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ABSTRACT This paper studies mean square stabilization for multi-input discrete-time systems over
a general fading channel, and the channel is modeled as a cascade of multiplicative noise and white
Gaussian additive noise. The main objective is to determine the minimum mean capacity required to enable
stabilization. The basic idea of our method is to consider stabilization from the viewpoint of a supply/demand
balance. Specifically, for communication resources, each system control input is viewed as the demand side,
while the channel is viewed as the supply side, and the supply resource of the channel is characterized by the
mean square capacity of each channel. Stabilization of the networked control system requires the balance
of supply and demand. Based on whether the channel resources are configurable, two different methods for
balancing the supply and the demand are discussed. If the channel resources are configurable, the demand
side can be satisfied by adjusting the supply side (channel resources); otherwise, the demand side (a certain
transceiver design mechanism) can be adjusted to meet the requirements of the supplier. For both cases,
sufficient and necessary conditions for stabilizing discrete-time networked control systems are given.

INDEX TERMS Mean square stabilization, general fading channel, multi-input discrete-time systems.

I. INTRODUCTION
Networked control systems (NCSs) are feedback control
systems in which the system and controller communicate
through a shared network. These systems are becoming
increasingly important and are widely used in mobile sensor
networks [1], highway systems [2], multi-agent systems [3],
and so forth. Many journals and conferences have focused on
this issue; for example, several special issues on NCSs have
been published [4] and the network control design and the
applications to switched systems [5], [6].

Mean square stabilization under input channel information
constraints is a basic problem for NCSs. Many different
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forms of information constraints are often used in studies,
such as data rate constraints [7], [8], quantizations [9], [10],
signal-to-noise ratio (SNR) constraints [11], [12], packet
loss [13]–[15], quantization and packet loss [16], and
delays [17], [18]. Using a logarithmic quantizer to quantize
the input signal, the authors in [9] discussed the state feed-
back mean square stabilization problem for a single-input
system, and based on the Lyapunov method, the coarsest
quantization density required for quadratic stabilization was
obtained, where the requirement can be expressed in terms of
the Mahler measure of a plant, i.e., the product of unstable
poles. In [13], mean square stabilization for NCSs via state
feedback under a multiplicative random input channel was
discussed, and a sufficient and necessary condition in terms
of topological entropy was provided. These results reveal that
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the Mahler measure or topological entropy of a system plays
an important role in system analysis and design and can be
regarded as a measure of the open-loop system instability.
Reference [19] studied the relationship between observability
and optimal control through a data rate constrained channel
and topological entropy, and the results further supported the
above point.

The stabilization problem for multi-input systems is more
complicated than that for single-input systems. It is difficult
to obtain the minimum network capacity requirements for
networked multi-input systems that can be stabilized by state
feedback. Fortunately, [20]–[24] have made good progress on
this issue. For example, based on independent parallel chan-
nels under SNR constraints, [23], [24] discussed the mean
square stabilization problem for discrete-time multi-input
multi-output systems and gave a sufficient and necessary
condition based on the value of unstable poles and their
directions. Recently, many studies have used the idea of chan-
nel resource allocation to explore the minimum information
requirements for the stabilization of an NCS. With the addi-
tional design freedom of channel resource allocation, it has
been proven that the minimum total capacity required for sta-
bilizing a multi-input networked system can be characterized
by the topological entropy of an open-loop system. Another
method is to consider each channel resource as fixed and
to treat the network stabilization problem from the perspec-
tive of communication theory with the aid of a multi-input
and multi-output transceiver design mechanism. Based on
a similar idea, a sufficient and necessary condition for the
mean square stabilization of continuous-time NCSs under an
additive noise channel was given based on the majorization
method [25]. Similarmethods have been extended to solve the
mean square stabilization problem of a continuous-time NCS
with multiplicative noise channels and more general channel
cases [26], [27].

