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ABSTRACT Multi-join queries are important operations in data management systems and data integration
systems, and their efficiency has attracted the attention of researchers. In recent years, graphics processing
units (GPUs) have developed rapidly and become a powerful tool for parallel computing, providing a new
idea for multi-join query optimization. This paper studies the use of GPU technology to optimize multi-join
queries and focuses on two points: 1) a multi-phase optimization strategy and 2) optimization methods of
each stage. For the first point, we discuss a two-phase optimization strategy on the GPU and prove the
effectiveness of this strategy. For the second point, we provide an establishment method of a minimum cost
join tree on the GPU, the parallel execution methods of intra-join and inter-join on the GPU, and a strategy
of scheduling multiple joins to execute in parallel on the GPU. Experimental results show that the multi-join
query optimization proposed in this paper improves the efficiency of multi-join queries, especially in the
case of high load and complex join queries, achieving higher throughput than that of previous optimization
algorithms.

INDEX TERMS GPU, multi-join query, parallel optimization, two-phase optimization strategy.

I. INTRODUCTION
Multi-join queries aggregate data from multiple tables,
or even multiple data sources, to provide material for appli-
cations such as data integration, data sharing, and decision
support. Especially in this era of big data, aggregating and
analyzing data from different data sources for precise predic-
tion and decision-making in various fields, such as business,
industry, public utilities and scientific research, can yield
highly valued products and services [1]. Therefore, the effi-
ciency of widely used multi-join queries is the guarantee of
real-time and effective use of data.

The efficiency of multi-join queries is affected by many
factors, such as the number of joins and the amount of data,
the join selectivity, the execution order of joins, the storage
location of data, the resources, strategies and methods that
parallel optimization used. They have become the focus of
multi-join query optimization (MJQO), and researchers have
done a lot of work for this. For example, built a query exe-
cution plan (QEP) with the minimum cost [2]–[7], studied
parallel algorithm for basic join methods [8]–[13], researched
the parallel optimization in a distributed environment [14],
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and explored various parallel scheduling strategies [15], [16],
etc., these are optimization of multi-join queries aimed at
some factors. Among these optimization methods, parallel
execution can increase throughput and improve the efficiency
of multi-join queries. The parallel computing power of hard-
ware, the parallel level and scale of the platform are the
keys to improving the efficiency. In recent years, graphics
processing units (GPUs) have developed into powerful tools
for parallel computing because of their advantages of numer-
ous cores and high bandwidth [17], which can be used in
various levels of parallelism. Therefore, the application of
the GPU to parallel optimization in various fields includ-
ing databases [18], [19] has become a research hotspot. For
example, using the GPU to accelerate the basic SPJ oper-
ation of memory database [12], [13], optimize relational
queries [20], [21] and concurrent queries [22] on GPU.
However, considering all kinds of factors, making full use of
the GPU computing power and perceiving its characteristics,
the optimization of multi-join for a large number of data has
not been systematically studied, which is the focus of this
paper.

The architecture of the GPU is different from that of the
CPU. First, a large number of transistors integrated on the
GPU are used for computation rather than logic control and
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caching, which makes it well suited for performing computa-
tions with simple logic and high density. As shown in Fig. 1,
the GPU contains a large number of computing cores named
stream multiprocessors (SMs), and each SM consists of sev-
eral execution units named cores; all cores on the same SM
execute the same instructions at the same time. Therefore,
GPU-based algorithms should adopt a data structure in which
each element is independent and equal, as well as simple
and with no branch instructions. Second, the capacity of the
device memory is limited, and the GPU transmits data to
the CPU over a low-bandwidth PCI-E bus. This overhead
may offset the efficiency gains yielded by using the GPU.
This paper improves transmission efficiency by using Unified
Virtual Addressing (UVA) [23] and stream technology. UVA
technology can lock the physical memory address so that the
GPU can directly read and write data to avoid copying data
between the host memory and the device memory. The dotted
arrow in Fig. 1 shows the path to read and write data by UVA,
and the solid arrow is the path for copying data. The stream
is used to manage the execution of operations, the operations
within a stream are executed sequentially, and the operations
of different streams are executed asynchronously and in par-
allel. Transmission and computation are executed in different
streams, enabling them to be executed asynchronously and
in parallel to hide the transmission delays. Finally, compared
with the fast computation capability, memory reading and
writing are the bottlenecks of parallel computing on the GPU.
The storage system of the GPU is a multilevel storage mode
that combines shared storage and private storage. Each core
has its own register, and all cores in each SM share the shared
memory and L1 cache, while the global memory is shared
by all threads and cached through a L2 cache. Effective use
of these fast on-chip memories and multilevel caches and
adoption of a coalesced access mode [17] can greatly reduce
the memory access times.

FIGURE 1. The data transmission between the GPU and the CPU.

The unique architecture of the GPU provides huge space
for parallel optimization of multi-join queries, but challenges.
We cannot transplant the previous optimization methods to
the GPU, instead must design new optimization methods
suitable for the GPU. The optimization strategies and meth-
ods of multi-join queries in this paper, even if they have
similar ideas and names to that of the previous, their contents

and implementation are completely different, which are the
novelty of this paper. They are shown in the following aspects:

(1) A two-stage optimization strategy on the GPU and a
theoretical proof of its effectiveness.

(2) The estimation method of the join cost on the GPU.
(3) The strategies to schedule each join for parallel execut-

ing on the GPU, and the main is that of grouping.
(4) The independent parallel algorithm and the pipelined

parallel algorithm based on the stream and the UVA
technology, which are on the GPU.

Therefore, we propose a GPU-based Two-Phase Parallel
optimization approach (gTPP) for multi-join queries. The
contribution of this approach has two aspects: first, provid-
ing an overall solution for multi-join query optimization on
the GPU; second, designing and implementing a multi-join
parallel algorithm on the GPU.

The rest of this paper is organized as follows. In Section II,
a brief overview of previous multi-join optimization strate-
gies, methods, and parallel scheduling strategies are given.
In Section III, we proposes and proves a two-stage optimiza-
tion strategy on the GPU, design and implement optimization
methods of each phase, and a parallel scheduling strategy for
multi-join. In Section IV, the efficiency of each strategy and
the method proposed in this paper is verified by experiments,
and the efficiency of our algorithm is compared with that of
other optimization algorithms for multi-join. In Section V,
the threats to validity of our optimization are discussed. The
future works are summarized and prospected in Section VI.

II. PRELIMINARY KNOWLEDEG AND RELATED WORK
Multi-join query optimization should not only need to study
various optimization methods, but also need to study the
strategies that combine these methods for optimization. For
example, how to carry out the optimization work? What are
the steps? What is the content and purpose of each step?

A. TWO-PHASE OPTIMIZATION STRATEGY FOR
MULTI-JOIN
In a multi-join query, if the optimal solution is searched in
all join orders and all parallel optimization methods, it will
lead to a huge search space and make the optimization com-
plex. To reduce the search space and optimize quickly and
effectively, researchers have proposed multi-phase strategies
[16], [24]. For example, Hong and Stonebraker [24] divided
the optimization of multi-join queries into two phases. The
first phase is to determine the execution sequence of each
join and obtain the minimum cost join tree for sequential
execution, which is called sequential optimization. The sec-
ond phase is based on the join tree generated by phase one,
considering available resources and according to a certain
strategy to schedule multiple joins to execute in parallel,
which is called parallel optimization.

B. SEQUENTIAL OPTIMIZATION
If a multi-join is executed in different orders, then the data
amount or join selectivity may be different due to different

VOLUME 8, 2020 118381



X.-X. Hu et al.: Optimization for Multi-Join Queries on the GPU

joins executed at each step, which will result in different sizes
of join results, and different execution costs of their next join
which use these results as their join data. Finally, the query
efficiency is significantly different [25].

In the sequential optimization phase, the join cost estima-
tion model is first established, and then according to this,
the minimum cost execution plan tree is constructed.

