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ABSTRACT Optimal reactive power dispatch (ORPD) problems in power system have been solved by
using several variants of traditional nature inspired particle swam optimization (PSO) with aim to achieve a
promising solution for a given objective such as line loss, voltage deviation and overall cost minimization.
Several schemes have been designed to improve the performance of the optimization technique in tunning
the operational variables and analyzed by evaluating the final results. In this article, a different method
is designed to solve ORPD problems, by introducing Shannon entropy based diversity in the fractional
order PSO dynamics, i.e., FOPSO-EE. The results show that synergy of both, the Shannon entropy and the
fractional calculus can be used as the useful tools for enhancing the optimization strength of algorithm while
solving the ORPD problems in standard IEEE 30 and 57 bus power systems. The performance of the design
FOPSO-EE is further validated through results of statistical interpretations in terms of histogram analysis,
box plot illustration, quantile-quantile probability plot and empirical probability distribution function.

INDEX TERMS Computational intelligence, optimal power flow, fractional calculus, Shannon entropy,
particle swarm optimization.

I. INTRODUCTION
A. MOTIVATION AND INCITEMENT
Optimal reactive power dispatch (ORPD) aims to improve
the performance of a power system by reducing the voltage
deviation, transmission line losses, operational cost, improv-
ing system security, stability index, and line capacity. Most
of these objectives are achieve by tunning the operational
variables of the network such as the transformers tap posi-
tions, generator output voltages, capacitor banks and solid
state flexible AC transmission systems (FACTS) devices [1].
However, the optimal tunning of these variables is a complex
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problem due to the multi-modal, non linear and discrete
nature of the power systems.

B. LITERATURE REVIEW
In the literature, several arithmetic, stochastic, evolutionary,
social-based and meta-heuristic optimization techniques are
developed since last few decades including the differential
evolution [2], genetic algorithm [3]–[8], particle swarm opti-
mization (PSO) etc. A summary of the proposed optimization
techniques for ORPD is documented in Table 1. Since the
development of the canonical PSO, a considerable number
of its variants based on different numerical tools have been
proposed in order to enhance the algorithm performance, and
significantly applied in a plethora of applications [9]–[14].
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TABLE 1. Summary of proposed algorithms for ORPD.

The PSO consists on a machine learning procedure which
is basically inspired by the behavior of social species such as
fish schooling or birds flocking in search of food. Each fish or
bird is represented by a particle that move on the search space
for finding an optimal solution. The particle is characterized
by two vectors, namely by its current velocity and position.
A set of particles is known as swarm which evolves dur-
ing several iterations constituting a powerful computational

technique. Since 1995, many mathematical tools are pre-
sented to complement and/or refine the conventional PSO
technique, namely by adopting integration with other evo-
lutionary strategies and by analyzing the tuning parame-
ters. In this regard, Machado and team [52], [53] presented
a new method for improving the convergence rate of a
canonical PSO based on fractional calculus (FC) theory and
developed fractional order optimization technique, known as
FO-PSO.

Afterwards, FO-PSO has been successfully designed
for a number of fields such as computational biology,
color image quantization, pattern recognition simulation and
animation of natural flocks or swarms, computer graph-
ics, and social modeling [54]–[68]. However, the strength
of FC based optimization algorithms have not yet been
explored in solving problems of energy and power sec-
tor specifically in the domain of ORPD. Besides FC,
the Shannon entropy, a mathematical tool, has been tested
in myriad of fields, such as biology, sociology, com-
munications and economics among others in the recent
years, however, its use has been overlooked in evolutionary
computation.

C. CONTRIBUTION AND PAPER ORGANIZATION
Considering the discussed concepts, a new algorithm i.e.
fractional order particle swarm optimization with entropy
evolution, known as FOPSO-EE, is designed and tested on
primary problems of ORPD such as the minimization of the
transmission line losses, overall cost of operation and voltage
deviation in the IEEE standard power system and results are
compared with those of other counterpart algorithms.

