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ABSTRACT Recent studies indicated that numerous long noncoding RNAs (lncRNAs) are closely
related to human diseases and can serve as potential biomarkers and drug targets for complex diseases.
Therefore, identifying lncRNAs associated with diseases through computational methods is conducive to
the exploration of disease pathogenesis. Most previous studies had shortcomings, such as low prediction
accuracy, the need for negative samples, and weak generalization. Such studies established shallow
prediction models and failed to fully capture the complex relationships among lncRNA–disease associations,
lncRNA similarity, and disease similarity. LRLSSP, a new computational method based on Laplacian
regularized least squares (LRLS) and space projection was used to predict candidate disease lncRNAs in
this study. LRLSSP deeply integrates information on lncRNA similarity, disease similarity, and known
lncRNA–disease associations. The estimated score of lncRNA–disease association was obtained through
LRLS, and network projection was utilized to reliably predict disease-related lncRNAs. Leave-one-out
cross validation(LOOCV) was implemented to evaluate the prediction performance of LRLSSP. Results
showed that LRLSSP performed was better than other state-of-the-art methods in predicting lncRNA–
disease associations. In addition, case studies conducted on melanoma,cervical cancer, ovarian cancer
and breast cancer indicated that LRLSSP can discover potential and novel lncRNA–disease associations.
Overall, the results demonstrated that LRLSSP may serve as a reliable and effective computational tool for
disease-related lncRNAs prediction.

INDEX TERMS Disease similarity, lncRNA similarity, Laplacian regularized least squares, space projection,
computational prediction model.

I. INTRODUCTION
LncRNAs are RNA molecules that are not translated into
proteins and exceed 200 nt in length. lncRNAs have
long been considered as transcriptional noise. Considerable
evidence suggests that lncRNAs play fundamental and key
regulatory roles in important biological processes, includ-
ing chromatin remodeling, epigenetic regulation, genomic
splicing, immune response, and cell cycle control [1]–[4].
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The mutations and dysregulation of lncRNAs are related
to the occurrence and development of various complex
diseases [5]. For example, HOTAIR promotes serous ovarian
cancer cell proliferation by regulating cell cycle arrest and
apoptosis [6]. TDRG1 can enhance the tumorigenicity of
endometrial cancer by binding to and targeting VEGF-A
proteins [7]. MEG3 is involved in the epigenetic regulation
of epithelial–mesenchymal transformation in lung cancer
cell lines [8]. In addition, GAS5 promotes bladder cancer
cell apoptosis by inhibiting the transcription of EZH2 [9].
Therefore, studying the associations between lncRNAs and
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diseases can help researchers to discover the pathogenesis of
complex human diseases at the molecular level and facilitate
their diagnosis and treatment. However, revealing the asso-
ciations between lncRNAs and diseases through biological
experiments requires considerable manpower, materials, and
financial resources; thus, efficient computational methods
should be used to predict the reliable associations between
lncRNAs and diseases and to serve as a powerful supplement
to biological experiments [10]. In light of this reason,
further computational methods for identifying disease-related
lncRNAs are urgently needed.

With the increase in available biological data, computa-
tional models have been developed to predict the association
between lncRNAs and diseases [11]–[13]. These prediction
methods can be divided into two categories. The first category
includes network-based models, which are based on the
general assumption that ‘‘functionally related lncRNAs tend
to phenotypically similar diseases, and vice versa’’ [14].
Ping et al. [14] constructed a bipartite network based on
known lncRNA-disease associations, and then found the
network was closely followed a power law distribution.
Finally, they predicted the lncRNA–disease associations
by calculating the length of the path. Several researchers
successfully implemented the randomwalk algorithm to infer
the potential lncRNA -disease relationship, miRNA-disease
relationship, and gene-disease relationship on heterogeneous
networks. [15]–[26]. Sun et al. [15] constructed a functional
similarity network of lncRNAs on the basis of a semantic
similarity network of diseases and a known lncRNA–disease
association network,then they implemented random walk
with restart on the network. This method is a global prediction
method but cannot be used to predict lncRNAs without
known associations. Chen et al. [23] proposed an improved
random walk with restart algorithm, Li et al. [27] proposed
an improved local random walk method for lncRNA–
disease association prediction to eliminated the limitations
of traditional restart random walk algorithm. Fan et al. [28]
first used positive pointwise mutual information to construct
a large-scale lncRNA–disease heterogeneous network,and
then implemented Random Walk with restart algorithm
to predict lncRNA disease associations; Hu et al. [29]
used interaction profile and gene ontology information to
build lncRNA-disease network, and then utilized bi-random
walks to predict lncRNA–disease associations. HyperGeo-
metric distribution [10], label propagation algorithm [30],
KATZ [31], and space projection [32]–[34] have been used
to predict lncRNA–disease association, but although their
accuracy is low. Xiao et al. [35] designed a method based on
a simple path with limited length in a heterogeneous network
to predict disease-related lncRNAs, but given the extremely
simple short-decay function, its prediction performance
should be improved with a machine learning method.