According to the cost estimation model, the algorithms
for searching the minimum cost join execution plan in the
execution plan space include: the enumerated algorithm [2]
of exhaustive search; the random search algorithms that
search in a subset of the planning space, such as the swarm
intelligence algorithm [3] and the simulated annealing algo-
rithm [4]; the heuristic algorithm [5], which uses heuristic
rules to search for optimal or near optimal plans; and the
genetic algorithm [6], which simulates biological genetic
and evolutionary rules to search. The enumeration algorithm
can produce the optimal plan, but the complexity increases
exponentially with the increase of the join number; the search
speed of the heuristic method is the fastest, but it usually
only approximates the optimal plan; the time required and the
result quality of the random search algorithm and the genetic
algorithm are between the two.

Chen et al. [26] proposed a join cost estimation formula of
table Ri join table Rj, that is COSTMR:

COSTMR
(
Ri,Rj

)
= |RiFG Rj|

Among them, (Ri, Rj) represents the join between Ri and Rj,
Ri FG Rj represents the result relation of (Ri, Rj), and |R|
represents the cardinality of R. The estimation of the join
result cardinality |Ri FG Rj| is as shown in the appendix
in [26]. This formula assumes that the attributes values are
uniformly distributed. For the attribute values of the skew
distribution, Grady and Puech [27] and Haas and Swami [28]
gave corresponding estimation formulas.

Chen et al proposed a heuristic algorithm GMR based on
the above formula for constructing the minimum cost exe-
cution plan tree, and confirmed that its efficiency is closer
to the efficiency of the optimal plan tree than the minimum
cost execution plan tree constructed by other algorithms they
proposed.

For amulti-join represented by graphG= (V, E) (where the
node set V represents the relation table set and the edge set E
represents the join set), theGMR is shown inAlgorithm 1 [26]:

Algorithm 1 GMR

((h1) while ( |V| > 1)
(h2) {choose the join Ri FG Rj from G (V,E) such that

COSTMR(Ri,Rj) = min∀Rp,Rq∈V {COSTMR
(Rp,Rq)};

(h3) performRi FG Rj;
(h4) merge RiandRjtoRmin(i,j);
(h5) update the profile of Rmin(i,j);}

In the above algorithm, first selects the minimum cost join
and execute it (h2-h3), and then uses the join result to update

the join graph (h4-h5). Repeat this process until all joins are
completed.

C. PARALLEL OPTIMIZATION
The parallelism of multi-join can be performed within a sin-
gle join, namely, intra-join parallelism, or between multiple
joins, namely, inter-join parallelism. The four implementa-
tion methods of a single join are Non-Indexed Nested-Loops
Joins NINLJ, Indexed Nested-Loops Joins INLJ, Sort-Merge
Joins SMJ and Hash Joins HJ, and their parallel optimiza-
tion has been studied extensively on various platforms.
For example, Bitton et al. [8] detailed the parallel algo-
rithm of nested-loop joins and sort-merge joins on multi-
processors. Using the Gamma cluster, Gerber [9] verified
that a hash join algorithm based on join attribute partition-
ing is both highly parallel and exhibits high-performance.
Schneider and DeWitt [10] discussed parallel algorithms for
several hash joins and sort-merge joins and compared the
performances of these algorithms. With the wide application
of the GPU, use of it to optimize the join query has also been
studied. He et al. [11], [12] implemented parallel algorithms
of four types of single join based on primitives on the GPU.
Diamos et al. [13] designed a hierarchical, multi-level bulk
synchronous parallel algorithm on the GPU that implements
relational algebra, such as join, and claimed that the join
algorithm is 1.69 times faster than He’s algorithm.

There are three methods for performing inter-join paral-
lelism: (1) pipeline parallelism, which is the parallel execu-
tion in pipeline fashion for the dependent joins, dependent
join refers to one join result is the input of another join;
(2) independent parallelism, which is the parallel execution of
different joins whose data are not relevant; and (3) partitioned
parallelism, which distributes data to different machines to
execute in parallel [29], [30]. Fig. 2 presents the implemen-
tation of inter-join parallelism.

FIGURE 2. Parallel execution methods of inter-join.

Fig. 2a is a multi-join execution plan tree with the min-
imum cost. Fig. 2b shows the pipelined execution of 2a.
R0 joins R1, R2, and the join result of R3 andR4 in sequence in
a pipeline manner without intermediate result. Fig. 2c shows
the independent parallel execution of 2a. R0 joins R1 first, and
then the result is joined with R2. Finally, this result is joined
with the join result of R3 and R4. Fig. 2d is the partitioned
parallel execution of 2a. The data of R0-R4 are distributed
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to the machines P1 and P2 to execute join. The Rj
i on each

machine denotes the part of the data that relation Ri are
distributed to the machine Pj.
Chen et al. [15] performed segmented pipelined hash joins

on right-deep trees, significantly improving the efficiency
of execution on the right-deep tree. Wilschut et al. [16]
performed pipeline parallelism and independent parallelism
on the minimum cost join tree. Liu and Rundensteiner [31]
studied themethods that combine pipelined parallelism, parti-
tion parallelism and independent parallelism to achieve better
overall efficiency. Koutris et al. [32] discuss massively paral-
lel computation of join in large distributed clusters.

The parallel optimization of multi-join on the CPU
[8]–[10] and single-join on the GPU [11]–[13], or relational
query based on single-join parallel optimization [20]–[22]
have been fully studied. However, there is no research on the
implementation of a larger degree of parallel optimization of
multi-join by using the GPU.

D. PARALLEL SCHEDULING STRATEGIES
The strategy of assigning joins to processors to execute in
parallel also affects the efficiency of multi-join execution.
Wilschut summarizes and compares four parallel scheduling
strategies [16]:

(1) Sequential parallel execution (SP), which in turn
assigns each join to all processors to execute in parallel but
does not implement the parallel execution of inter-join.

(2) Synchronization Execution (SE) [16], which allocates
independent subtrees to processors for independent parallel
execution, and the number of processors allocated to each join
is proportional to the amount of work.

(3) Segmented right-deep execution (RD) [15], [33], [34],
which in turn assigns each segment to all processors to
execute in pipelined parallel, and the number of processors
allocated to each join in a segment is proportional to the
amount of work.

(4) Full parallel execution (FP) [35], which simultaneously
allocates processors for all joins in the join tree according to
the proportion of their amount of work.

Wilschut analyzed and tested the execution efficiency of
the use of these four strategies to schedule joins in trees of
different shapes. In general, SP is suitable for a multi-join
with a large amount of data and simple joins to implement
single join parallelism. SE is suitable for a bushy tree to
implement independent parallelism. RD is suitable for a
right-deep tree to implement pipelined parallelism. FP has
good overall performance for all shapes of trees.

III. GPU-BASED OPTIMIZATION
The optimization of multi-join query on the GPU is different
from that on the CPU. We will systematically study the
multi-join query optimization on the GPU from the aspects of
optimization strategy, sequential optimization, parallel opti-
mization and parallel scheduling.

A. TWO-PHASE OPTIMIZATION STRATEGY
Compared with the two-phase optimization strategy on the
CPU, the optimization strategy in this paper emphasizes the
saturation of tasks performed on the GPU. This is to make full
use of its parallel computing power to improve the efficiency
of multi-join execution.

1) THE CONTENT OF THE STRATEGY
The multi-join optimization strategy based on the GPU is
divided into two phases:

Phase 1, Build a join tree which has the minimum
workload;

Phase 2, Group the joins of this join tree to schedule for
execution, and make each group has as many joins as possible
that can be loaded into the device memory.

The main reason for grouping multiple joins is the limita-
tion of the device memory capacity. The parallel computing
power of the GPU and the dependency between joins will not
restrict the scheduling of the joins. Because the GPU overload
can only make the execution time increase linearly with
the increase of workload, will not reduce the efficiency, but
make full use of its parallel computing power. The joins with
dependency can be optimized by pipeline parallel execution,
or if it cannot be optimized, it will not be less efficient than
the separate scheduling execution.