Therefore, this work uses the fractional calculus as a tool
to improve the convergence rate of the canonical PSO while
entropy metric to avoid the sub optimal solution. The salient
contributions of this research work are
• New diversity indices stimulated by biologic systems
and physics based on entropy evolution are exploited to
enhance the optimization strength of FOPSO.

• The better performance of designed FOPSO-EE is veri-
fied over its integer counterpart while solving the ORPD
problems in standard power system considering the
FACTS devices, namely, the TCSC and SVC.

• The results of statistical interpretations including the his-
togram analysis, box plot illustration, quantile-quantile
probability and empirical probability distribution func-
tion are used to further endorse the accuracy, reliability
and stability of proposed FOPSO-EE.

• Simplicity in the concept, smooth implementation and
wider applicability in energy and power sector are other
valuable perks of designed FOPSO-EE.

Bearing these ideas in mind, the organization of this
paper is set as follows. Section 2 formulates the objec-
tive functions to be optimized. Section 3 develops the
methodology followed in the work including a brief
description of the fractional calculus, fractional PSO and
entropy. Section 4 presents the experimental results for the
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FOPSO-EE. Section 5 presents the statistical analysis.
Finally, section 6 summarizes the main conclusions and dis-
cusses future recommendations.

II. MATHEMATICAL MODELS OF ORPD PROBLEMS
This section presents the objective functions that are consid-
ered during the tests of FOPSO-EE. The optimization func-
tions consists in minimizing transmission line losses, voltage
deviation index and overall cost of operation in standard
power system, namely, IEEE-30 bus (Fig. 1), which consists
of 4 tap changing transformers, 6 generators, 3 capacitor
banks and 41 transmission lines [69].

A. TRANSMISSION LINE LOSS MINIMIZATION, Ploss
This function is mathematically expressed as:

Minimize f1(z) : Ploss(z)+ λ(z) (1)

here,

Ploss =
nl∑
r=1

Gr
[
U2
m + U

2
n − 2× Um × Un cos(δm − δn)

]
z ∈ [U ,T ,Q] (2)

hereafter, Gr is the conductance of r th line between m and
n bus, Um and Un are the voltage magnitudes at mth and nth

bus respectively, δm and δn are the voltage angles at mth and
nth bus respectively, nl represents no. of transmission lines.
λ is the penalty factor for control variables such as reac-
tive power compensators Q (capacitor bank), transformer tap
positions T , and bus voltages U in the IEEE standard power
system.

The general form of objective function based on penalty
factor is expressed as:

F = Ploss+
∑

rQm(Qm−Qlim
m )

2
+

∑
rGm(Um−U lim

m )2

+

∑
rTm(Tm−T lim

m ) (3)

Qlim
Gm =

Q
max
m if Qm>Qmax

m

Qmin
m if Qm>Qmin

m
, m = 1, 2, . . . ,KG (4)

U lim
m =

U
max
m if Um>Umax

m

Umin
m if Um>Umin

m
, m = 1, 2, . . . ,K (5)

T lim
m =

T
max
m ; if Tm>Tmax

m

Tmin
m ; if Tm>Tmin

m
, m = 1, 2, . . . ,KT (6)

Here, Q is reactive power rating of capacitor bank, V is
the voltage at generator bus, and T represents tap setting of
transformer, K denotes total no. of buses, KT is the number
of transformer with tap changer and KG is the number of
generators in the power system. The minimum and maximum
values ofQlim

m ,U lim
m , and T lim

m in above expressions represents
the control variable’s permissible limits.

FIGURE 1. IEEE-30 bus system.

B. VOLTAGE DEVIATION, VD

Minimize f2 = VD =
nload∑
m=1

|Vm − 1.0| (7)

here, nload represents the total number of load-buses [70].