The second category includes machine learning-based
models. Zhao et al. [36] and Yu et al. [37] used naive
Bayesian classifier model, whereas Lan et al. [38] and
Chen et al. [39] used bagging support vector machine (SVM)

to predict lncRNA–disease association. Although such
machine learning methods can predict lncRNA–disease
associations, they are faced with a huge challenge, that is,
the uncertain influence caused by the selection difficulty and
bias of negative samples. To solve the problem as to the
necessity of negative samples for machine learning methods,
Chen and Yan [40] applied Laplacian regularized least
squares algorithm (LRLSLDA) to predict lncRNA–disease
associations. Chen et al. [41] proposed a new lncRNA
similarity calculation method named LNCSIM, whereas
Huang et al. [42] proposed another lncRNA similarity calcu-
lation method named ILNCSIM; Chen et al. [43] proposed
a fuzzy measure-based lncRNA functional similarity calcu-
lation method and implemented LRLSLDA on the basis of
these similarity construction methods, all of which achieved
good prediction results.

Many researchers attempted to use deep learning in
the field of lncRNA association prediction. Xuan et al.
proposed a variety of methods on the basis of convolu-
tional neural network for the prediction of disease-related
lncRNAs [44]–[46]. In recent years, other machine learning-
based models, such as randomized matrix completion algo-
rithm [47], inductive matrix completion algorithm [48], and
matrix factorization algorithm [49], have been put forward to
predict lncRNA-associated diseases. Liu et al. [50] proposed
a weighted graph regulated collaborative matrix factor-
ization method to identify lncRNA–disease associations;
Xuan et al. [51] used the probabilistic matrix factorization
method to predict disease-related lncRNAs; Zhu et al. [52]
integrated alternative lead squares and matrix factorization
to identify lncRNA–disease associations; Zeng et al. [53]
integrated deep learning and matrix factorization to iden-
tify lncRNA-disease association. However, parameters are
difficult to determine via such methods. Xuan et al. [51]
used the probabilistic matrix factorization method to predict
disease-related lncRNAs.

From the above analysis,although existing computational
methods have made considerable contribution to revealing
lncRNA–disease associations, they still have different limi-
tations. In this study, a reliable method for lncRNA–disease
association prediction was proposed on the basis of LRLS
and space projection. LRLSSP mainly comprises three steps.
First, Gaussian interaction profile kernel similarity,disease
semantic similarity, and lncRNA functional similarity are
used to reconstruct an accurate similarity network for
lncRNAs and diseases. Second, LRLS is used to estimate
the association between lncRNAs and diseases to alleviate
the effect of sparsity of lncRNA–disease association and
positive and unlabeled problems. Finally, a network space
projection is used to refine the lncRNA–disease association
prediction effect. The area Under receiving operating char-
acteristic (ROC) Curve (AUC) obtained by implementing
LOOCV in three datasets is 0.9377, 0.9383 and 0.9467,
respectively,which outperforms those of the three state-of-
the-art methods, namely, NCPLDA [32], LDAI-ISPS [33],
and, IIRWR [24], and to demonstrate the effectiveness
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of LRLSSP. Moreover, LRLSSP was utilized in case
studies of melanoma,cervical cancer, ovarian cancer and
breast cancer to further validate its effectiveness. Overall,
LRLSSP is effective in predicting lncRNA–disease associ-
ations and can be further applied to reveal other biological
associations.