Inspired by the stabilization of continuous-time NCSs,
particularly by the ideas in [25]–[27], this paper discusses
mean square stabilization for discrete-time NCSs using a
similar approach. In particular, we provide a sufficient con-
dition and a necessary condition for stabilizing discrete-time
NCSs when the channel resources cannot be arbitrarily allo-
cated. The main difference between our work and the liter-
ature [25]–[27] is that we address the stabilization problem
for discrete-time NCSs. Formally, this article is a general-
ization of [25], [28], [29], but the difficulties in solving the
discrete-time case are as follows: 1) Since the open-loop
system topological entropy is inconsistent for the definitions
of a continuous-time system and a discrete-time system,
i.e., the sum of the unstable poles for a continuous-time
plant and the logarithm of the product of the modulus
of the unstable poles for a discrete-time plant, the proof
methods used for the continuous-time system cannot be
directly applied to the discrete-time plant, and other methods
must be used to address stabilization of NCSs with config-
urable channel resources. 2) In particular, when discussing

the sufficient and necessary conditions for stabilizing the
networked system under fixed resources and because the
open-loop system topological entropy is inconsistent with the
definitions of a continuous-time system and a discrete-time
system, a necessary and sufficient condition is given for
the continuous-time system. However, this paper gives only
a sufficient condition and a necessary condition for the
discrete-time system; only in some special cases are the
sufficient condition and necessary condition the same. It can
be seen that the proof methods used for the continuous system
cannot be directly applied in this paper, and other methods are
required.

There are three difficulties in solving the mean square
stabilization problem of multi-input NCSs under information
constraints: 1) how to construct the state feedback gain based
on a general channel; 2) how to characterize the informa-
tion transmission capacity of a memoryless digital channel,
where, by using the approach of considering the analog
channel in [27], we give the channel capacity description
of a digital channel; and 3) how to establish the relation-
ship between the networked system stabilization problem and
the channel capacity with both multiplicative and additive
noise constraints, where we first convert the stabilization
problem with multiplicative channels into the stabilization
problem of additive noise channels with SNR constraints.
The previous conclusions and methods for dealing with the
stabilization problem under additive SNR constraints can be
directly applied.

The approach taken in this work is characterized by two
features: 1) When the channel resources can be allocated,
the stabilization problem is transformed into the chan-
nel/controller joint design problem. By joint design, a nec-
essary and sufficient condition for mean square stabilization
is obtained; that is, the minimum channel capacity for stabi-
lizing an NCS must be met and is expressed by the open-loop
system topological entropy. 2) When channel resources can-
not be allocated, the problem is transformed into a cod-
ing/controller joint design problem using transceiver/receiver
matrices. To achieve mean square stabilization, the coder
and controller should be properly designed. We present a
necessary condition and a sufficient condition for stabilizing
NCSs using majorization theory, and the obtained conclu-
sions indicate that the minimum network requirement for
stabilizing an NCS is closely related to the Mahler measure
of cyclic decomposition subsystems.

Notably, both the channel/controller joint design and the
coder/controller joint design problems can be regarded as
a balance of the supply and demand of communication
resources. When controlling an NCS, each input requires
a certain amount of communication resources. Supply and
demand balance can be designed in two different ways. The
channel/controller joint design adjusts the supply to meet the
demand, while the transceiver/controller joint design takes
the opposite approach; that is, the adjustment is carried out
to satisfy the supply.
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FIGURE 1. Multi-input system over stochastic fading channels.

II. PROBLEM DESCRIPTION
Consider the system shown in Fig. 1, where the discrete-time
multi-input linear system is described by

xk+1 = Axk + Buk (II.1)

where xk is the state, uk is the control input and F denotes the
state feedback gain. Suppose the system (A,B) is stabilizable.

A. CHANNEL DESCRIPTION
Each communication channel is modeled as the cascade of the
transmitter/receiver matrix pair {U ,V } and a general fading
channel with an input-output relationship as follows:

wik = γikvik + qik , i = 1, 2, · · · ,m. (II.2)

where γik is multiplicative noise modeled as a white Gaussian
process withmeanµi and covariance E[(γik−µi)(γjk−µj)] =
σ 2
i δij, and additive noise qik is a white Gaussian process with

zeromean and variance E[qikqjk ] = p2i δij. All of the channels
together can be described as

wk = γkvk + qk (II.3)

where γk = diag{γ1k , γ2k , · · · , γmk} and qk = [q1k ,
q2k , · · · , qmk ]′. Let M = diag{µ1, µ2, · · · , µm}, 62

=

diag{σ 2
1 , σ

2
2 , · · · , σ

2
m} and Q = diag{p21, p

2
2, · · · , p

2
m}.

For convenience of description, without loss of generality,
we assume µi = 1, for i = 1, 2, · · · ,m.
The channel input signal vik in Fig. 1 needs to meet the

static power constraints;

E{v2i } < s2i

that is, the static SNR constraints are actually imposed on the
channels, i.e., E{v2i }/p

2
i < s2i /p

2
i .

