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ABSTRACT Absorption and scattering in aqueous media would attenuate light and make imaging difficult.
Therefore, an artificial light source is usually utilized to assist imaging in the deep ocean. However,
the artificial light source typically alters the light conditions to a large extent, resulting in the non-uniform
illumination of images. To solve this problem, we propose a non-uniform illumination correction algorithm
based on a fully convolutional network for underwater images. The proposed algorithm model the original
image as the addition of the ideal image and a non-uniform light layer. We replace the traditional pooling
layer with dilated convolution to expand the receptive field and achieve higher accuracy in non-uniform
illumination recognition. To improve the perception ability of the network effectively, the original image
and parameters which pre-trained on the ImageNet are concentrated. The concentrated information is used
as input to the network. Due to the color shift and blurred details of the underwater image, we design the
novel loss function, which includes three parts of feature loss, smooth loss, and adversarial loss. Moreover,
we built a dataset of the underwater imagewith non-uniform illumination. Experiments show that our method
performs better in subjective assessment and objective assessment than some traditional methods.

INDEX TERMS Underwater image enhancement, illumination correction, deep learning, fully convolutional
network, dilated convolution.

I. INTRODUCTION
Underwater optical camera is an essential sensor for detect-
ing the ocean. Absorption and scattering of light in aque-
ous media cause the exponential decay that light suffers as
it travels [1]. Therefore, there is low underwater visibility.
Adding artificial light sources is a common way to improve
underwater visibility [2]. However, the artificial light sources
will cause the change of lighting conditions sharply during
the short distance process of capturing underwater images,
which brings enormous challenges to underwater imag-
ing [3]. Due to the artificial light sources, underwater
images are usually bright in the middle and dark in the
surroundings. Illumination unevenness will display the high-
lights and hidden information incorrectly in dark areas,
and the accuracy of underwater tasks will be affected,
such as underwater target detection and underwater image
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semantic segmentation. Thus, the correction of non-uniform
illumination (NUI) to improve the image quality is of great
significance for underwater tasks.

The non-uniform illumination correction (NUIC) method
with image processing techniques has been studied in various
ways. Many traditional NUIC algorithms were proposed,
such as Retinex algorithm [4], homomorphic filtering algo-
rithm [5], and MASK algorithm [6]. Although most meth-
ods have made better results, there are several deficiencies
in traditional algorithms, like weak adaptive effect and low
precision. In recent years, deep learning technologies have
successfully solved some underlying problems in the field
of computer vision with the improvement of computing per-
formance, such as super-resolution [7] and deblurring [8].
The deep learning methods achieve excellent performance
through a large number of data, and the pre-trained mod-
els are universal for many tasks. Moreover, the appropriate
parameters of deep learning methods are not required to
choose manually when processing images as a result of the
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objectively good self-adaptability. Therefore, deep learning
methods are superior to traditional methods in terms of effec-
tiveness, adaptability, and versatility. In particular, convo-
lutional neural networks (CNN) are used in various fields.
In [9], Long et al. proposed a Fully Convolutional Network
(FCN), which extended the original CNN structure into pixel-
wise prediction without a fully connected layer. Therefore,
this structure can accept input of any size and process the
image more accurately.

Inspired by FCN, we propose a network structure with a
novel loss function to correct the NUI of underwater images.
On the grounds of the characteristics of underwater imaging,
the NUI image is modeled as the addition of the ideal image
and the light layer. The proposed network is based on a fully
convolutional network that separates the light layer and the
ideal image. FCN achieves the pixel-wise prediction of the
illumination field accurately. Our end-to-end network takes
a single image as input and separates the light layer and
the ideal image from the original image directly. The dilated
convolution was used to increase the receptive field of the
proposed network for precise global illumination. To further
improve the perception ability of our network, we concatenate
the input image with the features which trained on the bench-
mark dataset (ImageNet). Furthermore, a novel loss function
is designed to get the optimal performance of our network in
terms of image details and authenticity. Due to the rare public
datasets of NUI underwater images, we built a new dataset
containing the synthetic and real data for training and testing.
Our main contributions are summarized as follows:

(1) A fully convolutional network structure is proposed for
the NUIC of underwater optical images.

(2) We design a novel loss function for illumination cor-
rection, which improves the performance of our proposed
network in terms of the details and authenticity of restored
images.

(3) To boost underwater imaging processing, we have built
a common suitable dataset of NUI optical images that can
be used for qualitative and quantitative assessment of our
method and other existing algorithms.