II. MATERIALS AND DATA PREPARATION
A. KNOWN lncRNA–DISEASE ASSOCIATIONS
Chen et al. [54] built the LncRNADisease, an lncRNA
and disease database, which is publicly accessible at
http://www.cuilab.cn/lncrnadisease, to investigate the asso-
ciations between lncRNAs and human disease The
2013, 2015,and 2017 versions of the database were
obtained for this work. After the data were processed,
156 lncRNAs (Supplementary Material S1), 190 diseases
(Supplementary Material S2), and 352 lncRNA–disease
associations (Supplementary Material S3) were obtained
from the 2013 version (marked as dataset 1). A total
of 285 lncRNAs (Supplementary Material S4), 226 diseases
(Supplementary Material S5), and 621 lncRNA–disease
associations (Supplementary Material S6) were obtained
from the 2015 version. (marked as dataset 2). A total
of 828 lncRNAs (Supplementary Material S7), 314 diseases
(Supplementary Material S8), and 1695 lncRNA–disease
associations (Supplementary Material S9) were obtained
from the 2017 version. (marked as dataset 3). The matrix
L = {l1, l2, · · · , lnl} represents the lncRNA sets, the matrix
D = {d1, d2, · · · , dnd } denotes that disease sets, and the
Boolean matrix LD = (ldij)nl×nd indicates lncRNA–disease
associations. The value of ldij is 1, indicating that lncRNA li
is related to disease dj; otherwise, its value is 0.

B. DISEASE–DISEASE SEMANTIC SIMILARITY
In accordance with the work of Wang et al. [55], the dis-
ease semantic similarity was calculated on the basis of
a disease’s tree attributes in Medical Subject Headings.
In this method, each disease corresponded to a directed
acyclic graph. If two diseases share more disease items than
others, the similarity between the two diseases would be
remarkable. The data were obtained directly from the works
of Zhang et al. [33], Li et al. [32] and Wang et al. [24]
(Supplementary Materials S10,S11,and S12) and represented
by matrix DD = (ddij)nd×nd .

C. LncRNA–lncRNA FUNCTIONAL SIMILARITY
Jie et al. [15] used disease semantic similarity and known
disease–lncRNA associations to calculate lncRNA functional
similarity. In the present study, lncRNA–lncRNA functional
similarity was obtained on the basis of relevant studies.

The calculation of the functional similarity of lncRNAs
can be roughly divided into two steps. (1) Given any two
lncRNAs li and lj whose associated diseases are denoted as
two vectors D(li) = {d1′ , d2′ , · · · , dm′} = {di′}m ⊂ D and
D(li) = {d1′′ , d2′′ , · · · , dm′′} = {di′′}n ⊂ D, respectively,

the functional similarity of lncRNA li and lj could be defined
as follows:

llij =

∑
dt∈D(li)

S(dt ,D(lj))+
∑

dt∈D
(lj)
S(dt ,D(li))

m+ n
(1)

where m and n are the known numbers of diseases associated
with lncRNAs li and lj, respectively. S(di′ ,D(li)) represents
the correlation score between a given disease di′ and a given
disease set D(li) calculated as follows:

S(di′ ,D(lj)) = max
dt∈D

(lj)
(ddi′t ) (2)

The matrix LL = (llij)nl×nl was used to represent such data
(Supplementary Materials S13,S14, and S15).

D. CENTRAL SIMILARITY OF THE GAUSSIAN
INTERACTION PROFILE
A small number of known lncRNA–disease associations may
lead to the sparse similarity matrix of diseases (lncRNAs).
The central similarities of the Gaussian interaction profile
were used to solve this problem and to address this defect.
On the basis of Laarhoven’s work [56], the similarity score
between disease di and dj is defined as follows:

gdij = exp(−γd ‖LD(:, i)− LD(:, j)‖2) (3)

where LD(:, i) is the ith column of the matrix LD, represent-
ing known lncRNA information associated with diseases di,
γd is the Gaussian kernel bandwidth, and the calculation
formula is as follows:

γd =
γ ′d

1
nd

∑nd
i=1 ‖LD(:, i)‖

2
(4)

where based on previous studies [43], γ ′d is set to 1.
Furthermore, the matrix GD = (gdij)nd×nd was used to
represent Gaussian interaction profile central similarities
between diseases.

For lncRNAs, the central similarity of the Gaussian
interaction profile between lncRNA li and lncRNA lj could
be calculated in a similar manner:

glij = exp(−γl ‖LD(i, :)− LD(j, :)‖2) (5)

where LD(i, :) is the ith row of matrix LDnl×nd , representing
known lncRNA information associated with lncRNA li, and
γd is calculated as follows:

γl =
γ ′l

1
nl

∑nl
i=1 ‖LD(i, :)‖

2
(6)

where γ ′l is also set to 1, and the matrix GL = (glij)nl×nl
is used to represent the central similarities of the Gaussian
interaction profile between lncRNAs.
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E. INTEGRATED SIMILARITY FOR lncRNAs AND DISEASES
After LL, GD, and GL were calculated, they were integrated
with DD to obtain the final disease similarity matrix (denoted
by DD∗ = (dd∗ij )nd×nd ) and the final lncRNA similarity
matrix (denoted by LL∗ = (ll∗ij)nl×nl). Given different
diseases di and dj, if the semantic similarity between the
two is 0, then the final similarity value is set as the central
similarity of the Gaussian interaction profile between the
two diseases; otherwise, the final similarity value is set as
the semantic similarity between the two diseases. The final
similarity between lncRNAs was also calculated in the same
way. For clarity, the detailed formula is described as follows:

dd∗ij =

{
ddij, if ddij 6= 0
gdij, otherwise

(7)

11∗ij =

{
11ij, if 11ij 6= 0
g1ij, otherwise

(8)

III. LRLSSP METHOD
In this work, LRLSSP was used to uncover the associa-
tion between lncRNAs and diseases. LRLSSP comprises
three steps: (1) data preparation, (2) score estimation of
lncRNA–disease association, and (3) score refinement of
lncRNA–disease association.

In data preparation (Equations 7 and 8), the integrated
disease similarity was obtained using semantic similar-
ity and Gaussian interaction profile central similarities,
and the integrated lncRNA similarity was obtained using
functional similarity and the central similarities of the
Gaussian interaction profile. LRLS algorithm was used to
estimate the lncRNA–disease association score to prioritize
lncRNA–disease interactions based on the integrated net-
work. In the score refinement of lncRNA–disease association,
space projection was used to obtain the final prediction scores
of lncRNA–disease association. Figure 1 shows the entire
workflow.

A. SCORE ESTIMATION OF lncRNA–DISEASE ASSOCIATION
LRLS algorithm is a data-dependent manifold regula-
tive framework, and it has been successfully applied to
drug–protein interaction prediction [57] and miRNA–disease
association prediction [58].

From the perspective of diseases, the estimated scores
can be obtained by solving the optimization problem of the
following equation:

min
LDd

{
‖LD− LDd‖2F + α

∥∥∥LDdDDD∗LDTd ∥∥∥2F
}

(9)

where LDd is the estimated score matrix of lncRNA–disease
association based on disease space; DDD∗ is a diagonal
matrix; DDD∗ (i, i) is the sum of the ith row element of DD∗;
‖·‖F is the tradeoff parameter, and ‖·‖F is Frobenius norm.
After Equation (9) was solved, the estimated score matrix
of lncRNA–disease association was obtained on the basis of

disease space LDd as follows [57]:

LDd = DD∗(DD∗ + αDDD∗DD∗)−1LDT (10)

In the same way, the estimated score matrix of
lncRNA–disease association can be obtained on the basis of
lncRNA space LDl as Equation (11):

LDl = LL∗(LL∗ + βDLL∗LL∗)−1LD (11)

Then, the score estimation matrix of the lncRNA–disease
association can be defined as follows:

LDe =
LDTd + LDl

2
(12)

B. SCORE REFINEMENT OF THE lncRNA–DISEASE
ASSOCIATION
On the basis of the estimated lncRNA–disease association
scores obtained from LRLS in the previous section, matrix
space projection was used to obtain the final lncRNA–disease
association scores. Thus, the prediction performance of the
proposed model can be improved.

Here, the predicted score calculation of the association
between lncRNA li and disease dj was considered an
example.The projection of the final lncRNA similarity matrix
LL∗ in the lncRNA–disease association score estimation
matrix LDe was used as the projection score on the basis
of the lncRNA space to fully capture the information of
disease similarity,lncRNA similarity,and lncRNA–disease
associations. The score between lncRNA li and disease dj was
calculated as follows:

LDpl(i, j) =
LL∗(i, :)× LDe(:, j)
‖LDe(:, j)‖

(13)

where ‖LDe(:, j)‖ is the 2-norm of LDe(:, j), and LDpl(i, j) is
the score of space projection based on lncRNA space between
lncRNA li and disease dj.
Similarly, the space projection scores can be obtained from

the disease similarity network DD∗ by

LDpd (i, j) =
DD∗(j, :)× LDT

e (:, i)∥∥LDT
e (:, i)

∥∥ (14)

where
∥∥LDT

e (:, i)
∥∥ is the 2-norm of LDT

e (:, i).
The prediction matrix based on lncRNA space and disease

space are LDpl and LDpd , respectively. Finally, LDpl and
LDpd were integrated to obtain the final prediction score
matrix between lncRNAs and diseases as follows:

LD∗ =
LDpl + LDT

pd

2
(15)

IV. EXPERIMENTS AND RESULTS
A. PERFORMANCE EVALUATION OF LRLSSP
LOOCVwas implemented on the two datasets to evaluate the
predictive performance of LRLSSP. During the experiment,
each lncRNA–disease associationwas used as the test sample,
and other lncRNA–disease associations were considered
the training samples until all lncRNA–disease associations
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FIGURE 1. The flowchart of the whole modeling procedure.