B. INFORMATION TRANSMISSION CAPACITY
The next question is how to characterize the information
transmission capacity of such a fading channel. Using the
idea of describing the analog channel capacity in [27] and the
definition of the channel capacity for a single multiplicative
or additive digital channel constraint [25], [26], [30], this
paper defines the channel signal-to-noise ratio (SNR) as

1
SNRi

=
1

SNR+i
+

1

SNR×i
(II.4)

where

SNR+i =
s2i
p2i
, SNR×i =

1

σ 2
i

Defining the channel capacity of the ith channel as

Ci =
1
2
log C̃i, C̃i = 1+ SNRi

the total channel capacity is equal to the sum of the individual
channel capacities, i.e.,

C = C1 + C2 + · · · + Cm (II.5)

Clearly, the high SNR constraints and the low randomness
of multiplicative noise will increase the channel capacity,
thereby enhancing the reliability of information transmission
through the channel.
Remark 1: Although the concept of capacity defined in

this paper is used to facilitate the problem description and
simplification of the results statement, its definition is indeed
consistent with our understanding. We note that a general
fading channel can be considered a cascade of multiplicative
noise and additive noise, and when σi = 0, SNRi = SNR+i ,
and the channel capacity is reduced to the additive white
Gaussian noise channel capacity [30]; similarly, when pi = 0,
SNRi = SNR×i , and the channel capacity is converted into the
multiplicative random channel capacity [15].
Problem Description: When the network channel is mod-

eled as a general fading channel and the system is a
discrete-time system, we need to establish conclusions cor-
responding to the literature [27]; that is, we seek to deter-
mine the requirements of channel capacity C1, C2, · · · , Cm for
stabilizing the NCS shown in Fig. 1, where the communica-
tion channel is modeled as a combination of multiplicative
noise and additive noise. Specifically, we must consider two
situations:

1) Configurable channel resources: the total channel
resource C can be arbitrarily allocated to parallel channels;
2) Fixed channel resources: each channel capacity Ci is

given in advance and cannot be allocated.
Themain purpose of this paper is to discuss the relationship

between the minimum channel capacity and the mean square
stabilization for the discrete-time NCS shown in Fig. 1 for
both of these cases.

III. PRELIMINARIES
This section will provide some basic knowledge regard-
ing Wonham decomposition, H2 complementary sensitivity,
cyclic decomposition, and majorization theory.

A. WONHAM DECOMPOSITION
For any stabilizable pair (A,B), where A ∈ Rn×n, and B ∈
Rn×m, based on Wonham decomposition theory [31], [32],
a series of similar transformations is used to obtain the Won-
ham decomposition as follows:

Ā=


A1 ? · · · ?

0 A2 · · · ?
...

...
. . .

...

0 0 · · · Am

 , B̄=


b1 ? · · · ?

0 b2 · · · ?
...

...
. . .

...

0 0 · · · bm

 (III.1)
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where ? represents a matrix element that will not be used
in the subsequent derivation, and B̄ has no fixed form. Ai ∈
Rni×ni , bi ∈ Rni ,

∑m
i=1 ni = n, and each subsystem (Ai, bi)

is stabilizable. In fact, the standard structure (III.1) reveals
certain structural properties of each input channel in Fig. 1.

B. CYCLIC DECOMPOSITION
Lemma 2 [33]: For each stabilizable linear system (A,B),

where A ∈ Rn×n and B ∈ Rn×m, there exist nonsingular
matrices P and Q such that:

Ã =


Ã1 0 · · · 0
0 Ã2 · · · 0
...

...
. . .

...

0 0 · · · Ãs

 ,

B̃ =


b̃1 ? · · · ? ?

0 b̃2 · · · ? ?
...

...
. . .

... ?

0 0 · · · b̃s ?

 (III.2)

where Ãi(i = 1, 2, · · · , s) is a cyclic subsystem whose
minimum polynomial αi(λ) satisfies α1(λ) = α(λ) and
αi+1(λ)|αi(λ) for i = 1, 2, · · · , s − 1. αi+1(λ)|αi(λ) means
that αi(λ) can be divided by αi+1(λ). Ã = P−1AP, B̃ =
P−1BQ, and ? represents a matrix block that will not be used
in the next derivation. A is transformed into a cyclic decom-
position form, and the subsystem (Ãi, b̃i), (i = 1, 2, · · · , s) is
stabilizable.