(4) This method has an excellent performance in subjective
assessment and objective assessment, and the pre-trained
model can be utilized for the NUIC of other types of images.

The remainder of this paper is organized as follows.
In Section II, we review the related work. Then we give a
detailed explanation of the image enhancementmodel and our
network architecture in Section III. In Section IV, we intro-
duce the details of network training. Section V shows the
experimental results and analysis in which we evaluate the
different methods for NUIC, followed by a conclusion in
Section VI.

II. RELATED WORK
The quality of the acquired image directly affects the accu-
racy of the next step, such as image classification, target
recognition, and image semantic segmentation. Improving
image quality through NUIC is an essential task. We will

obtain more useful information from the corrected image.
Many researchers have done a lot of work for illumination
correction and achieved positive results. NUIC is typically
applied to remote sensing images [10], optical microscope
images [11], aerial images [12], and scanned images [13].
Also, there is a need to remove vignetting in optical pho-
tography [14], [15]. According to the image enhancement
model, the traditional NUIC algorithms are mainly included
three categories: incident-reflection multiplicative model,
mathematical-statistical model, and light additive model.

Algorithms based on the incident-reflection multiplicative
model mainly include Retinex-inspired algorithms [16] and
homomorphic filtering algorithms [5]. The image is mod-
eled as the product of incident component and reflected
component, where the reflected component means the
high-frequency information of the image, that is, the part
with uniform illumination [17]. The Retinex algorithm
achieves the purpose of correcting illumination by extracting
reflection components from images with uneven illumina-
tion. Single-scale Retinex (SSR) [18], multi-scale Retinex
(MSR) [19], and Multi-Scale Retinex with Color Restoration
(MSCR) [20] are pioneering research in the field of illu-
mination correction. These algorithms do not retain much
detail when separating light, resulting in blurry image details
and color distortion. In [21], a new light-pass filter was
proposed, replacing the Gaussian filter in the traditional
Retinex algorithm, which enhanced the image details while
maintaining the naturalness of the image as much as possi-
ble. However, due to the lack of constraints on reflectivity,
noise in images with uneven illumination will be amplified.
Seow and Asari [22] proposed a homomorphic filtering algo-
rithm based on neural network learning based on the Ratio
rule. This method can obtain color images from the color
information of the original image during image processing,
but there is details distortion.

Algorithms based on the mathematical-statistical model
believe that its mean represents the hue and brightness of
an image, and its standard deviation represents the sharpness
and contrast of an image. These methods achieve eliminating
the inconsistency between the brightness and contrast of the
image by changing mean and variance of the image [23].
The major algorithms based on statistical methods are His-
togram matching [24] and Wallis algorithm [25]. Histogram
matching adjusts the mean and variance by directly changing
the histogram shape to fit the reference image and the target
image. If the different internal features of the image differ
greatly, histogram matching may change the relative distance
between the gray levels, resulting in the color deviation of the
image with different internal features. Due to block process-
ing, the images processed by the traditional Wallis algorithm
usually have obvious artificial blocks. Moreover, the param-
eters of the existing Wallis algorithm usually depend on the
standard image selected from the original image, which has
many different standards and is not robust.

The NUIC algorithms based on the light additive model
believe that an image with non-uniform illumination is
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composed of an image with uniform illumination and the
undesired noise. The MASK-inspired algorithms are main-
stream algorithms based on the noise additive model. MASK
algorithm uses a Gaussian filter to remove uneven illumi-
nation in the frequency domain and obtain an image with
uniform illumination. It has a simple structure and works
well. Nevertheless, the traditional MASK algorithm has poor
self-adaptability and requires manual selection of filtering
parameters, which is labor-intensive and highly subjective.
Aiming at the problem of poor adaptability of traditional
MASK, Yao et al. [26] proposed an adaptive method. After
the image is divided into blocks, different filtering parameters
are selected for each image to improve the algorithm effi-
ciency. Although adaptive, this method may lose some image
details.

From the above, the traditional NUIC algorithm has disad-
vantages such as poor adaptability, low accuracy, and poor
robustness. In addition, the traditional algorithm is effec-
tive for images with low illumination unevenness and has
poor processing effects for images with severe illumination
unevenness.

FIGURE 1. Underwater imaging model.