C. OVERALL COST MINIMIZATION, Ctotal

Minimize f3 = Ctotal = Cenergy + Ccpex , (8)

where

Cenergy = 0.06 · 365 · 24 · Ploss

Here, days/year are 365, hours/day are 24, cost associated
with power loss is 0.06 $/kWh. The cost Ccpex , represents the
capital cost of the reactive power compensators i.e., FACTS
and taken from the Siemens AG database [7] as

Ccpex = γ + β(MVArating)+ α(MVArating)2 (9)

here, γ , β and α represents the cost coefficients while
MVArating is the operating range in mega volt ampere (MVA)
of FACTS devices. The cost functions for SVC, TCSC and
UPFC can be expressed respectively as:

CSVC = 127.38−0.3051(MVArating)+0.0003(MVArating)2

(10)

CTCSC = 153.75−0.7139(MVArating)+0.0015(MVArating)2

(11)
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FIGURE 2. Graphical abstract.

CUPFC = 188.22−0.2691(MVArating)+0.0003(MVArating)2

(12)

1) INEQUALITY CONSTRAINTS
The expressions for inequality constraints are given below:

• Transformer boundaries

Tmax
mn ≤ Ti ≤ T

min
mn , m = 1, 2, . . . ,KT (13)

• Generator boundaries

Umax
Gm ≤ UGm ≤ Umin

Gm , m = 1, 2, . . . ,KG (14)

Qmax
Gm ≤ QGm ≤ Qmin

Gm , m = 1, 2, . . . ,KG (15)

• Shunt-VAR boundaries

Qmax
cm ≤ Qcm ≤ Q

min
cm , m = 1, 2, . . . ,Nc (16)
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FIGURE 3. Best, average and worst learning curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8
(i) α = 0.9 during power loss minimization.

• FACTS devices constraints

−Xmax ≤ XTCSC ≤ Xmin (17)

−Qmax ≤ QSVC ≤ Qmin (18)

Here, max and min defines the upper and lower bounds,
respectively, NC is the no. of buses where reactive power
compensators are coupled, X is the per unit (p.u) reactance
offered by the TCSC, Q is the reactive power provided
by the SVC.

D. EQUALITY CONSTRAINTS
The equality constraints includes the power balance equations
[70]. Mathematically, for any bus m, the real and reactive

power balance equations are stated as:

−Um
K∑
n=1

Un [Bmn sin (δm − δn)+ Gmn cos (δm − δn)]

−PDm + PGm = 0 (19)

−Um
K∑
n=1

Um [Bmn cos (δm − δn)+ Gmn sin (δm − δn)]

−QDm + QGm = 0 (20)

Here,
PDm and PGm, are the demanded and injected real powers

at mth bus,
QDm and QGm, are the demanded and injected reactive

powers at mth bus,
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FIGURE 4. Best, average and worst learning curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8
(i) α = 0.9 during voltage deviation.

Bmn and Gmn, are line susceptance and conductance
between mth and nth bus, respectively.
The incorporation of the TCSC between two buses,

namely, m and n, alters the power balance equations as [13];

Pmn = +U2
mGmn − UmUnGmn cos(δm − δn)

−UmUnBmn sin(δm − δn) (21)

Qmn = −U2
mBmn − UmUnGmn sin(δm − δn)

+UmUnBmn sin(δm − δn) (22)

Here, the conductance and susceptance of the transmis-
sion line are given by Gmn = R

R2+(X−XTCSC )2
and Bmn =

−X−XTCSC
R2+(X−XTCSC )2

, respectively.

III. METHODOLOGY
This section presents the fundamental concepts about the
computational tools, integrated to develop FOPSO-EE, such
as the fractional calculus, particle swarm optimization and
entropy.