FIGURE 2. Influence of parameter variation on model predictive accuracy.

were tested once. The ROC curve and AUC were used
as performance criteria for the evaluation. The higher the
AUC value, the better is the model prediction performance.
In addition, we also drew PR curve with recall as abscissa
and precision as ordinate, and calculatedAUPR. The larger
the AUPR value, the better the prediction performance.

B. PARAMETER SELECTION
The method proposed in this paper includes two parameters,
namely, the tradeoff parameters α and β, which are equal.
The tradeoff parameters were gradually increased from 2−20

to 210 for LOOCV, and the AUC value was calculated to
obtain the optimal parameter. Figure 2 shows the results of
the LOOCV experiments implemented in the three datasets.
In the figure, blue represents the AUC variation diagram on
dataset 1,and magenta denotes the AUC variation diagram
on dataset 2,and green represets the AUC variation diagram
on dataset 3. The variation trends of AUC value on the three
datasets were almost identical. When the tradeoff parameter
was increased from 2−20 to 2−10, the AUC value remained
almost constant. As the parameter increased from 2−10

to 2−5, theAUCvalue decreased slightly.When the parameter
increased from 2−5 to 20, the AUC decreased gradually.

As the parameter increased from 20 to 210, theAUCdecreased
significantly. Therefore, the parameters of three datasets were
set as 2−10.

C. COMPARISON OF PREDICTIVE PERFORMANCE UNDER
DIFFERENT SITUATIONS
LRLSSP mainly includes the score estimation and refine-
ment of lncRNA–disease associations. This method first
uses the LRLS algorithm to estimate the lncRNA–disease
association score and uses matrix space projection to
refine the lncRNA–disease association score. The prediction
performance of LRLSSP was evaluated considering the
following scenarios: (1) predictive performance using only
LRLS(LRLS), (2) predictive performance using only matrix
space projection (SP), (3) lncRNA–disease association score
estimation via space projection and refinement via LRLS
(SPLRLS), and (4) estimation of the lncRNA–disease
association score via LRLS and refinement via matrix space
projection (LRLSSP). Figure 3 plots the ROC curve of the
four scenarios mentioned in dataset 1. The ROC curve of
LRLSSP was superior to those of the other scenarios. The
AUC of LRLSSP was 0.9377, whereas those of LRLS, SP,
and SPLRLS were 0.7299, 0.7342, and 0.7343, respectively.
LOOCV in dataset 2 further confirmed that LRLSSP had the
best prediction effect with an AUC value of 0.9383, whereas
the AUC values of LRLS, SP, and SPLRLS were 0.8037,
0.8034, and 0.8038, respectively. Figure 4 shows the ROC
curves of the four scenarios in dataset 2. Figure 5 shows the
results of LOOCV of four different scenarios on dataset 3.
TheAUCvalue of LRLSSP is 0.9467, while that of LRLS, SP,
and SPLRLS are 0.8813, 0.8840, and 0.8846, respectively.
The results show that the prediction performance of LRLSSP
is much better than that of LRLS, SP, and SPLRLS.

D. COMPARISON OF LRLSSP WITH EXISTING
STATE-OF-THE-ART METHODS
Thus far, state-of-the-art models for lncRNA–disease
association include NCPLDA [32], IIRWR [24], and
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FIGURE 3. ROC curves and AUC values based on LOOCV in different
situations in the dataset 1.

FIGURE 4. ROC curves and AUC values based on LOOCV in different
situations in the dataset 2.

FIGURE 5. ROC curves and AUC values based on LOOCV in different
situations in the dataset 3.