III. METHODS
A. IMAGE ENHANCEMENT MODEL
A typical underwater imaging system is shown in Figure 1.
The light entering the imaging system is mainly contained
the direct irradiation component and the scattered compo-
nents [27]. Among them, the direct irradiation component
refers to the light that is not scattered or absorbed by the
water, and surface into the camera. The scattering component
is divided into forward scattering and backward scattering.
The forward scattered light is reflected by the target surface
or the light that is scattered by suspended particles in the
water and enters the imaging system. It has a marginal impact
on the imaging result that is usually ignored. Therefore,
the underwater imaging model can be simplified as the addi-
tion of the light reflected by the object and the backscattered
components. Inspired by the underwater imaging model,
the degraded image with uneven illumination is considered as
an additive model of illumination. Hence, we approximately
model the uneven illumination image U ∈ Rm×n×3 as

U = I + L, (1)

where I is the ideal image which is uniform, and L is the
light layer. Our goal is to predict the light layer from the

original image using a single neural network and obtain the
ideal image with uniform illumination.

B. NETWORK ARCHITECTURE
Given a non-uniform illumination image Uε[0 − 1]m×n×3,
according to the image enhancement model, we use a single
neural network f (U; θ) to separate the ideal image I and the
light layer L from the non-uniform illumination image. The
objective of the network is

f (U; θ) = (fI (U; θ) , fL (U; θ)) . (2)

Figure 2 shows the pipeline of our network. The proposed net-
work consists of two consecutive operations, feature fusion
and illumination layer separation. The former operation
extracts the parameters trained on the benchmark dataset
(ImageNet) [28], then combines with the input image as
hyper-column features [29]. The latter operation is a fully
convolutional network built sequentially by stacking nine
blocks, which of eight perform feature extraction, the other
two blocks are used for information fusion. In the training
phase, we will optimize the result of light correction through
the loss function. We calculate the L1 distance between the
ground truth and the ideal image predicted by the proposed
network to further improve accuracy. There is no fully con-
nected layer in the whole network. Hence, it can accept the
inputs of any size without being affected by a fully connected
layer. At the same time, training the end-to-end network can
predict the illuminance of an image more accurately and
ensure the large receptive field.

The function of the feature fusion operation is to improve
correction accuracy by fusing vital informationwhile enhanc-
ing the perception ability of the network. The input of
the network is a NUI image combined with the features
extracted from ‘conv1_2’, ‘conv2_2’, ‘conv3_2’, ‘conv4_2’,
‘conv5_2’ of VGG-19. The extracted features have a total
of 1472 dimensions, so the whole input dimension of
the network is 1475 (1472+3). Since the extracted fea-
ture maps have different sizes, we use bilinear inter-
polation to scale the feature maps to the same size.
Multi-dimensional features fusion can be mapped to the
high-dimensional space, thereby enhancing the understand-
ing of images by learning non-linear relationships of our
network.

Details of illumination layer separation operation are
shown in Figure 3. The information fusion block is com-
posed of a convolution layer with a convolutional kernel
size of 1 × 1, a ReLU layer, and a batch normalization
layer. By changing the number of input channels, it realizes
the multi-information fusion of inputs The feature extraction
block consists of a dilated convolution layer with different
dilated rate, a ReLU layer, and a batch normalization layer,
where the convolutional kernel size is 3 × 3 [30]. The cor-
responding dilated rate n of each feature extraction block is
in the range of 2 to 128. The size of the receptive field of the
proposed structure is shown in Table 1, and the maximum can
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FIGURE 2. The pipeline of the proposed network.

FIGURE 3. From left to right: (a) is the details of information fusion
block 1, and (b) is the details of feature extraction block.

reach 513× 513. Some critical information can be extracted
by the feature extraction block like edges, colors, etc.

In the case of inputting a NUI image, the output will
contain the ideal image and light layer of the input image.
The first information fusion block fuses the input information
of 1475 channels and compresses it to 64 channels. We set
the number of information channels of the subsequent seven
feature extraction blocks to 64, which using the dilated convo-
lution with the different dilated rates in them. The last block
fuses the 64-dimensional information into 6-dimensional,
including the ideal images and illumination layers with uni-
form illumination, which are all RGB three-channel images.

C. MORE ANALYSES OF NETWORK ARCHITECTURE
1) HYPER-COLUMN FEATURE
In manyworks, the fusion of features across different scales is
an essential way to improve network performance. Low-level
features are precise in localization and contain detailed infor-
mation. However, the few convolutional layers will result

in less sensitive to semantics and high noises of low-level
features.While the high-level features have multiple layers of
information extraction and rich semantic information, the res-
olution is low and the ability to perceive details is weak. This
characteristic suggests that reasoning at combining low-level
features with high-level features has proven benefits of the
network. According to the order of fusion and prediction,
feature fusion is divided into early fusion and late fusion.
Early fusion first fuses multiple layers of features and then
trains predictors on the fused features. Late fusion improves
performance by combining the prediction results of different
layers.