A. FRACTIONAL CALCULUS
Fractional calculus (FC) is a generalization of the ordinary
integer integration and differentiation to a non-integer order.
FC was an important topic in the last few centuries and
many mathematicians, such as Weyl, Riemann and Liou-
ville contributed to its development. Fractional calculus has
attained the focus of research community, being applied
in various scientific fields such as irreversibility, modeling,
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FIGURE 5. Best, average and worst learning curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8
(i) α = 0.9 during power loss minimization in IEEE-57 bus system.

wave propagation, viscoelasticity, electronics, fractals, chaos,
signal processing, control, biology, percolation, diffusion,
and physics. There are number of alternate interpretations
of fractional derivatives, one of the most important being,
the Grunwald-Letnikov(GL), is based on the concept of frac-
tional differential with order αεC of a general signal f (z),
given by the equation [52], [71]:

Dα[f (z)] = lim
h→0

[
1
hα

∞∑
w=0

(−1)w0 (α + 1) f (z− wh)
0 (w+ 1) 0 (α − w+ 1)

]
,

(23)

Here, h represents the step time augmentation while 0() is
the gamma function. This, Grunwald-Letnikov, interpretation
reveal an important property that the integer derivative just

infers a finite series, while the fractional derivative involves
an infinite numeral of terms, thats is, they hold implicitly,
a memory of previous events.

A discrete time implementation of the GL expression can
be approximated as;

Dα[f (z)] =
1
T α

r∑
w=0

(−1)m0 (α + 1) f (z− wT )
0 (w+ 1) 0 (α − w+ 1)

, (24)

Here r is the truncation order and T denotes sampling
period.

The inherent memory property of fractional order systems
make them much suitable to define phenomena such as chaos
and irreversibility. Therefore, the random behavior of parti-
cle’s movement during search evolution constitute a scenario
where FC tool fit appropriately.
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FIGURE 6. FOPSO-EE comparison with PSO-EE during f1 minimization for 100 independent runs (a) minimum fitness (b) convergence curve (c) probability
plot (d) boxplot illustration (e) CDF.

B. PSO ALGORITHM
The traditional PSO algorithm, proposed originally by
Kennedy and Eberhart in 1995, is meta heuristic
computational technique inspired by the movement of the
particles in a swarm both for, finding global solution and as
a defensive approach. This movement is represented by two
vectors, specifically by its position x and velocity v.

Algorithm 1 illustrates a canonical PSO mechanism. The
cognitive learning of each particle is incorporated by con-
sidering the distance between its best position found up
to now LBnt and the current position xnt , while, the social
learning of each particle, is obtained by taking the dis-
tance between the swarm global best position obtained up
to now GBnt and its current position xnt . Both learning fac-
tors are assigned a randomly generated weight ρ1 and ρ2,
respectively.

C. PSO WITH FRACTIONAL VELOCITY
In 2010, Machado and team [52], introduced a new technique
to improve the convergence of conventional PSO by inte-
grating the concept of fractional derivative in velocity update
equation of conventional PSO. At first, the original velocity
expression is reshuffled to alter the coefficient of the velocity
derivative, specifically

vnt+1 = ωv
n
t ,+ρ1r1(LB

n
t − x

n
t )+ ρ2r2(GB

n
t − x

n
t ), (25)

Hereafter, x denotes the particle’s position, t represents the
flight index, n is the particle index with corresponding veloc-
ity v, r1 and r2 are the random numbers between 0-1, ρ1 is
the local while ρ2 is the global acceleration coefficients, LB
represents the local and GB denotes the global best particle
while ω is inertial weight.
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FIGURE 7. FOPSO-EE comparison with PSO-EE during f2 minimization for 100 independent runs (a) minimum fitness (b) convergence
curve (c) probability plot (d) boxplot illustration (e) CDF.

TABLE 2. Function parameters.