The number of joins be scheduled to be executed in parallel
in each group is limited by the device memory capacity,
which is related to the data transmission method and join
execution method adopted in this paper, it will be discussed
in Section III-C.

2) THE EFFECTIVENESS OF THE STRATEGY
The execution of the multi-join according to a two-phase
optimization strategy, is it sure to improve efficiency? In the
past, people just used it, and verified it by experiments at
most [24], without giving theoretical proof. The following
will prove its effectiveness theoretically.
Lemma 1: the effectiveness of the GPU-based multi-join

optimization strategy includes two aspects:
(1) The grouping methods that make the GPU full load

have higher execution efficiency;
(2) The result of consistent optimization can be obtained

by parallel optimization of the minimum cost join tree.
Prove: Suppose that multiple joins on a multi-join execu-

tion plan tree with total task amount of w are grouped and
scheduled to execute on the GPU. If the processing capacity
of the GPU when it is just full load is to complete the join of
the workload wc using time tc, then the execution time tGkof
the group Gk with the task amount wGk is:

tGk =


(
wGk

wc

)
× tc, wGk ≥ wc

tc, wGk < wc

If it is executed in m groups, the group with full GPU load
is Gi (1 ≤ i ≤ m1), and the group with insufficient GPU load
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is Gj (m1 + 1 ≤ j ≤ m1 + m2), and m1 + m2 = m. Then,
the total execution time t of a multi-join on the GPU is:

t =
∑m1

i=1

(
wGi

wc

)
× tc +

∑m1+m2

j=m1+1
tc

(1) When m2 = 0, m1 = m, means each group makes the
GPU full load, and its total execution time tf is:

tf =
∑m

i=1

(
wGi

wc

)
× tc

=

(
w
wc

)
× tc

When m2 6= 0, means that there is a group at least makes
the GPU load insufficient, and its total execution time ti is:

ti=
∑m1

i=1

(
wGi

wc

)
× tc +

∑m1+m2

j=m1+1
tc

> [
∑m1

i=1

(
wGi

wc

)
+

∑m1+m2

j=m1+1

(
wGj

wc

)
]× tc (wGj < wc)

=

(
w
wc

)
× tc

Therefore, ti > tf, that is, the scheduling execution method
that each group makes the GPU full load is better than that of
the load insufficient.

(2) According to the time tf =
(

w
wc

)
× tc of the multi-join

execution which makes the GPU full load of each group,
we can see that tf is the smallest when w is the smallest.
That is, the execution efficiency of the parallel optimization
of the minimum cost join tree is certainly higher than that of
the parallel optimization of a higher cost join tree. In other
words, the optimization in two-phase can achieve consistent
optimization results.

In [31], multi-joins are also scheduled and executed by
grouping. However, it starts from the join graph. First, select
the relation with the largest cardinality as the build table,
and then select some connected table with the minimum join
cost to form the minimum join cost group. Such an execution
plan cannot ensure that the total cost is minimal. Therefore,
the method of [31] may not be able to better approach the
optimal result.

B. SEQUENTIAL OPTIMIZATION
As a coprocessor, the GPU needs to read the source data
from the CPU and send the join results back to the CPU.
Therefore, the execution cost on the GPU contains more data
transmission cost than that of on the CPU. It is different
from the join cost on the CPU described in [26] and needs
to be re-estimated to provide a precise basis for building the
execution plan.

1) ESTIMATE THE JOIN COST
This paper adopts the hash join as the basic join method
because the intrinsic nature of the hash join makes it more
suitable for the parallel execution of intra-join, as well as
the pipelined and partitioned parallel execution of inter-join.

It is a proven high-performance join method [10]–[12]. The
hash join is divided into five tasks: one is to input a relation,
namely, a build table; the second is to construct a hash table
using the data in this table; the third is to input another
relation, namely, a probe table; the fourth is to probe the data
of the hash table using the data in the probe table; and the
fifth is to output the join result. Therefore, for the multi-join
performed by groups, its join cost of each group includes the
cost of reading the join data, executing the joins and writing
the result data of this group. The total cost is the sum of the
costs of each group.

Fig. 3 shows the grouping execution of a multi-join. Where
R denotes source relations, I denotes join results, the joins
within the dotted and solid line belong to the first group and
the second group, respectively. In this join tree, R1, R2, R4,
R6, I3 and I5 are used to build hash tables, R0, R3, R5, I1, I2
and I4 execute probe, and I2, I3, and I5 are written by the first
group and read by the second group.

FIGURE 3. The grouping execution of multi-join.

Suppose that a multi-join contains relations R0, . . . ,Rn,
the RB = {Ri, 0 ≤ i ≤ n} is the set of build tables, and
the RP = {Rj, 0 ≤ j ≤ n} is the set of probe tables. The
join results are I1, . . . , In, each result in the set IB = {Ik,
1 ≤ k < n} is used to build hash table, each result in the set
IP= {Iq, 1 ≤ q < n} is used to probe hash tables, each result
in the set IR = {Ir, 1 ≤ r < n} needs to be output then input,
and the final output is In. Then, the cost wb of the build phase,
the cost wp of the probe phase and the total cost w are as
follows:

wb = (tread + tbuild)×
∑

Ri∈RB
|Ri| + tbuild ×

∑
Ik∈IB
|Ik|

wp =
(
tread + tprobe

)
×

∑
Rj∈RP

∣∣Rj
∣∣+ tprobe ×

∑
Iq∈IP

∣∣Iq∣∣
w = wb + wp + (twrite + tread)×

∑
Ir∈IR
|Ir| + twrite × |In|

Among them, |R| and |I| denote the cardinality of source
relations and join results, while tread, twrite, tbuild and tprobe
denote the unit execution time to read data, write data, build
a hash table and probe a hash table respectively, that is, the
average execution time of each tuple. If the tuple number of
all source relations of a multi-join is s, the total cost w can be
expressed as:

w = (tread + tbuild)×
∑

Ri∈RB
|Ri| + tbuild ×

∑
Ik∈IB
|Ik|

+
(
tread + tprobe

)
×

(
s−

∑
Ri∈RB

|Ri|
)
+ tprobe

×

∑
Iq∈IP

∣∣Iq∣∣+ (twrite+tread)×
∑

Ir∈IR
|Ir| + twrite

× |In| =
(
tread + tprobe

)
× s+ (tbuild − tprobe)
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×

∑
Ri∈RB

|Ri| + tbuild ×
∑

Ik∈IB
|Ik| + tprobe

×

∑
Iq∈IP

∣∣Iq∣∣+ (twrite + tread)

×

∑
Ir∈IR
|Ir| + twrite × |In|

In the above formulas, tread and twrite are related to the
bandwidth and read/write mode (whether or not there is
coalesced access), tbuild and tprobe are related to the parallel
algorithm, they are unrelated to the join execution sequences.
Similarly, the total number of tuples of all source relations of
a multi-join is also unrelated to the join sequence. The join
sequence only decides the relations to execute join and the
size of intermediate join results, that is, |R| and |I|. Thus,
if (tbuild - tprobe) ×

∑
Ri∈RB |Ri|,

∑
Ik∈IB |Ik|,

∑
Iq∈IP |Iq|,∑

Ir∈IR |Ir| and |In| take the minimum values, then the total
cost w of themulti-join isminimum. For building hash table is
more time-consuming than executing probe (tbuild > tprobe),
the total cost is minimal when the tuple number of the build
tables and join results are minimal. Therefore, the estimate
formula of the join cost on the GPU is:

COSTME
(
Ri,Rj

)
= |Ri| + |RiFG Rj| (Formula 1)

The above formula gives the minimum estimated value
COSTME of the cost of Ri join Rj. Among them, Ri is the
build table, which is the table with fewer tuples than the probe
table Rj.