LDAI-ISPS [33]. The performance of LRLSSP was assessed
by comparing it with three methods in the framework of
LOOCV. A fair comparison was ensured by setting the
optimal parameters for NCPLDA, IIRWR, and LDAI-ISPS
as described in the corresponding literature. Figure 6
shows the ROC curve and AUC values of LRLSSP,
NCPLDA, and LDAI-ISPS on dataset 1. The AUC values
of LRLSSP, NCPLDA, IIRWR,and LDAI-ISPS were 0.9377,
0.9107, 0.7883,and 0.9154, respectively. LRLSSP showed

FIGURE 6. ROC curves and AUC values of LRLSSP and other three
methods in the dataset 1.

the best performance among the tested methods, and its
AUC values were 2.96%,16.47%, and 2.44% higher than
those of the other methods. The AUC values of LRLSSP,
NCPLDA, IIRWR,and LDAI-ISPS in dataset 2 were 0.9383,
0.9012, 0.8230,and 0.8341, respectively. The AUC values
obtained for LRLSSP were 3.95%,12.29%,and 12.49%
higher than those of NCPLDA and LDAI-ISPS, respectively
(Figure 7).AUC values of LRLSSP, NCPLDA, IIRWR,and
LDAI-ISPS in dataset 3 were 0.9467, 0.9307, 0.8745, 0.8455
(Figure 8), respectively. AUC values of LRLSSPwere 1.69%,
7.63%, and 10.69% higher than those of NCPLDA, IIRWR,
and LDAI-ISPS.

FIGURE 7. ROC curves and AUC values of LRLSSP and other three
methods in the dataset 2.

AUPR was also used to evaluate the prediction perfor-
mance of these methods. In dataset 1, the AUPR values of
LRLSSP, NCPLDA, IIRWR,and LDAI-ISPS were 0.5642,
0.1886, 0.1319, and 0.4516 (Figure 9), respectively. In dataset
2, the AUPR values of LRLSSP, NCPLDA, IIRWR,and
LDAI-ISPS were 0.3992, 0.1378, 0.1724, and 0.1768
(Figure 10), respectively. In dataset 3, the AUPR values of
LRLSSP, NCPLDA, IIRWR, and LDAI-ISPS were 0.3175,
0.1355, 0.1163, and 0.0820 (Figure 11), respectively. The
above two indexes of LRLSSP were superior to NCPLDA,
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FIGURE 8. ROC curves and AUC values of LRLSSP and other three
methods in the dataset 3.

FIGURE 9. PR curves and AUPR values of LRLSSP and other three
methods in the dataset 1.

FIGURE 10. PR curves and AUPR values of LRLSSP and other three
methods in the dataset 2.

IIRWR,and LDAI-ISPS in three different data sets, which
fully showed that LRLSSP was a reliable lncRNA-disease
association prediction tool.

E. PREDICTION OF ISOLATED DISEASES AND NEW
lncRNAs
Prediction experiments for diseases without any known
associated lncRNAs(isolated diseases)were performed to
further assess the capability of LRLSSP to discover potential
lncRNAs for isolated diseases. In the experiments, one

FIGURE 11. PR curves and AUPR values of LRLSSP and other three
methods in the dataset 3.

disease was selected as the test sample. The rest of the
associations related to other diseases were used as the training
sample until all the diseases were verified as test sample
once. For each disease, all related lncRNAs were removed
to simulate isolated diseases. The cross-validation results
in Figure 12 demonstrate that LRLSSP has a good prediction
performance for isolated diseases, and the AUC values in
dataset 1, dataset 2, and dataset 3 were 0.8732, 0.8833, and
0.8909,respectively.

FIGURE 12. Predictions of new lncRNAs and isolated diseases.

Similarly, a lncRNA was selected as the test sample
to verify the predictive capability of LRLSSP for new
lncRNA-related diseases. Other existing associations were
considered the training sample until all lncRNAs were
verified once as test samples. As in the simulation of
isolated diseases, all associated diseases for each lncRNA
were deleted to simulate new lncRNAs, and all candidate
diseases were prioritized using information from other
lncRNA-related diseases. As shown in Figure 12, for the
cross-validation of new lncRNAs, LRLSSP obtained an AUC
value of 0.8214,0.7672,and 0.8499 in dataset 1, dataset 2,
and dataset 3,respectively. Thus, the generalization capability
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of LRLSSP in predicting lncRNAs without any known
associated diseases was verified.

F. CASE STUDIES
Two specific diseases, namely, melanoma and cervical
cancer, were selected for a case study to further esti-
mate the performance of LRLSSP in predicting potential
disease-related lncRNAs. During simulation, first took the
known lncRNA–disease associations in dataset 1 as train-
ing samples, then took the rest unknown associations in
dataset 1 as test verification set, and finally verified the
prediction results in LncRNADisease v2.0 and relevant
literature. Table 1 lists the top five melanoma- and cervical
cancer-related lncRNAs predicted using the LRLSSP model
and the corresponding validation evidence.