Considering the inertial influence, ω = 1, equation (25)
can be rearranged as:

vnt+1 − v
n
t =ρ1r1(LB

n
t − x

n
t )+ρ2r2(GB

n
t − x

n
t )=∇(v

n
t+1)

(26)

while assuming T = 1, the expression vnt+1−v
n
t is the discrete

form of the derivative with coefficient α = 1, implies to the
following relation:

Dα(vnt+1) = ρ1r1(LB
n
t − x

n
t )+ ρ2r2(GB

n
t − x

n
t ) (27)

Considering (24) with first four terms i.e. r = 4, (27) can be
written as:

vnt+1 − αv
n
t −

1
2
α(1− α)vnt−1 −

1
6
α(1− α)(2− α)vnt−2

−
1
24
α(1− α)(2− α)(3− α)vnt−3

= φ1r1(LBnt − s
n
t )+ φ2r2(GB

n
t − s

n
t ) (28)

or

vnt+1 = αv
n
t +

1
2
α(1− α)vnt−1 +

1
6
α(1− α)(2− α)vnt−2

+
1
24
α(1− α)(2− α)(3− α)vnt−3

+φ1r1(LBnt − s
n
t )+ φ2r2(GB

n
t − s

n
t ) (29)

The coefficient α can be generalized to a real number 0 ≤
α ≤ 1, if the fractional calculus viewpoint is adopted, leading
to a longer memory effect and smoother variation. It can
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FIGURE 8. FOPSO-EE comparison with PSO-EE during minimization of f1 in power system with FACTS for 100 independent runs (a) minimum
fitness (b) convergence curve (c) probability plot (d) boxplot illustration (e) CDF.

TABLE 3. Comparison of results for case 1.
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FIGURE 9. FOPSO-EE comparison with PSO-EE during minimization of f3 in power system with FACTS for 100 independent runs (a) minimum
fitness (b) convergence curve (c) probability plot (d) boxplot illustration (e) CDF.

TABLE 4. Percentage line loss reduction in test system.

be seen from expression (29) that the traditional PSO is a
special scenario of the fractional PSO with α = 1. Because,
the FOPSO integrates the fractional calculus tool to control
the particle convergence, the fractional order α must needs to
be identified to guarantee a high level of exploration during
the evolution of search. The additional literature of basic
FOPSO can be seen in [53], [71]–[74].

D. ENTROPY
Several entropy definitions have been presented over the
years, such as information, freedom spreading, mixing, chaos
and disorder. The foremost interpretation of entropy was

presented by Boltzmann as transformation of the system
from ordered to disordered states. Lewis interpreted that,
during the impulsive expansion of gas in an isolated sys-
tem, the uncertainty or, missing information increases while
knowledge about particles location decreases. Guggenheim
used spreading to show the evolution in volume of an
energy system from a small scale to a large scale. Shan-
non introduced the information theory for the quantization
of the information loss during any message transmission
in a communication network and concentrated on statistical
and physical constraints that restrict the signal processing.
Shannon described H as a degree of uncertainty, information
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FIGURE 10. FOPSO-EE comparison with PSO-EE during f1 minimization in IEEE 57 bus system for 100 independent runs (a) minimum
fitness (b) convergence curve (c) probability plot (d) boxplot illustration (e) CDF.

TABLE 5. Comparative results of f2 optimization.

and choice:

H (X ) = −K
∑
xεX

pi (x) log pi (x) (30)

For random variables (x, y) ε (X ,Y )

H (X ,Y ) = −K
∑
xεX

∑
yεY

pi(x, y) log pi(x, y) (31)

where, K is the constant parameter, normally equal to 1,
x ε X is a discrete variable and p(x) is the probability
distribution.

E. FOPSO WITH ENTROPY EVOLUTION
The method followed in this study is inspired by the need
to explore and exploit the entropy during the fractional
particle swarm optimizer time evolution and to adopt this
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TABLE 6. Comparative results of case 3 and 4.

TABLE 7. Comparative results of loss reduction and overall cost reduction.

synergy to enhance the algorithm characteristics, namely,
the convergence. For this reason, the Shannon entropy is
evolved in the internal structure of the optimizer while
adopting the ORPD problems. Since the FOPSO is a non-
deterministic solver, therefore, a set of 100 independent runs
is performed to develop a representative statistical data set.
Mean while, the influence of entropy signal is observed
in the behavior of algorithm, namely by the swarm reini-
tialization, along the FOPSO execution for enhancing its
convergence.