2) BUILD THE MINIMUM COST JOIN TREE
A suitable heuristic rule can quickly get the optimal or
approximate optimal join plan for complex join queries.
Therefore, the heuristic algorithm GME is adopted in this
paper, which uses formula 1 as the join cost estimation for-
mula, always prefers to choose those minimum cost joins
and finally build the minimum cost join tree. The join tree
uses the conventional representation method, namely the left
child node represents the build table and the right child node
represents the probe table.

For the multi-join represented by graph G = (V, E), the
heuristic algorithm GME construct its minimum cost join tree
T. T = {n} = {(Ti, Lc, Rc)}, it is a set of node n composed
of table identifier Ti, left pointer Lc and right pointer Rc. Ti
gives the identifier of the source relation or the join result
relation represented by this node, Lc points to the build table,
and Rc points to the probe table. The GME for constructing
the minimum cost join tree is shown in algorithm 2:

Algorithm 2 GME

(e1) while ( |V| > 1)
(e2) {choose the join Ri FG Rj from G (V,E)

such that COSTME(Ri,Rj) = min∀Rp,Rq∈V
{COSTME(Rp,Rq)};

(e3) merge Ri and Rj to Iij in G;
(e4) give the profile of Iijas

∣∣RiFG Rj
∣∣ inG;

(e5) put the node (Iij,Ri,Rj) into T;}

For the multi-join of |V| relations, the GME algorithm
performs |V| − 1 times selections according to formula 1 to
build a minimum cost join tree (e1). For each selection,
at most the cost of |E| joins need to be calculated (e2). Thus
its time complexity is O (|V||E|). When the number of joins
is large, the minimum cost join tree can still be obtained with
reasonable time complexity by the GME.
We use the heuristic rules GMR [26] and GME to construct

the minimum cost join tree of the join graph of Fig. 4a, and
use the GOPT [26] scheme to search for its optimal solution.
The cardinality of source relations and attribute domains of
the join graph is shown in Table 1.

FIGURE 4. Construct the minimum cost join tree by different rules.

TABLE 1. The profile of the join in Fig. 4a.

The minimum cost join trees obtained by GMR, GME, and
GOPT are shown in Fig. 4b, 4c, and 4d, and their total costs are
2079.7×106, 1037.1×106 and 1035×106, respectively. It can
be seen that in the multi-join of T-level data scale, the cost of
the multi-join execution plan obtained by the GME is more
about 2 megabytes than the optimal solution, which is much
smaller than the cost gap between the GMR and the optimal
solution. The result is not an accident. In section IV-C, wewill
test the query efficiency of join trees derived from these three
heuristic rules.

C. DATA TRANSMISSION METHOD
This paper uses the UVA technology to transfer data. This
technology unifies the virtual address of the device memory
and the host memory, so that the GPU can read data from the
host memory directly without copying to the device memory.
On the one hand, the device memory can be effectively use;
on the other hand, the GPU can read data at PCI-E rate, which
improves the transmission efficiency. Therefore, the UVA
technology can be used to transfer data that is read only once
and does not need to be modified, and data that is directly
written back after GPU processing.

In the hash join, the build tables used to build hash tables
and the probe tables used to probe hash tables only need to be
read once, they do not need to bewritten to the devicememory
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and can be transmitted by the UVA technology, and the final
result also can be written back to the host memory directly by
the UVA technology. Only the hash tables, which be probed
by each data item in the probe tables, needs to be established
in the devicememory [23].Wewill build a compact hash table
of the same size as the build table. Therefore, joins that can
be scheduled for parallel execution on the GPU are limited by
the size of the build tables that the device memory can hold,
that is, the total size of all left leaf nodes on these join trees
of parallel execution.

D. THE PARALLEL EXECUTION METHOD FOR SINGLE
JOIN
On the GPU, the method of parallel execution of hash joins is
that multiple threads build hash tables, probe data and write
results in parallel. Building hash tables and writing results
back to memory require concurrent writing multiple data to
the target area, which may result in the conflict that multiple
threads write to the same location in a bucket. Therefore,
it is necessary to calculate the address that each data should
be written to before do it. Similar to the split primitives of
He et al. [11], we also uses the histogram, which is used for
the cardinality sort as the location for writing data.

Fig. 5 shows an example of writing data in parallel using
a histogram. In the figure, two threads t0 and t1 are each
responsible for writing 4 data items of InsertData into buckets
in parallel. First, compute the bucket index BucketNo into
which each data item should be inserted; next, calculate the
histogram, which stores the amount of data (processed by
each thread) that should be inserted into buckets b0 to b3;
then, output them to the array Location. The prefix sum of
Location is the offset that the thread writes the data into the
result array.

FIGURE 5. An example of the parallel writing of data.

This paper constructs a histogram in cache to improve
efficiency. Suppose that the size of the cache in each SM is
m, the thread number of each block is tpb, and each item in
the histogram is 4 bytes; then, each thread can be responsible
for writing m/(4∗tpb) data.

E. THE PARALLEL EXECUTION METHOD FOR MULTIPLE
JOINS
There is no research on methods for implementing multiple
joins parallelism on the GPU, and we will discuss to take

advantage of the architecture features and related technolo-
gies of the GPU to achieve it in this section.

1) INDEPENDENT PARALLELISM
Those independent and unrelated joins can be simultaneously
assigned to the GPU to execute in parallel. There are two
ways to implement parallel execution ofmultiple independent
joins on the GPU. One is to execute multiple joins in parallel
using one stream. According to the work amount of joins,
proportionally allocate the threads to execute each join. The
more threads are allocated, the more cores to execute the join,
which can achieve load balancing. The other is to execute
multiple joins in parallel using multiple streams. Within a
stream, each task is scheduled to be executed sequentially.
Between streams, the data transmission tasks of each stream
are sequentially scheduled to execute on the memory repli-
cation engine, and the computation tasks of each stream
are sequentially scheduled to execute on kernel execution
engines, so that data transmission and kernel functions are
executed in parallel to hide transmission delay.

For example, in Fig. 6a, n tables perform n/2 independent
joins. Each join contains five tasks: input the build table
(Input Ri), construct the hash table (B(i+1)/2), input the probe
table (Input Ri+1), execute the probe (P(i+1)/2) and output the
result (output RS(i+1)/2). Fig. 6b, 6c, and 6d show the queuing
execution of the n/2 independent joins in the two engines of
the GPU. In the figures, the longitudinal axis is the execution
time line, and the arrows between two engines indicate the
dependence of the execution. Assume that the time to perform
each task on a table is 1 unit time.

FIGURE 6. Independent parallel execution.

If each task of multiple joins are executed in one kernel
function, and multiple streams are not used (the default is
one stream). For example, build hash tables of tables R1,
R3, . . . ,Rn−1 in the function B1,2,...,n/2; probe the data of
the hash table with the data of tables R2, R4, . . . ,Rn in the
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function P1,2,...,n/2. Then, the execution in both engines is as
shown in Fig. 6b. Before executing B1,2...,n/2, it is necessary
to wait for the finish of the input of all build tables (Input
R1, R3, . . . ,Rn−1); before outputting results, it is necessary to
wait for the finish of all probes (P1,2,...,n/2). Then, thememory
replication engine takes 4 ∗ n/2 = 2n units of time, and the
kernel execution engine takes 3 ∗ n/2 units of time, for a total
of 2n units of time.

If each task of each join is executed in one kernel function
and multiple streams are not used, the scheduling execution
is as shown in Fig. 6c. The five tasks of each join are respec-
tively scheduled to be executed on two engines in sequence.
It can be seen that the output of results needs to wait for the
finish of the probe, and the mode of sequential scheduling
execution hinders the subsequent input. Therefore, before the
output of each join results, the memory replication engine has
a waiting time. The construction task of the next join needs to
wait for the input of its build table, and then before it executes
the construction task of each join, it must wait for the finish
of the output of the previous join results and the input of
the build table of this join, i.e., the kernel execution engine
has two waiting times. In this execution mode, the memory
replication engine takes 4 ∗ n/2 = 2n units of time, and the
kernel execution engine takes 4 ∗ n/2− 1 = 2n− 1 units of
time, totaling 2n units of time.