We hope that our network is not limited to the application
of the underwater image while it can also be extended to more
scenes for its robustness, such as illumination correction of
remote sensing images. Considering the better generalization
of our network that the illumination corrections in other
scenes are not only caused by point light sources. Inspired by
the feature fusion, we make use of the extracted features of
VGG-19 for tackling complex tasks and improving accuracy.
Therefore, the feature fusion enables our network to recog-
nize more different lighting scenes, not just scenes with point
light sources.

2) DILATED CONVOLUTION
Tomake the proposed network focus on the global rather than
local illumination information, the utility way for expanding
the receptive field of the network was applied without losing
any information during operations. Generally, the function of
pooling layer is to increase the receptive field of the network,
thereby improving the accuracy of the network. However,
the pooling layer will reduce the size of the feature map. This
operation reduces the amount of calculations while losing
certain information about features. The dilated convolution
is instead to replace the traditional pooling layer.
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TABLE 1. Details of the proposed network.

FIGURE 4. Explanation of the principle of dilated convolution. (a) is
traditional convolution with 3 × 3 kernel size, (b) is a 3 × 3 kernel size
convolution with an expansion rate of 2. The receptive field is the same
as the 5 × 5 convolution kernel, and only 9 parameters are required.

Dilated convolution is a novel convolution method. The
interval of each parameter of its convolution kernel is empty,
forming some ‘holes’, as shown in Figure 4. Making ‘holes’
is not to directly padding 0, but to skip some existing pixels
and empty the convolution kernel. The first benefit of dilated
convolution is that it can reduce parameters and prevent over-
fitting. Secondly, the dilated convolution increases the recep-
tive field without reducing the feature map, which means
that each convolution output contains a more extensive range
of information without losing information. Under the same
calculation conditions, dilated convolution is suitable for our
task. Thus, dilated convolution is adopted in all information
extraction blocks of our network.

3) BATCH NORMALIZATION
During network training, the problem of Internal Covari-
ate Shift (ICS) will occur [31]. As the training progresses,
the parameters in the network are updated continuously.
On the one hand, when the parameters in the underlying
network change slightly, the existence of linear transforma-
tion and non-linear activation mapping in each layer will
lead to these weak changes amplified as the deeper network;
on the other hand, the parameter’s change leads to the change
of input distribution of each layer. The upper-layer network
needs to constantly adapt to these distribution changes, result-
ing in a decrease in the network learning speed, and the

network’s training process quickly falls into the gradient
saturation region. Batch normalization processes each feature
individually so that each feature has a distribution with a
mean of 0 and a variance of 1. If batch normalization is
not performed, problems such as slow learning and gradient
dispersionmay occur.We have added the batch normalization
layer into our network.

Furthermore, we set the mini-batch mean and variance as
the estimate of the overall training samples. Although each
batch of data from a sampling of the overall, the mean and
variance of different mini-batch will have a little discrepancy.
Moreover, the batch normalization layer adds random noise
during the learning process, a model the effect of the general-
ization ability of ascension. Insufficient data for training may
lead to weak generalization ability of the model. The batch
normalization layer was used to improve the generalization
capability of the network.

IV. DETAILS OF TRAINING
A. LOSS FUNCTION
Local adjustment of the image (such as contrast, local expo-
sure is too strong or too weak) and global information of the
image (such as image color, overall light intensity) need to
be learned to correct unevenly illuminated images effectively.
To this end, we designed a novel loss function which contains
three parts, feature loss Lf , smooth loss Ls, and adversarial
loss La. Underwater images usually have color casts and
blurred details, which brings great challenges to the restora-
tion effect close to the original image. To better restore the
colors, edges and other features of the separated ideal image
and make it closer to the original image, we define the feature
loss as

Lf =
∑

(I ,U)∈D

∑
l
λl ‖ϕl (I )− ϕl (fI (U; θ))‖1 , (3)

here, λl is a hyperparameter used to balance the loss terms,
fI (U; θ) is the uniform illumination image which predicted
by our network, I is the ground truth, ϕl represents layer l
in the VGG-19 network. We feed the uniform illumination
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image fI (U; θ) which predicted by our network and the
ground truth I into VGG-19, and compute the L1 distance
between ϕl (I ) and ϕl (fI (U; θ)) in the selected feature lay-
ers. We select the layers ‘conv1-2’, ‘conv2-2’, ‘conv3-2’,
‘conv4-2’, and ‘conv5-2’ in the VGG-19 network. Through
training, the loss value is continuously decreasing and the pre-
diction of the ideal image more accurate. Moreover, feature
loss also combines the features of the pre-trained model on a
large dataset (ImageNet) to enhance the generalization of the
network, making our model suitable for a variety of scenes
with uneven lighting.