Indeed, the entropy measure the changing tendency of a
system energy i.e., the spreading of particles within the search
space, during the present case. Bearing this idea in mind,
a distance di is considered between ith particle position and
the best global particle. Then, probability pi for each particle
is given by the distance di to maximum possible distance,
that is:

pi =
di
dmax

(32)

For a n swarm size, and k = 1, the diversity index (30) of
particle is quantified as:

H (X ) = −
n∑
i=1

pi log pi (33)

The overall workflow diagram is depicted in Fig. 2 while the
procedural steps are illustrated in algorithm 2.

IV. RESULTS AND DISCUSSION
This section demonstrates the efficacy of FOPSO-EE over
the other counter part algorithms for 4 different cases, each
considering one objective function based on optimal reactive
power dispatch scenarios defined previously using the param-
eters listed in Table 2.

Since particle swarm optimization is a stochastic method,
every time it is applied it shows a different learning behavior.
Therefore, a set of 100 independent trials was conducted,
for each fractional order α = 0.1, . . . , 0.9 and the median,
arithmetic mean, maximum and minimum values were taken
as the final output.

A. CASE 1: MINIMIZATION OF Ploss
The first objective function to be adapted belongs to the
minimization of transmission line loss, as described by

VOLUME 8, 2020 111413
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TABLE 8. Comparison of results for case 5.

equation (3). Equation (33) is considered to monitor the
fractional PSO evolution. The learning curves are plotted

Algorithm 1 Traditional PSO
1: procedure In steps with input and outputs
2: Inputs: Inertia weights, particle number, acceleration

coefficients
3: Output: Global best solution
4: Start of PSO
5: Initialization: Swarm, random position x and velocity v
6: Fitness evaluation: Repeat until stopping criteria

• for all particles calculate fitness
7: Updating mechanism: for all particles update,

• pbest , gbest and lbest
• velocity based on

vnt+1 = vnt ,+ρ1r1(LB
n
t − x

n
t )+ ρ2r2(GB

n
t − x

n
t ),

• position based on

xnt+1 = xnt + v
n
t+1

8: Termination criterion: Convergence, stagnation, itera-
tion

9: End PSO

in Fig. 3, showing the best, average and worst iterative
updates of transmission line losses during 100 independent
trials for α = 0.1, . . . , 0.9. In Table 3, the results can be seen
for the Ploss function f1 minimization, yielded by FOPSO-
EE, along a comparison with other algorithms such as MFO,
GWO, MICA-IWA, HSA, IWO, ICA, GA, DE, FO-DPSO,
and PSO-EE. Observing Table 3, percentage line loss reduc-
tion in Table 4 and Fig. 3, one can conclude that, FOPSO-
EE revealed a better behavior by computing minimum losses
as compared to counter part algorithms, hence, the synergy
of fractional calculus and entropy evolution contributes to an
enhanced convergence dynamics.

B. CASE 2: MINIMIZATION OF VD
The second optimization function to be adopted is the mini-
mization of voltage deviation index, as described by expres-
sion (7), to monitor the FOPSO-EE evolution. The results are
demonstrated in Fig. 4 for archive size of 20 particles and
order α = 0.1, . . . , 0.9, where best global solution is found
at α = 0.9. The comparison of results revealed by FOPSO-
EE and that by other algorithms is documented in Table 5.
It can be verified that FOPSO-EE yielded better results with
respect to the counter part algorithms.