If n/2 joins are performed using n/2 streams S1,
S2, . . . ,Sn/2 and the operations are put into the queues of
the streams in a width-first manner, the scheduling execution
is as shown in Fig. 6d. The width-first manner refers to
preferentially adding the same operation to all streams, not
preferentially adding all operations of a same stream. That is,
we first add all tasks of the input build table to each stream,
next add all construction tasks to each stream, then add all
tasks of the input probe table and probe, and finally add all
output tasks, as described in algorithm 3.

Algorithm 3 indepParaJoin
(i1) Input R1, R3, . . . ,Rn−1 in S1, S2, . . . ,Sn/2, respec-

tively;
(i2) Execute B1, B2, . . . ,Bn/2 in S1, S2, . . . ,Sn/2, respec-

tively;
(i3) Input R2, R4, . . . ,Rn in S1, S2, . . . ,Sn/2, respec-

tively;
(i4) Execute P1, P2, . . . ,Pn/2 in S1, S2, . . . ,Sn/2, respec-

tively;
(i5) Output RS1, RS2, . . . ,RSn/2 in S1, S2, . . . ,Sn/2,

respectively;

Under this method, the scheduling execution of the tasks
of n/2 joins on both engines is as shown in Fig. 6d. It can
be seen that the execution on two engines never has to wait.
The memory replication engine takes 3 ∗ n/2 units of time,
the kernel execution engine takes 1+ 2∗n/2 = n+ 1 units of
time, and the total is 3n/2 units of time.

If the width-first method is not adopted, but the depth-first
method is used, that is, after the execution of all operations
of one stream, all operations of the next stream are per-
formed. In this way, even if each join uses a different stream,
the scheduling execution is also similar to Fig. 6c, and the
operation in the front stream will block the operation in the
behind stream. Therefore, only by properly using multiple
streams to execute multiple independent joins in parallel,
the transmission delay can be hidden, and the execution
efficiency of multi-join can be improved.

2) PIPELINED PARALLELISM
Multiple joins with dependencies cannot be executed in par-
allel independently, can only be executed in a sequential or
pipelined fashion. As the multi-join in Fig. 7a, all left child
nodes of this right-deep join tree are source relations, hash
tables can be constructed in parallel, and pipeline probe can
be executed. But the multi-join in Fig. 7b, the left child nodes
of this left-deep join tree, except for R0, are all intermediate
join results, hash tables cannot be constructed in parallel, and
the pipeline probe cannot be performed. It is not suitable for
pipeline parallel execution, can only be executed in sequence.

FIGURE 7. Pipelined parallel execution.

Under the pipelined execution mode, the data of the probe
tables successively probes the data of the hash tables on
the pipeline without generating intermediate results, and its
advantages of speed and less space occupation make it com-
petitive in multi-join optimization. The method to perform a
hash-based pipelined parallel join on the GPU is:

(1) Read all construction table data from the host memory
to the GPU, and build each hash table to the device memory
in parallel;

(2) Read the probe table data from the host memory, and
probe the hash tables on the pipeline in turn;

(3) Finally, the results are compactly written back to the
host memory in parallel.

Although multi-stream can also be used to perform
pipelined parallelism, in the single-stream execution mode,
all tables be continuous input without blocking and be exe-
cuted in parallel with the calculation in the kernel execution
engine. Therefore, multi-stream execution does not help to
hide the transmission delay. For example, for the right-deep
tree of m joins as shown in Fig. 7a, 7c show the execution in
the memory replication engine and kernel execution engine
without usingmultiple streams. Among them, pP1,2,...,m show
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the pipelined probe to the hash tables built by R1, R2, . . . ,Rm,
other symbolic meanings are the same as in Fig. 6. The two
engines are basically executed in parallel with no other wait
except for the necessary wait (the memory replication engine
waits for probe results to execute output). Pipeline parallel
execution is shown in algorithm 4.

Algorithm 4 pipelineParaJoin
(p1) Input R1, R2, . . . ,Rm in S;
(p2) Execute B1,B2, . . . ,Bm in S;
(p3) Input R0 in S;
(p4) Execute pP1,2, . . . ,m in S;
(p5) Output RS in S;

The pipeline probe algorithm pP1,2,...,m in the above line
p4 is shown in algorithm 5.

Algorithm 5 pipelineProbe
(pp1) for each tuple R0[i] of R0 parallel do{
(pp2) do{
(pp3) for each tuple Rj[k] in the bucket[hash(R0[i].key)]

of Rj
(pp4) { if( R0[i].key== Rj[k].key)
(pp5) matchNum[i]++;}
(pp6) j = j + 1; // j is the count of the hash table to be

probed
(pp7) }while(matchNum[i] > 0 && j ≤ m)}
(pp8) resultNum = sum(matchNum[i]);

In the lines pp1-pp7, each thread in charge of the probe
of each data successively probes the tables on the pipeline.
If the table Rj is probed, and there is no matching data in
its corresponding bucket (bucket[hash(R0[i].key)]), namely
matchNum[i]= 0, then end the probe of the remaining tables
on the pipeline; otherwise, continue to probe the next table
until all tables have been probed (j > m). Because the device
memory is allocated from a fixed-size heap [17], and heap
size remains unchanged once a kernel function is started,
namely all space of the devicememory cannot be dynamically
allocated when the kernel function is running. Therefore,
before writing the result, the size of the result (resultNum)
should be accurately calculated, so as to allocate the space
for storing the result data in advance.

In this algorithm, the parallel probes to multiple data are
synchronized at the end of the pipeline, and the probes in
the middle do not need to be paused, which realizes the idea
of the pipeline. According to [31], the maximally pipelined
processing is not always the most effective. However, this
conclusion is based on the join graph. After the minimum
cost join tree is determined, pipeline parallel processing for
right-deep tree joins can improve its processing efficiency.
The longer the pipeline, the more effective, it will be verified
in the experimental section.

When the work amount of right-deep tree joins or sin-
gle joins performed on the GPU cannot meet its computing

power, they can be scheduled for parallel execution at the
same time, so that independent parallelism and pipeline par-
allelism complement each other to further improve the effi-
ciency of multi-join queries. At this time, each right-deep tree
join or each single join is executed with a stream respectively,
and its algorithm multiStreamParaJoin is the combination of
algorithm 3 and algorithm 4.

F. THE PARALLEL SCHEDULING STRATEGY
Due to the use of the UVA technology, the number of joins
be executed in parallel in each group is limited to the size
of all build tables that the device memory can accommodate.
If a single build table is also larger than the device memory
capacity, this table and its probe table can be partitioned into
smaller disjoint subtables, so that hash tables of the sub build
tables can be built in the device memory, to schedule them to
the GPU to execute [36].

The parallel scheduling strategy in this paper first divides
the joins in the tree into groups from bottom to top, and
then schedules in turn each group to the GPU to execute.
The execution of the joins within a group is according to
their work amount to allocate the threads proportionately, and
nothing is special. The grouping is the key to the scheduling
strategy, and it will produce various costs, such as:

(1) Startup cost, which is the time to start the GPU. The
greater the number of start up theGPU to execute amulti-join,
the higher the start cost. As described by Wilschut et al. [16],
SP divide the operation of multi-join to the largest number
and thus have the highest startup costs. Alternately, FP has
the lowest startup cost, while SE and RD live in between.

(2) Collaboration cost, the cost of data transfer between the
two schedules. After each scheduling is executed, the result
needs to be saved and passed to the group scheduled for
the next time. Saving and passing this intermediate footprint
reduces the execution efficiency. Similarly, SP has the most
intermediate results and the highest cost, FP does not have
this cost, and SE and RD are between the two.