Melanoma, an aggressive skin cancer, is the seventh most
malignant tumor in females and the fifth in males [59] [60].
Over the past few decades, the incidence and mortality
of melanoma steadily increased [61]. Here, LRLSSP was
implemented to predict lncRNAs associated with melanoma
and to identify novel molecular associations as prognostic
or therapeutic markers. Table 1 shows that four of the
top five predicted lncRNAs related to melanoma were
confirmed in the LncRNADisease database, and only
BCYRN1 was not verified. Furthermore, Li et al. [61]
observed that MEG3 inhibits the progression of malignant
melanoma through the inactivated Wnt signaling pathway;
Wang et al. [62] suggested that PVT1 promotes melanoma
progression; Chen et al. [63] revealed that RNA PVT1 can
be used as a diagnostic biomarker for melanoma. These
pieces of evidence further prove the reliable performance
of LRLSSP in the prediction of potential melanoma-related
lncRNA. Although no evidence can prove that BCYRN1 is
associated with melanoma, researchers may find evidence of
its role in the future.

Cervical cancer is one of the gynecological tumors with the
highest cancer-related deaths worldwide [64]. The potential
therapeutic targets of cervical cancer revealed by the analysis
of lncRNA association will be helpful for its treatment.
Therefore, early detection of cervical cancer is necessary,
and a better understanding of the molecular mechanisms
of cervical cancer growth and metastasis will help in the
discovery of novel specific biomarkers. Here, LRLSSP was
implemented to discover lncRNAs that may be related to
cervical cancer. As shown in Table 1, all the predicted
results of the top five cervical cancer-related lncRNAs were
confirmed in the LncRNADisease v2.0. These cases suggest
the good performance of LRLSSP in predicting new potential
lncRNA–disease associations.

In recent years, many new diseases with no known lncRNA
association information have been gradually discovered.
Many models are inapplicable to predict the lncRNAs associ-
ated with isolated diseases. The performance of LRLSSP was
further evaluated by using it to predict lncRNAs associated
with isolated diseases. Here, ovarian cancer and breast cancer
were selected for case analysis.

In order to simulate isolated diseases, we removed the
association between the disease and all lncRNA when
implementing LRLSSP.With ovarian cancer as an example,
5 known association information of lncRNAs related to
ovarian cancer were observed in dataset 1 and deleted. This
procedure ensured that no known lncRNAs were associated
with ovarian cancer, and only other available information was
used to predict lncRNAs associated with it.

Tables 2 shows that the top five predicted ovarian cancer-
related lncRNAs are confirmed by the LncRNADisease
v2.0. Furthermore, manual literature search revealed that
MEG3 can affect the proliferation, invasion, and migration
of ovarian cancer cells under the regulation of lncRNA
PTEN [65].

Similarly, all 14 known lncRNAs associated with breast
cancer were detected in the present work from dataset 1.
LRLSSP was implemented to predict breastcancer-related
lncRNAs, and the predicted results were ranked. The top five
predicted results are listed in Table 2, and the evidence of
association between all lncRNAs and breast cancer was found
in LncRNADisease v2.0.

The above experimental results further prove the reliable
performance of LRLSSP in the prediction of isolated
disease-related lncRNAs. The findings also address the
problem with many lncRNA–disease association prediction
models that cannot be applied to the prediction of isolated
disease-related lncRNAs.

V. DISCUSSION
LncRNA variation and disorders can lead to many diseases,
and LncRNAs associated with diseases caught the attention
of many researchers. The identification and prediction of
the relationship between lncRNA and diseases are helpful in
understanding lncRNA function and pathogenesis. However,
the existing biological experimental methods for identifying
the association between lncRNA and diseases are expensive
and time consuming. Thus, computational models can be
used as effective complement to biological experimental ver-
ification. Researchers have developed various computational
models to predict lncRNA-related diseases.

This work proposed a LRLSSP model based on LRLS
algorithm and matrix space projection to predict poten-
tial lncRNA–disease associations. The LRLSSP shows
excellent performance in predicting potentially unknown
lncRNA–disease interactions and effectively predicts isolated
diseases and new lncRNAs.

We first evaluated the performance of the model itself
to fairly evaluate the performance of LRLSSP model.
Given that LRLSSP integrates the LRLS and matrix SP
algorithms, four conditions were considered in evaluating the
performance of the model: (1) predictive performance using
LRLS only(LRLS), (2) predictive performance using the
matrix SP only(SP), (3) score estimation of lncRNA–disease
association via SPLRLS, and (4) score estimation of
lncRNA–disease association via LRLSSP. The AUC values
of LRLSSP, LRLS, SP, and SPLRLS obtained by LOOCV
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TABLE 1. The top 5 potential melanoma and cervical cancer-related lncRNAs predicted by LRLSSP based on dataset 1.