C. CASE 3: MINIMIZATION OF Ploss WITH FACTS
In third case, the transmission line losses are minimized con-
sidering FACTS devices, namely, the TCSC and SVC, as the
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Algorithm 2 Pseudocode of FOPSO-EE for ORPD
1: procedure In steps with input and outputs
2: Inputs: Bus, branch and generator data for IEEE standard power system i.e., IEEE 30 bus.
3: Output: Minimum power loss as expressed by equation (1), Minimum voltage deviation as expressed by equation (7) and

Minimum overall cost as expressed by equation (8).
4: Start of FOPSO-EE
5: Initialization: Initialize

• Position x and velocity v matrices with real values
• Swarm with set of possible solutions P, known as particle in n-dimensional search space as:

Smin
n =

[
Vmin
1 ,Vmin

2 , . . . ,Vmin
n ,Tmin

1 ,Tmin
2 , . . . ,Tmin

n ,Qmin
1 ,Qmin

2 , . . . ,Qmin
n

]
Smax
n =

[
Vmax
1 ,Vmax

2 , . . . ,Vmax
n ,Tmax

1 ,Tmax
2 , . . . ,Tmax

n ,Qmax
1 ,Qmax

2 , . . . ,Qmax
n

]
6: Fitness evaluation: Add exterior penalty function with fitness function to restrict the constraint violation as

Minimize : f (f1/f2/f3)+
∑

λV (Vi − V lim
i )

2
+

∑
λT (Ti − T lim

i )+
∑

λQ(Qi − Qlim
i )

2
(34)

with, T lim
i =

{
Tmax
i ;Ti > Tmax

i

Tmin
i ;Ti < Tmin

i
, Qlim

Gi =

{
Qmax
i ;Qi > Qmax

i

Qmin
i ;Qi < Qmin

i
and V lim

i =

{
Vmax
i ;Vi > Vmax

i

Vmin
i ;Vi < Vmin

i
.

7: Updating mechanism: FOPSO-EE is updated based on two mechanisms
• Velocity using equation (29) as:

v(p, k + 1) = αv(p, k)+
1
2
α(1− α)(p, k − 1)+

1
6
α(1− α)(2− α)v(p, k − 2)+

1
24
α(1− α)(2− α)(3− α)v(k − 3)

+φ1r1(LB(p, k)− x(p, k))+ φ2r2(GB(p, k)− x(p, k))

here, p denotes the particle, k is the flight index, LB is used for pbest and GB for gbest .
• Particle position using the expression:

x(p, k + 1) = x(p, k)+ v(p, k + 1)

If current best particle i.e. f (x(p, k + 1)) > previous best particle i.e. f (LB(p, k)), then LB(p, k + 1) = x(p, k + 1) else
LB(p, k+1) = x(p, k) Endif f (LB(p, k+1)) > f (GB(p, k)) thenGB(p, k+1) = LB(p, k+1) elseGB(p, k+1) = LB(p, k)
and repeat the update for each particle in a swarm

8: Termination criterion: The algorithm will stop the searching process if saturation point is reached. Print the particle with
latest gbest . Until termination criteria, repeat from step 6 with updated swarm.

9: Storage: The variables of global best particle are stored on the basis of minimum power losses, voltage deviation and overall
cost.

10: Analysis: Repeat steps 5 to 9 for the given variations to produce a large dataset for comprehensive analysis of the FOPSO-
EE performance:
• Different fractional orders α of the FOPSO-EE
• Perform 100 independent trials for each variant of the FOPSO-EE

11: End of FOPSO-EE

axillary reactive power sources. The incorporation of FACTS
devices alters the equality constraints and adds additional
constraints, as defined in section II. The best global particle
and corresponding fitness value evaluated by FOPSO-EE is
listed in Table 6, while the percentage line loss reduction is
listed in Table 7. It can be seen that, the proposed scheme
has outperformed other algorithms, namely, the SPSO,WOA,
QOGWO, QODE, and PSO-EE.

D. CASE 4: MINIMIZATION OF OVERALL COST
The results for the overall cost minimization function f3 are
illustrated in Table 6. The percentage cost reduction, fourth
column in Table 7, show that FOPSO-EE has computed a

lower overall cost of operation in comparison with those
obtained with the SPSO, WOA, QOGWO, QODE, and PSO-
EE. We verify that the FOPSO-EE lead to a significantly
better solution for ORPD problems.