According to previous work [32]–[34], natural illumina-
tion in images is usually smooth locally. After we separate the
light layer from the NUI image, the illumination of the ideal
image obtainedmay not be smooth enough locally and cannot
be restored to the state of natural illumination. Thus, we use
the smooth loss to correct the lighting in the ideal image so
that the lightingwill be closer to natural lighting and the result
can be restored better. Smooth loss can not only make the
lighting of an ideal image more natural but also enhance the
contrast of the image. Smooth loss Ls is defined as

Ls =
∑
p

∑
c

ωpx,c
(
αxLp

)2
c + ω

p
y,c
(
αyLp

)2
c . (4)

Among them, we sum each channel c and each pixel p.
αx and αy are the first-order partial derivatives in the x and
y directions, respectively; ωpx,c and ωpy,c are the weights of
local light smoothness, calculated as

ωpx,c =
(∣∣αxGpi ∣∣θc + ε)−1 , (5)

ωpy,c =
(∣∣αyGpi ∣∣θc + ε)−1 , (6)

where Gpi is the logarithmic image of the input image Ui; θ is
a constant about the sensitivity of the image gradient; ε is a
constant to prevent the weight equal to zero, and it often set
to 0.0001.

Since after the light layer and the ideal image were sepa-
rated, problems such as detailed distortion may be exposed
in the ideal image. We use conditional GAN [35] to correct
the error. In addition, to further correct the authenticity of
the generated ideal image, an adversarial loss function is
proposed with the discriminator of conditional GAN and
which is expressed as

La =
∑

I ,U∈D
logD (I , fI (U; θ))− logD (U , I ) , (7)

where D (I , x) is the probability distribution of the output,
I is the input image, and x is the ideal image predicted by the
proposed network. In conclusion, the complete proposed loss
function is expressed as

L = w1Lf + w2Ls + w3La, (8)

here w1, w2, and w3 are the weights of each loss; we set w1
as 1, w2 as 0.1, and w3 as 0.1.

B. DATASET
1) SYNTHETIC DATA
A large number of training data pairs that contain the non-
uniform illumination image and the ideal image is very
essential to train our model. Given that there are no pub-
licly available datasets and the acquisition of real under-
water images is difficult because of the unstable condition.
Therefore, we made synthetic data to train and test the
network. During the synthesization, we only consider the
effect of illumination and ignore the effects of underwater
forward and backward scattering, which allows us to focus
on the purpose of NUIC. In practical underwater applica-
tions, the light source is relatively small due to the limited
size of the underwater vehicle. Compared with the imaging
distance, the light source usually can be considered as a point
one. Thus, the point light source is adopted as the main form
of artificial light sources in synthetic data experiments.

The point artificial light source usually casts a light spot in
the center of the illuminated area, which will cause NUI on
the image. Apparently, the brightness is the strongest in the
spot center and gradually attenuates in the radial direction.
Besides, the brightness of the spot depends on the power
of the artificial light source, and the position of light spot
depends on the angle of the light source. According to the
above analysis, we can synthesize NUI on images with dif-
ferent intensity, size, and position.

We selected images with uniform light from some public
underwater image data sets SUN [36], fish4knowledge [37]
as ideal images, including 4,816 underwater images and
1,000 other natural scene images, andmodeled uneven under-
water light images according to its characteristics. The gray
value of uneven illumination can be modeled as

f (x, y) = k ×

1−

√
(x − x0)2 + (y− y0)2

r

 , (9)

where k is the illumination coefficient, r is the radius of
the artificial light source and the point (x0, y0) is selected
as the artificial light source center point, and f (x, y) is the
gray value of each pixel of the artificial light source. A point
light source with a radius r is simulated, and the farther
away from the center of the bright point, the smaller the gray
value will be. The illumination coefficient k , the radius r ,
and the artificial light source point (x0, y0) are all random
values which follow Gaussian distribution. We add simulated
illumination to the ground truth to get samples with uneven
illumination. Figure 5 shows the synthetic samples in the
dataset.