TABLE 2. The top 5 lncRNAs associated with ovarian cancer and BREAST cancer were predicted by LRLSSP with hiding all known related lncRNAs based
on dataset 1.

on dataset 1 were 0.9377, 0.7299, 0.7342, and 0.7343,
respectively. The AUC values of LRLSSP, LRLS, SP, and
SPLRLS obtained by LOOCV on dataset 2 were 0.9383,
0.8037, 0.8034, and 0.8038, respectively.The AUC values
of LRLSSP, LRLS, SP, and SPLRLS obtained by LOOCV
on dataset 3 were 0.9467, 0.7448, 0.8840, and 0.8846,
respectively.

The performance of LRLSSP was compared with those of
two advanced models (NCPLDA, IIRWR, and LDAI-ISPS).
The AUC values of LRLSSP, NCPLDA, IIRWR,and

LDAI-ISPS obtained by LOOCV on dataset 1 were
0.9377, 0.9107, 0.7883,and 0.9154, respectively. Those
from dataset 2 were 0.9383 (LRLSSP), 0.9012 (NCPLDA),
0.8230(IIRWR),and 0.8341 (LDAI-ISPS). AUC values of
LRLSSP, NCPLDA, IIRWR,and LDAI-ISPS in dataset
3 were 0.9467, 0.9307, 0.8745, 0.8455, respectively.The
prediction results of LRLSSP are better than those of the other
methods.

Each disease (lncRNA) was simulated as an isolated
disease (a new lncRNA)and cross-validated to assess the
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prediction performance of LRLSSP for new lncRNAs and
isolated diseases. The cross-validation results for isolated
diseases in dataset 1, dataset 2, and dataset 3 were 0.8732 and
0.8833 and 0.8909, respectively, and the results for new
lncRNAs in dataset 1,dataset 2,and dataset were 3 0.8214,
0.7672, and 0.8499, respectively. In addition, two specific
diseases, melanoma and cervical cancer, were selected as
cases to evaluate the predictive power of LRLSSP and to
further verify its reliability in predicting the relationship
between a potential lncRNA and a disease. The performance
of LRLSSP was validated by using it to predict lncRNAs
associated with isolated diseases. In the follow-up exper-
iment, ovarian cancer and breast cancer were selected as
cases. The case study further validated LRLSSP’s excellent
predictive performance.

The high prediction performance of LRLSSP is mainly
due to the following aspects. First, a reasonable network
of disease (lncRNA) similarity was constructed. The kernel
similarity of the Gaussian interaction profile was used
to address the deficiency of disease semantic similarity
(lncRNA functional similarity), which effectively improved
the accuracy of the similarity between diseases (lncR-
NAs). Second, LRLSSP integrates the LRLS algorithm and
matrix space projection to construct a reliable prediction
framework for lncRNA–disease association. The LRLS
algorithm was first used to estimate the lncRNA–disease
association to alleviate the problems of the sparsity of
known lncRNA–disease association. Matrix space projection
was used to obtain accurate association scores between
lncRNA–disease associations. Matrix space projection also
provided unprecedented and comprehensive information on
disease space, lncRNA space, and known lncRNA–disease
associations. Thus, the potential lncRNA–disease association
could be predicted, and disease-related lncRNAs could be
isolated. LRLSSP can effectively predict the lncRNA–disease
association but with limitations. First, the construction of
disease and lncRNA similarity networks urgently needs
to integrate considerable omics data. Second, the present
prediction method is based on known lncRNA–disease
interactions, which bias the disease with known associated
lncRNAs.

VI. CONCLUSIONS
Identifying lncRNA–disease associations aids in under-
standing the molecular mechanisms of a disease. In this
work, a novel computational method, called LRLSSP, was
proposed on the basis of LRLS algorithm to predict potential
lncRNA–disease interactions. LRLSSP is a global prediction
method that can simultaneously predict the association
between diseases and lncRNAs and can be implemented in
the prediction of isolated diseases and new lncRNAs. Its
advantages include the lack of negative sample and having
one parameter requirement. Compared with other state-of-
the-art methods, LRLSSP has higher prediction accuracy
on potential lncRNA–disease association. This work demon-
strated the reliable performance of LRLSSP in the prediction

of lncRNA and disease association. In conclusion, LRLSSP
is a promising method for predicting lncRNA–disease
associations and may promote related research on complex
human diseases.
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