E. CASE 5: VALIDATION OF FOPSO-EE IN
LARGE SCALE TEST SYSTEM
The effectiveness of FOPSO-EE is further ascertained by
testing it on large scale power system i.e., IEEE 57 bus by
adopting line loss minimization as a fitness function. The
evolution of proposed algorithm execution is monitored by
using the Equation (33). The obtained learning curves for all
the fractional orders i.e., α = [0.1, 0.2, . . . , 0.9] are plotted
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in Fig. 5, depicting the best, average and worst iterative
updates of transmission line losses during 100 independent
trials. The optimum value of the operational variable with
corresponding losses are documented in Table 8, along a
comparison with other well-known algorithms such as NGB-
WCA, DE, CKHA, GSA, PSO, and PSO-EE. Observing
Table 8 and graphical illustrations in Fig. 5, one can con-
clude that, FOPSO-EE revealed a better behavior by comput-
ing minimum losses as compared to counterpart algorithms,
hence, the synergy of fractional calculus and entropy evolu-
tion contributes to an enhanced convergence dynamics while
endorsing a better optimization strength of FOPSO-EE for
large scale power system.

V. STATISTICAL ANALYSIS
To analyze the consistency and reliability of the FOPSO-
EE, a detailed statistical analysis has been carried out for all
four cases, considering the best fractional order α in the set.
In this line of thought, for all test cases, 100 independent trials
were carried out and the median of the fitness evolution is
taken as reference, for nominating the fractional order. The
statistical assessment is based on the minimum fitness evo-
lution in each independent simulation, convergence curves,
quantile-quantile plots, box plot illustrations, and empirical
cumulative distribution function, as depicted in Figs 6-10.

The sub figures 6(a)-10(a) reveal that FOPSO-EE compute
minimum fitness in most of the independent run when com-
pared with PSO-EE. A considerable difference in learning
behaviors can be verified through sub figures 6(b)-10(b)
where in all charts the FOPSO-EE performed better than
PSO-EE. It can be verified, through sub figures 6(c)-10(c),
that the minimum fitness evolution versus the quantiles
of a standard normal distribution is more ideal in case of
FOPSO-EE. Sub figures 6(d)-10(d) indicates that median
guages were always occurred at lower side for FOPSO-EE.
The sub figures 6(e)-10(e) depicts that the probability of
finding a best fitness through FOPSO-EE is on higher side
than PSO-EE.

Bearing these results in mind, it is verified that both,
the entropy and fractional calculus characterizes a natural tool
which allows to design new variants of traditional algorithms,
and leads to future promising advancements based on a new
vantage point.

VI. CONCLUSION
A novel optimization approach FOPSO-EE is presented for
solving the ORPD problems in the power system by exploita-
tion of entropy diversity in fractional swarm intelligence.
In the designed method FOPSO-EE, two important mathe-
matical tools, namely the Shanon entropy and fractional cal-
culus are integrated with traditional PSO algorithm. The pro-
posed FOPSO-EE is viably implemented in standard IEEE
30 bus power system for minimizing the transmission line
losses, voltage deviation and overall operational cost by tun-
ning the operational variables such as transformer tap posi-
tions, bus voltages and reactive power compensators to near

optimum-value. The results demonstrated that, the synergies
of applying both, the Shanon entropy and fractional calculus
concept, improved the performance of the optimizer in terms
of fitness evolution and convergence rate during the proposed
FOPSO-EE executions.

In this line of thought, both, the entropy evolution and
fractional order dynamics will be considered in designing
new integrated fractional swarming/evolutionary algorithms
to solve significant optimization problems related to engi-
neering sector in future research works such as the distributed
generation [77], coordination of directional over current ralay
[78] and parameter extraction [79] etc. Moreover, the pro-
posed algorithm can be further investigated for slandered
benchmark functions with performance evaluation in terms
of Wilcoxon sign rank tests.
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