2) REAL DATA
Training data is critical to the performance of the model. The
amount of data, data type, and data quality will directly affect
the quality of training. In order to enlarge the dataset and
enrich the type of data, we obtained the real data through
the interior and outside experiments. The real data consists
of two parts, the NUI image and the ideal image. The real
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FIGURE 5. Samples in dataset. (a) the ground truth, (b) the synthetic
image with non-uniform illumination.

data was taken with the Bumblebee XB3 optical camera, and
we made a watertight capsule for the camera to adapt to
the underwater environment. Our experimental environment
consisted of indoor pools (filled with seawater) and artificial
lakes, including a darker indoor environment and an over-
cast outdoor environment. First, we fixed the camera with a
watertight cabin and the target in the pool was taken into the
ideal image. Then, the position of the camera and the target
was kept unchanged, the uneven illumination image was shot
by adding an artificial light source, in which the angle and
intensity of the artificial light source are random. We made a
total of 100 pairs of real data and expanded the data volume
again through flipping and cropping. The real data were
randomly divided into train set and test set. The dataset we
built is public at https://github.com/caoxueting555/uneven-
illumination-correction.

C. OPTIMIZATION METHOD
We trained our network using Adam optimization met-
hod [38]. Adam is a first-order gradient-based optimization of
the stochastic objective function, based on adaptive estimates
of lower-order moments. The learning rate can be adaptively
adjusted for different parameters based on the first and sec-
ond moment estimates of the gradient, so the calculation
efficiency is high, and the memory requirement is small.
It combines the advantages of two recently popular methods:
AdaGrad and RMSProp, which are faster than the RMSprop
method when gradients become sparse [39]. Moreover, it has
invariance for diagonal gradient scaling, which solves the
problem of large data and difficult training.

Adam updates the parameters as follows

gt =
1
n
∇θ

∑
i

L (F (Yi, θ) ,Xi), (10)

mt = u× mt−1 + (1− u)× gt , (11)

nt = v× nt−1 + (1− v)× g2t , (12)

m̂t =
mt

1− ut
, (13)

n̂t =
nt

1− vt
, (14)

∇θt = −η ×
m̂t√
n̂t + ε

, (15)

θt+1 = θt +∇θt , (16)

where gt is the gradient of the mean square error function
L (θ) versus θ , mt is the first-order moment meter for the
gradient, nt is the second-order moment estimate for the
gradient, m̂t is the deviation correction for mt , and n̂t is
deviation correction of nt , the exponential decay rate u of the
moment estimation is 0.9, v is 0.99, and the step size η is
0.001. The numerically stable small constant ε is 10−8,∇θt is
the calculated θt update value, θt+1 is the θ value at time t+1,
that is, the sum of the values of θt and ∇θt is applied to θt+1.
We train the variants until the training loss converges. After
then we select the model which performs the highest accuracy
on our training datasets.

D. TRAINING SETTINGS
In the training processing, 5816 pairs of synthetic data and
80 pairs of real data were selected as training data, all the
data was cut into 640 × 640 pixels for training. The training
image pair includes the NUI image and ground truth. The
network inputs the NUI image to predict the light layer and
the ideal image. The loss function calculates the distance
between the ideal image and ground truth and continuously
optimizes it. We trained our network for 200 epochs on an
NVIDIA GeForce RTX 2080 GPU, using the Tensorflow
framework [40] to minimize loss functions. The optimization
method is Adam optimization method, the exponential decay
rate u of the moment estimation is 0.9, v is 0.99, and the step
size is 0.001.

V. EXPERIMENTAL RESULTS AND ANALYSES
In this section, we evaluate the proposed algorithm. To effec-
tively evaluate the proposed algorithm, we compare the
proposed algorithm with seven algorithms including classic
algorithms and excellent algorithms in recent years. The
compared algorithms are BPDHE [41], FEA [42], ALT [16],
EFF [43], ROBUST [44], JED [45], and MLE [46].

A. EXPERIMENT SETTINGS
We provided different types of data for our pre-trained model.
The first of which contains the real data without ground truth
collected in the public dataset (Figure 6) [46], the other part
consists of the real data we captured and the synthetic data
with ground truth (Figure 7). There is a certain difference in
the size and scene of test data, which can fully confirm the
effectiveness of the algorithm.