(3) Dependency cost, that is the time that the processor
which execute upper layer join need to wait for the execution
of lower layer join to complete when multiple joins with
dependency relations are allocated to multiple processors at
the same time. In this paper, when the multi-join shaped
as right-deep tree are executed in pipeline parallel fashion,
the processor does not need to wait and there is no depen-
dency cost. However, the multi-join shaped as left-deep tree
can’t perform pipeline parallel, and there is a dependence
cost. Therefore, there is no dependency cost for SP and RD
scheduling; the dependency cost in SE and FP is related to
the number and data volume of subjoins with dependency
relations.

In order to reduce scheduling cost and perform multi-join
more efficiently, grouping should meet three conditions as far
as possible:

(1) The work amount of the joins in each group is greater
than the execution power of the GPU to makes maximum use
of its computational power, and should first be satisfied.
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(2) Minimize the number of groups to reduce the start-up
costs and collaboration costs.

(3) Avoid appearing the joins shaped as left subtrees in a
group, to remove dependency cost. However, when the mem-
ory capacity allows and there is no other unrelated single-join
or right-deep tree join, they can also be added to the same
group for parallel execution.

Under such a scheduling strategy, when the subjoin in each
group is a single join, the strategy is SP; if it is a right-deep
tree, the strategy is RD; if it is a bushy tree that consists of
right-deep trees and single node(s), the strategy is SE; if the
entire scheduling has only one group, then the strategy is
FP. However, the groups are usually not a case, which may
be a mixture of the four strategies. Our scheduling strategy
considers not only the shape of the join tree but also the
workload of joins, so it is more suitable for the application
requirements.

This paper uses a greedy algorithm to group. In simple
terms, it adds as many unrelated subjoins to the same group
as possible. The grouping algorithm joinsGrouping is shown
as algorithm 6:

Algorithm 6 joinsGrouping
(j1) while(T.nodeNum>1) {
(j2) searchRTS(T, RTSs );
(j3) addJoinsToGroup(RTSs, Gs[k]);
(j4) mergeST(T, RTSs);
(j5) k=k+1;}

The algorithm is divided into following steps:
(1)Search all the unrelated right-deep trees and single-join

trees at the bottom of the join tree T and put them into the set
RTSs (j2).

(2) Select subtrees in the RTSs, and put them into the
group Gs[k], so that the total size of all left leaf nodes in
the group does not exceed the current remaining capacity
rcdm of the device memory, nor smaller than rcdm - th. Here,
the final remaining capacity of the device memory is limited
to a threshold th, in order to load as many joins as possible to
execute (j3).

(3) The subtrees on the join tree T that exists in the group
Gs[k] are merged into one node separately (j4).

(4) Perform the next grouping (j5), namely, repeat the
above process until there is only one node in T.

The searchRTS for searching independent right-deep trees
and single-join trees is shown in Algorithm 7.

The searchRTS function handles three cases when search-
ing in the tree T:

(1) When T is a right-deep tree or a single-join tree, T is
placed in the candidate set RTSs (s1-s2) and returned (s10).

(2) When T is a bushy tree, continues to search in its left
subtree (s4-s6) or right subtree (s7-s9), respectively.

(3) If T is a leaf node, return (s10).
The above isRT function is shown in algorithm 8.

Algorithm 7 searchRTS
(s1) if( isRT(T) || isST(T) )
(s2) { T→RTSs;}
(s3) else if(!isLeaf(T))
(s4) { if( !isLeaf(T.lc))
(s5) { T=T.lc;
(s6) searchRTS (T,RTSs);}
(s7) if( !isLeaf(T.rc))
(s8) { T=T.rc;
(s9) searchRTS (T,RTSs);}
(s10) return;

Algorithm 8 isRT
((ir1) while ( !isLeaf (T) && isLeaf(T.lc))
(ir2) { T = T.rc; }
(ir3) if (isLeaf (T)) return 1;
(ir4) else return 0;

The above algorithm determines whether T is a right-deep
tree by searching the left subtree (ir1-ir2) of T. If T is not
a leaf node, and it has no left subtree, T is a right-deep tree
(ir3); otherwise, T is not a right-deep tree (ir4). The functions
isST and isLeaf determine whether T is a single-join tree and
leaf nodes respectively, and these two algorithms are similar
to isRT.

The addJoinsToGroup function that selects joins and adds
them to a group is shown in Algorithm 9.

Algorithm 9 addJoinsToGroup
(a1) for each RTSs[i] of RTSs
(a2) { if(RTSs[i].alls<rcdm
(a3) { RTSs[i]→Gs[k];
(a4) rcdm −= RTSs[i].alls;}}
(a5) if(rcdm > th)
(a6) { if(!isEmpty(RTSs)
(a7) { cutTreeOrData(RTSs,rcdm, Gs[k]); }
(a8) else
(a9) { mergeST(T,Gs[k]);
(a10) searchRTS (T,RTSs);
(a11) addJoinsToGroup(RTSs, Gs[k]);} }
(a12) return;

The steps of the addJoinsToGroup function to perform
grouping are as follows:

(1) Select the subtrees in the RTSs whose total size of all
left leaf nodes (alls) is less than the remaining capacity of the
device memory (rcdm), and put them into the group Gs[k]
(a1-a4).

(2) If rcdm is larger than a threshold th and RTSs is not
empty (the total size of all left leaf nodes of each subtree of
RTSs is larger than rcdm), then intercept a subtree of RTSs or
partition the tables of a single-join, so that the total size of all
build tables of this result is smaller than rcdm and larger than
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rcdm - th. Add it to the group Gs[k] (a6-a7), then complete
this grouping and return (a12).

(3) If rcdm is larger than th and RTSs is empty, then merge
each subtrees that existing in the group Gs[k] on the join tree
T into one node separately. Repeat the operations of searching
right-deep trees and single-join trees in this tree, selecting
joins to add into the group Gs[k] (a9-a11).

(4) If rcdm is less than th, then return (a12).
The above functions such asmergeST, isLeaf, isST and cut-

TreeOrData have clear functions and simple implementation,
and will not be described in detail for limited space.

According to the above functions, the GPU parallel opti-
mization algorithm gTPP can be given, such as algorithm 10.

Algorithm 10 gTPP
(g1) GME(G,T);
(g2) joinsGrouping(T,Gs);
(g3) for each Gs[k] in Gs
(g4) multiStreamParaJoin(Gs[k]);

The algorithm gTPP first uses the heuristic algorithm GME
to generate the minimum cost join tree T (g1) from the join
graph G, and then uses the grouping function joinsGrouping
to group the joins on the join tree T and put them into Gs (g2),
and finally, the subjoins of each group in Gs are scheduled for
parallel execution on the GPU (g3-g4).

IV. EXPERIMENTS
The experiments will test the efficiency improvement brought
by the GPU-based multi-join query optimization method
and strategy proposed in this paper. It includes some tests
for specific optimization strategies and methods, such as
sequential optimization of multi-join, multiple streams paral-
lel optimization of multiple independent joins, pipeline paral-
lel optimization of the right-deep tree join, and also includes
the test of overall optimization strategies and methods.

A. EXPERIMENTAL SETUP
The experiment used Intel Core i7-4770k, quad-core
3.50GHz CPU, 32GB quad-channel DDR3-1600 RAM. The
GPU is a NVIDIA GeForce GTX 980 Ti, which uses the
Maxwell architecture with a clock frequency of 1076 MHz
and 2816 Cores. The GPU is equipped with 6 GB of
GDDR5memory, its bandwidth is 336.5GB/s, and it provides
a 24-KB unified L1 cache and 2-MB L2 cache. It supports the
parallel execution of data transmission and kernel function
and supports UVA technology. The GPU communicates with
the CPU over the PCI-E 3 bus, and the bidirectional band-
width is up to 32 GB/s. The test environment is the CentOS 6
operating system, and the development tool is the CUDA
(Compute Unified Device Architecture) toolkit launched by
NVIDIA, version 7.5.

