradient
domain of the detail layers. In this way, the proposed method
tends to generate visually pleasing results with improved
brightness, contrast and color. In addition, the inevitable
amplification of noise in conventional methods has also been
overcome. Both qualitative and quantitative comparisons

indicate that the proposed method has superior robustness,
accuracy and flexibility for diverse water types.

Nevertheless, the proposed method is not without limita-
tions. The final result is easily affected by the estimation
accuracy of the illumination and reflectance. What’s more,
over-enhancement still exhibits when dealing with pure white
regions (such as the air bubbles in water). In the future work,
we will focus on dealing with these issues.
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