B. SUBJECTIVE ASSESSMENT
The last row in Figure 6 and Figure 7 represents the predicted
results of the light layer by the proposed algorithm. It shows
the precise visual prediction of the illumination field, both in
the position and edge. The penultimate row in Figure 6 and
Figure 7 are the ideal images separated by our network.
After processing by our model, we can intuitively observe the
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FIGURE 6. Results of non-uniform illumination image without ground truth.
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FIGURE 7. Results of synthetic data and real data with ground truth. From left to right: the first three columns are the experimental results of the
synthetic data, and the last four columns are the experimental results of the real data captured by us.
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FIGURE 8. Detalis of processed image. From left to right: (a) ALT, (b) JED, (c) ROBUST, (d) the proposed method.

changes of the NUI image where the light becomes uniform,
and the bright spots almost disappear. The ideal image has the
same color as the original image, and the brightness distortion
is small, which is visually comfortable.

It can be seen from Figure 6 and Figure 7 that BPDHE
algorithms amplifies the noise, and does not continue pro-
cessing so that the details in the dark area are blurred. ALT,
FEA, and EFF yield superior performance for slight light
unevenness. It is worth noting that the result is not ideal for
severe light unevenness which showed in fish 1 and fish 2
of Figure 7. The JED algorithm shows a stronger visual
processing effect, in which the light is progressively corrected
and the image details are clear, but the brightness is far from
the original image. Although the MLE method has a good
effect on the correction of bright areas, it is not ideal for
the enhancement of dark areas. Besides, we notice that the
ALT, JED, and ROBUST algorithms retain better details and
color consistency while maintaining visual comfort. There-
fore, we compared our method with them concerning small
color distortion and clear details. Figure 8 shows the ideal
image predicted by our model, which has clearer details and
no color distortion.

Our proposed method gives a more uniform result of illu-
mination, the only inadequacy is that the whole image is
slightly dark compared to the other algorithm. This is because
our algorithm mainly concerns with the NUIC process and
keeps the image intact as much as possible. Besides, it is an
easy task to adjust the whole brightness of the image. On the
one hand, it is of vital importance for the uniform illumination
and clear details of the image in our work. on the other hand,
the image processed by other algorithms has the problem of
brightness distortion, which is not friendly to the process of
ambient light estimation for underwater image restoration.
The above can be concluded that our method can practically
resolve the brightness distortion, making it more similar to the
original image, which means the effectiveness of subsequent
tasks.

FIGURE 9. Results of remoting image. (a) input image, (b) light layer,
(c) ideal image.

In addition, we tested the adaptability of our algorithm in
remote sensing images. It can be seen from Figure 9 that the
non-uniform illumination can be corrected significantly, and
the prediction of the light layer is still accurate. Experiments
on remote sensing images further demonstrate the robustness
of the proposed algorithm.

C. OBJECTIVE ASSESSMENT
1) ALL-REFERENCE METRICS
Peak Signal to Noise Ratio (PSNR) [47] and Structural Sim-
ilarity Image Metric (SSIM) [48] are all-reference objective
evaluation system. Because of their simple calculation and
mature evaluation criteria, it is often used as an objective
evaluation index for images.

PSNR is mainly used to measure the distortion between
the processed images and the ground truth. A larger PSNR
value represents less distortion, which means a more accurate
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TABLE 2. PSNR and SSIM of experiment result.

correction of non-uniform illumination. For SSIM, it eval-
uates the brightness, contrast, and structure of the image,
which is more in line with human visual perception. From
the perspective of image synthesis, SSIM defines structural
information as the structural properties of the object that do
not depend on brightness and contrast and model distortion
as a combination of brightness, contrast, and structure. The
value range of SSIM is [0− 1], the closer the SSIM value is
to 1, the better the image quality.

Table 2 shows the quantitative comparison of different
algorithms on the test images. We get a large gain of PSNR
and SSIM values in all test images by using our algo-
rithm. The EFF method is not good at processing severely
non-uniform illumination, the processing effect of different
images is unstable, and the curve fluctuates greatly, such as
the Fish1 in Figure 7. BPDHEThe detection of the local max-
imum value is affected by the setting of the Gaussian filtering
process parameters, which may distort the processing result.
The fluctuation of the BPDHE algorithm is small, but the
overall distortion is serious, such as the Diver in Figure 6,
the PSNR and SSIM value is low. Compared with other
methods, the MLE algorithm flow is simple, and the separate
channel processing is more targeted to make the results accu-
rate, but among them, the histogram stretching parameters are
estimated based on the overall of each channel, and the pro-
cessing ability for the local is weak. The car in Figure 6 shows
that the MLEmethod is good for images with slightly uneven
lighting, and has obvious effects for overexposure of areas,
but not for dark areas. The ROBUST and JED algorithms
perform well in contrast, but the SSIM value is lower due to
brightness distortion. In short, the experimental results show
that the proposed method is more prominent in PSNR and
SSIM than other methods, with low distortion and conforms
to the human visual system observation standard.