B. EXPERIMENTAL SCHEME DESIGN
Experiments will examine the effect of multi-join optimiza-
tion on the execution efficiency of multi-join with different

data amount and join number. For multiple single joins with
same amount of data and different join selectivity, their exe-
cution processes and efficiencies are the same, but their join
result sizes are different, and the efficiencies of their next
join using these results as join tables are different. Therefore,
the effect of multi-join optimization on the execution effi-
ciency of different join selectivity is equivalent to the effect
on the execution efficiency of different data amounts, and a
fixed value can be used.

The benchmark TPC-H has 8 tables and 22 queries, most
of these queries have no more than 5 joins, which do not
meet the test requirements of this paper. The TPC-DS has
25 tables and 99 queries. These queries are missing some
specific join operations. For example, lots of complex joins,
multiple independent single joins and long right-deep tree
joins, etc. Therefore, it is not suitable for testing specific joins
optimizationmethods, but it can be used for testing the overall
performance of the algorithm.

The Experiments to test specific optimization strategies
and methods (Sections IV-C to IV-E) will use automatically
generated joins and tables. Among them, each tuple in tables
for single join has two attributes and 8 bytes, and each tuple in
tables for multi-joins has 3 attributes and 12 bytes. The values
of join attributes are 4-byte integers and uniformly distributed
over all tuples in a table, and the join selectivity is 20%.

The experiments to test the overall performance of the
algorithm (Section IV-F) will use the TPC-DS benchmark.
TPC-DS provides query testing of GB or TB data of a
distributed environment, but this paper studies the join opti-
mization on a single GPU. Therefore, the experiment will
select those queries that have more join operations (than other
operations) and a large number of joins, to perform tests on
the data distributed on a single machine.

The experiment uses the oracle database to store data.
Before the data is processed on the GPU, it is read into the
host memory.

C. THE SEQUENTIAL OPTIMIZATION PERFORMANCE ON
THE GPU
This section test the query efficiency of join trees TMR, TME
and TOPT generated by GMR, GME and Gopt under different
data amount and join number.

For multi-join queries with data amount of 105, 106, 107

and 108, and join number of 8, Fig. 8 shows the required time
for sequential parallel execution according to the join plans
generated by the above three methods.

In Fig. 8a, when the amounts of data are 105, the query
times of the trees TMR, TME and TOPT are all a few millisec-
onds, and the difference is not obvious. With the increase of
data amount, the query time gap between tree TMR, TME and
TOPT is increasing, but the gap between TME and TOPT is not
significant. When the data amount is about 108, the query
time of TMR is more than 100ms than that of TOPT, while
the query time of TME is only about 20ms more than that of
TOPT. It can be seen that the sequential optimization of the
multi-join query based on the GPU, the efficiency of the join
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FIGURE 8. The execution time of each join tree under different amounts
of data and numbers of joins.

tree generated by our heuristic method is closer to that of the
optimal join tree.

For multi-join queries with data amount of 108, and join
number of 6, 8, 10 and 12, Fig. 8b shows the required time
for sequential parallel execution according to the join plans
generated by the above threemethods. In this figure, the query
time of TME is much closer to the optimal solution TOPT
than TMR. As the number of joins increases, the difference
between the query times of the trees TMR and TOPT is also
getting larger, from less than 100ms of 6 joins to more than
100ms of 12 joins, but the difference between TMR and TOPT
is always about 10ms. It can be seen that the sequential
optimization using the heuristic rule of this paper can always
obtain the query results efficiently.

D. THE EFFECT OF UVA AND STREAM ON THE JOIN
EFFICIENCY
In this section, we will test the improvement of the effi-
ciency of multi-join queries caused by using UVA and stream
technology.

Fig. 9 compares the multi-join query efficiency with and
without UVA technology, measured by the number of exe-
cution cycles per tuple on the GTX 980 Ti. The exper-
iments test the efficiency of multi-join queries with data
amount of 105, 106, 107, 108 and 109, and join number of 8.
We use the GME rule to generate the join tree and execute
it in sequential parallel. In the figure, using UVA to read
a single tuple (HToD/UVA) from the host memory takes
1-1.4 GPU cycles, i.e., its maximum rate is nearly 12 GB/s
(12 bytes/tuple, 1076 MHz), copy data (HToD/no_UVA)
instead of using UVA, each tuple takes 3-4 cycles, and the rate

FIGURE 9. The impact of UVA on join efficiency.

is approximately 3-4 GB/s. The rate of using UVA to transmit
data is limited only to the bandwidth of PCI-E; compared
with the measured value of 12.2 GB/s, this algorithm has
greatly improved the transmission efficiency. When results
are returned, the write cycles using UVA become longer
(DToH/UVA is longer than HToD/ UVA). This is due to the
irregular writing of the result data, and coalesced access is not
possible for the destination address. In addition, the two data
transmission modes have no effect on the execution of the
build and probe. Moreover, in the process of the build, to pre-
vent multithreaded write to the same location in a bucket,
before writing data, it is necessary to calculate the location
of each data to be written by using scan (time complexity of
O(log(n), where n is the size of the scan data). This affects
the rate of the build, making the average build times of a tuple
approximately 1.8 cycles, which is longer than the cycles of
the probe process.

Fig. 10 compares the execution efficiency of multi-join
using three execution modes: sequential parallel execution,
parallel execution using one stream, and parallel execution
using multiple streams. The experiment carries out 4-12 inde-
pendent joins for 8-24 tables, each join table has a data
amount of approximately 5 × 106, and the UVA technology
is used to transmit data. In the figure, when performing
4 independent joins, the throughput of the sequential paral-
lel execution and single stream execution is approximately
5 GB/s, the efficiency of the two is not much different,
and the throughput of asynchronous parallel execution of
multiple streams is higher than the two. This is because
the asynchronous parallel execution of computation and data
transmission can hide the transmission delay. As the num-
ber of joins increases, the throughput of the single stream
execution increases faster than that of the sequential parallel
execution and the throughput of the multiple streams execu-
tion increases faster. Under the single stream implementa-
tion, the number of times of the kernel function start-up and
shutdown is small, but its improved efficiency is very lim-
ited. However, the asynchronous parallel execution of mul-
tiple streams, which hides the transmission delay and brings
about the improvement of efficiency, is worthy of attention.
When performing 12 independent joins, the throughput of the
sequential parallel execution and single stream execution is
less than 6 GB/s, while the throughput of multiple streams
parallel execution is greater than 7 GB/s.

FIGURE 10. The impact of stream on join efficiency.
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E. THE EFFICIENCY OF PIPELINED PARALLELISM
This section will test the efficiency of pipelined parallel
execution on the GPU and its promotion compared to the
sequential parallel execution.

Fig. 11a compares the efficiency of sequential parallel and
pipelined parallel execution of right-deep tree joins which
data amount is 105, 106, 107, 108 and 109, and join number
is 8. Similarly, data is transmitted using UVA technology.
As shown, the throughput of pipelined parallel execution can
be as high as 7 GB/s, and themaximum throughput of sequen-
tial parallel execution is about 5.6 GB/s; the throughput of
pipelined parallel execution is significantly improved com-
pared to that of the sequential parallel execution. Moreover,
when the amount of data is less than 107, the throughput of the
two methods of execution rises rapidly and then tends toward
a stable value after it exceeds. At this point, the GPU runs at
full load.

FIGURE 11. The efficiency of pipelined parallel execution.

Figure 11 (b) compares the efficiency of the execution by
sequential parallel and pipeline parallel for right-deep tree
joins of 3-10 tables. The amount of data for each table is
approximately 5 × 106, and UVA technology is also used
to transmit data. In the figure, when 2 joins are executed,
the throughput of sequential parallel execution is 5.2 GB/s,
and the throughput of pipelined parallel execution is close to
6 GB/s, which is slightly higher than that of sequential par-
allel execution. As the increases of the number of joins, both
throughput increase, and the pipelined parallelism increases
at a greater rate than the sequential parallelism. When 9 joins
are executed, the throughput of pipelined parallel execution
is more than 8.5 GB/s, and the throughput of sequential
parallel execution is approximately 6 GB/s. As we know
regarding the pipelined parallel execution, probing multiple
tables continuously without producing intermediate results
can save time and increase efficiency. Moreover, the longer
the pipeline, the more efficient it is.