2) NO-REFERENCE METRICS
CAF and UIQM are non-reference image quality evaluation
indicators. They all contain sub-indicators in different aspects

to comprehensively evaluate the image quality. We use CAF
and UIQM as objective evaluation indicators to compare the
performance of the proposed algorithm with other traditional
methods.

CAF is an image quality assessment metric with sub-
indicators. Its sub-indicators include average contrast (AC),
average information entropy (AIE), and average luminance
(AL).

CAF = AIEα × ACβ × NNFγ , (17)

here, α = 1, β = 1/4, and γ = 3. The calculation formula of
NNF is as

NNF =
OL − dist (AL,OL)

OL
(18)

where OL=127.5, and dist refers to the distance between the
two in parentheses.

UIQM is an evaluation index for the comprehensive
quality of underwater images, which includes three kinds
of underwater image attribute measures: underwater image
chromaticity measure (UICM), underwater image clarity
measure (UISM) and underwater image contrast measure
(UIConM). Among them, UICM is related to chroma, UISM
is related to sharpness, and can measure the attributes of
underwater images to maintain fine details and edge-related,
UIConM is a measure of the contrast of underwater images.
The higher the score, the better the image quality.

Table 3 shows that the proposed method stands out on
UIQM, which shows that the image processed by the pro-
posed method has a good overall quality, especially for
underwater images. But it did not perform well on CAF,
ranking in the top three. The main reason is that the CAF
sub-indicator contains the average luminance (AL) which has
a large weight as expressed in Equation (17). The brightness
of the proposed method results is almost the same as the
original image, but the brightness of the original image is
not necessarily the best. Therefore, the proposed method may
perform worse on CAF than other methods. But we think that
our goal is to adjust the unevenness of the lighting. If the
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TABLE 3. CAF and UIQM of experimental results.

lighting is even, it is easy to adjust the overall brightness of
the image. Moreover, keeping the brightness of the original
image at all times is also conducive to subsequent image pro-
cessing, such as background light estimation. As can be seen
from the car in Figure 6 and Figure 7, the JED results method
performs well in terms of brightness, which is significantly
different from the proposedmethod. Therefore, Table 3 shows
that the JED method is superior to the proposed method on
CAF, but our method is excellent on UIQM. The BPDHE
method results in distortion on individual images, such as
the Diver in Figure 6, UIQM performs the worst. As can be
seen in the lower part of the Diver in Figure 6, although the
MLE results are not much different from the original image,
its details are not clear, the sharpness and contrast are not
ideal, so the CAF and UIQM scores are not dominant. The
main goal of the EFF algorithm is to enhance the contrast
of low-illuminance images, so it is dazzling in contrast and
obtains a high score in the evaluation indicator, but it does not
performwell for the correction of severe uneven illumination.
In our experiment, the details of the EFF method results are
relatively clear, and the color is also very close to the original
image, so the EFF method gets high scores on CAF and
UIQM, but the correction of uneven lighting is not obvious
enough, such as the Fish1 in Figure 7.

In summary, compared with other selected comparison
methods, the proposed method in this paper is more robust
and achieves specific high scores on various quality indica-
tors. It means that our method is indeed capable of correct-
ing the non-uniform illumination of underwater images and
high-quality images are obtained.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an end-to-end fully convolu-
tional network to correct the non-uniform illumination of the
image. The image with non-uniform illumination is regarded
as an illumination additive model. When the image with
non-uniform illumination was input into the proposed net-
work, the ideal image and the light layer will be separated.
In this process, we use the dilated convolution to increase
the receptive field, which makes the light layer prediction
more accurate. In view of the correction of non-uniform
illumination, we design a novel loss function, which shows an
excellent performance in the smoothness of the illumination

and the authenticity of the image. Furthermore, due to the
lack of publicly available datasets of images with uneven
underwater illumination, we built a dataset to train and test for
all algorithms. Experimental results in subject performance
and objective evaluation indicators show the effectiveness and
adaptability of our algorithm when compared with traditional
methods. This confirmed that our network is not only suitable
for correcting the illumination of underwater images with
point light sources, but also has a strong ability to predict
remote sensing images.

Our future work is to improve the real-time performance of
our network, which can be applied to the embedded platform
with limited computing resources. In addition, we believe that
we can make full use of the Generative Adversarial Network
to recover the dark corners of underwater images, which
allow more improvements and applications.
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