F. THE COMPARISON OF EXECUTION EFFICIENCY WITH
OTHER MULTI-JOIN ALGORITHMS
Because this paper studies the utilization of a single GPU
to improve the performance of multi-join, therefore, this
experiment will compare the efficiency of the multi-join
optimization algorithm between ours and others which on
a single machine, rather than the algorithms which on the
higher parallel level [14].

In this experiment, the TPC-DS benchmark is used to com-
pare the performance of the gTPP algorithm, the multi-join
algorithm proposed in [31] based on a segmented bushy par-
allel processing strategy (denoted as SBP), and the multi-join
algorithm of sequential parallel execution based on a hash
single join algorithm in [11] (denoted as gSP). In order to
specifically compare the join efficiency, elapsed time only
measures the execution time of join operation (including the
time of join and the time of data transfer between the host
memory and the device memory), but not the execution time
of other operations.

Fig. 12a shows the case that the three algorithms execute
the sample query Q25 on the database instances with data
scales of 1GB-4GB on a single machine.

FIGURE 12. The efficiency of the multi-join query optimization algorithm.

When the data scale is 1GB, the time of the SBP algorithm
is the longest, about 2 seconds; followed by the gSP, about
1 second; the gTPP is the shortest, less than 0.5 seconds.
As the data amount increases, the gap increases significantly.
When it increases to 4GB, the time of the SBP algorithm
increases to 8.5 seconds, which is about 5 times that of the
gTPP. The elapsed time of three algorithms and speedup ratio
of the gTPP are shown in Table 2.

TABLE 2. Elapsed time and speedup ratio on various data scale.

It can be seen from the above that when the gSP algorithm
and the gTPP algorithm perform multi-join with large data
amount on the GPU, the efficiency improvement brought
by parallel computing is greater than the overhead of data
transmission between the GPU and the CPU, so the algorithm
have higher efficiency. In particular, compared with the gSP
algorithm, the gTPP algorithm achieves not only intra-join
parallelism, but also inter-join parallelism, as well as trans-
mission and joins parallelism, which makes its speedup ratio
as high as 4.71.
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Fig. 12b shows the case that the three algorithms execute
the sample queries Q17, Q18, Q19, Q29, Q64, Q72, Q84 and
Q85 to the database instances with data scale of 1GB on a sin-
gle machine. In these queries, for Q18, Q19 andQ84with 5 or
6 joins, the SBP algorithm takes more than 1.5 seconds, the
gSP algorithm takes less than 1 second, and the gTPP algo-
rithm takes less than 0.5 seconds. For Q17, Q29 and Q85 of
10 joins, the SBP algorithm takes 2-2.5 seconds, the gSP
algorithm takes about 1 second, and the gTPP algorithm takes
about 0.5 seconds. For the Q64 with the largest number of
joins, the SBP algorithm takes more than 4 seconds, the gSP
algorithm takes about 1.5 seconds, and the gTPP algorithm
takes less than 1 second. Table 3 shows the elapsed time of the
three algorithms and the speedup ratio of the gTPP algorithm
by taking Q17, Q19 and Q64 with join amounts of 10, less
than 10 and more than 10 as examples.

TABLE 3. Elapsed time and speedup ratio of sample queries.

In the above table, the speedup ratios of the gTPP algorithm
are all above 4, with an average of 4.52. It can be seen that
the gTPP algorithm has always maintained a large advan-
tage for such multi-joins with a large amount of data and
join.

V. THREATS TO VALIDITY
This section will discuss the internal and external threats to
the validity of multi-join query optimization.

A. THREATS TO INTERNAL VALIDITY
In this paper, the optimization strategies andmethods are used
to change the factors that affect multi-join efficiency, thereby
improvingmulti-join efficiency. For example, by determining
the join execution order to determine the join executed in
each step, the join selectivity of each step, the join result size
and the data amount of next join are determined, so as to
minimize the total task amount of this multi-join; by using
various parallel strategies and join method to achieve highly
parallel execution of the multi-join. Therefore, in order to test
the effectiveness of the optimization strategies and methods
in this paper, for those unrelated factors, the experiment
will adopt preset values. Such as bucket capacity and the
amount of data executed in parallel, these factors are related
to the parallel computing power of the hardware. For a join,
the larger the bucket capacity, the less of the number of
buckets required, the longer the probe time, and the shorter
the build time. Otherwise, the probe time is shorter, and the
build time is longer. Through experiments, we select a bucket
capacity of 128, which minimizes the sum of the build time

and the probe time, as the preset value of bucket capacity in
the experiments. Similarly, the experiment shows that, when
the data amount exceeds 106 data items of 8 bytes, the join
time increases linearly with the increase of the data amount.
Therefore, in parallel scheduling, we ensure that the work per
group is not less than this value.

The experiments use multiple iterations to obtain reli-
able results. In experiments testing specific optimization
methods, we generated the multi-joins of each data amount
and each join amount 20 times, to consider different work-
loads in various applications. In the TPC-DS benchmark
test, we also generated database instances of various data
scale 10 times. And, each test result is the average of
10 tests.

B. THREATS TO EXTERNAL VALIDITY
Because this paper is specifically optimized for various join
queries, and the TPC-DS benchmark is not dedicated to
join testing. In particular, the TPC-DS benchmark is not
suitable for testing some optimization methods for specific
join. Therefore, for the data and queries in the experiments,
we used two methods of random generation and TPC-DS
benchmark. For the former, we considered the join queries for
various applications and generated multi-joins with different
data amounts, number of joins, and join shapes to examine
the optimized performance of this paper under different loads.
For the TPC-DS benchmark, we generate database instances
with different data amounts, and select query samples with
a large number of joins to test. This all helps to accurately
evaluate the effectiveness of the optimization in this paper in
various applications.

VI. CONCLUSION
The purpose of this paper is to improve the efficiency of
multi-join queries by using the parallel computing power
of the GPU. Because of the unique architecture features of
the GPU, the previous multi-join query optimization method
on the CPU cannot be simply transplanted to the GPU.
Therefore, we propose a two-phase optimization strategy on
the GPU, the execution methods of independent parallelism
and pipelined parallelism on the GPU, and utilization of the
UVA technology and multiple-stream asynchronous parallel
technology on the GPU to speed up the data transmission
between the CPU and the GPU, executing data transmis-
sion and computing in parallel to hide the transmission
delay.

There are still some interesting research directions for
future work. First, the data transmission between the host
memory and the device memory reduces the efficiency
improvement brought by using the GPU, and its impact needs
to be reduced as much as possible. Therefore, in addition to
usingUVA and stream technology, we can also consider using
novel data model to effectively express the same information
with less data, or using compression technology and column
storage to reduce the data to be transmitted.
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Second, we also need to further improve the parallelism
of multi-join processing. For high-throughput application
requirements of multi-join queries with terabytes of data
amount, multiple GPUs are often required to perform par-
allel processing. At this time, a higher level parallel plat-
form can be formed by single machine multiple GPUs, or a
cluster of multiple machines and multiple GPUs, or even
multiple nodes and multiple GPUs of supercomputers to
achieve a greater degree of parallel execution optimization for
multi-join queries. On a single machine with shared memory
structure, we can use OpenMP supported by CUDA to bind
CPU thread and GPU device to control these GPUs to execute
their multi-join tasks in parallel; or on multiple machines,
in conjunction with MPI to distribute multi-join tasks to mul-
tiple GPUs for parallel execution to achieve higher execution
effectiveness. The load balancing and cooperative processing
of multiple GPUs will be important work. This paper only
focuses on multi-join query optimization that perceives the
characteristics of the GPU architecture. A higher-level par-
allel optimization of multi-GPU based on this is a follow-up
work.
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