C. MAJORIZATION
Some useful lemmas are as follows.
Lemma 3 [34]: The majorization inequality x �ω y

(x ≺ω y, respectively) holds if and only if there exists a vector
z such that x ≥ z (x > z, respectively) and z � y.
The above lemma characterizes the relationship between

majorization and weak majorization.
Lemma 4 [34]: There exists a real symmetric matrix

X with eigenvalues λ1, λ2, · · · , λn and diagonal elements
d1, d2, · · · , dn if and only if

[d1, d2, · · · , dn]′ � [λ1, λ2, · · · , λn]′

When the conditions in Lemma 4 are met, there are many
ways to calculate the expected real matrix X , as described
in the literature [35]. More information about majorization
theory is provided in [34].

D. OPTIMAL COMPLEMENTARY SENSITIVITY
Considering the NCS shown in Fig. 1, assuming that the
channel is temporarily ideal, the complementary sensitivity
function (the transfer function from the channel noise qk to
the channel input vk ) is given by:

T (z) = F(zI − A− BF)−1B

Before proceeding, we now recall the Mahler measure [36]
of a matrix A ∈ Rn×n, denoted M (A), which is simply the

absolute value of the product of the unstable eigenvalues of
matrix A, i.e., M (A) = 5n

i=1max{1, |λi(A)|}, and the topo-
logical entropy [37] of matrix A, denoted H (A), which is the
logarithm of M (A), i.e., H (A) = logM (A). The topological
entropy of open-loop plants can be regarded as a measure of
the degree of the instability of a linear system.
Lemma 5 [30]: Assuming that (A,B) is stabilizable,

the following holds:

inf
F :A+BF is stable

1
2
log det

{
I +

1
2π

∫ 2π

0
T (ejω)T (ejω)∗dω

}
≥ H (A) (III.3)

In particular, when m = 1,

inf
F :A+BF is stable

||T (z)||22 = M (A)2 − 1 (III.4)

For the single-input system case, i.e., m = 1, please refer
to the literature [38].

FIGURE 2. Auxiliary system.

IV. EQUIVALENCE RELATION
Next, the NCS shown in Fig. 2 is introduced, in which the
channel is modeled as a constant gain M plus additive white
Gaussian noise with zero mean and power spectral density
Pqak = 62

� Pvak + Q. By establishing the auxiliary system
shown in Fig. 2, we can convert the mean square stabilization
problem of the system shown in Fig. 1 into the internal
stability problem of the system shown in Fig. 2 under SNR
constraints, and then, we only need to consider the auxiliary
system, which is easier to handle.

The equivalence of the system in Fig. 1 with the system
in Fig. 2 can be given by the following lemma.
Lemma 6 [39]: Considering the two NCSs shown in

Figs. 1-2, the following statements are established:
1) The NCS of Fig. 1 is mean square stable if and only

if the NCS of Fig. 2 is internally stable and there exists a
finite positive and semidetermined Pqak ≥ 0 such that Pqak =
62
� Pvak +Q is established, where Pvak represents the power

spectral density of the steady-state error signal va in Fig. 2;
2) If the NCS of Fig. 2 is internally stable and there exists

Pqak such that Pqak = 6
2
� Pvak +Q, then for the same choice

of Pqak , the power spectral density of the steady-state signal
vak in Fig. 2 is equal to the value of the steady-state signal vk
in Fig. 1, i.e., Pvk = Pvak .

This lemma is also the multichannel counterpart of the
theorems in the works of Maass and Silva [29] and of
Silva and Solis [40], and the corresponding discrete counter-
part of Lemma 1 is given in [39]. Thus, the proof is omitted.
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V. NETWORKED SYSTEM STABILIZATION WITH
CONFIGURABLE CHANNEL RESOURCES
In this section, we assume that the total channel capacity C is
fixed but can be arbitrarily allocated to each channel resource
Ci; here, we seek to explore the minimum value of the total
channel capacity for stabilizing the NCS shown in Fig. 1.

Notably, the assumption that the channel resources are
configurable comes from the actual applications. On the
one hand, by providing greater network bandwidth or using
high-performance network equipment, we can reduce the
network-induced distortion and thus increase the channel
capacity; on the other hand, a high channel capacity is
inevitably accompanied by high costs; therefore, we limit the
total channel capacity and achieve the desired network perfor-
mance by reasonably allocating resources to each subchan-
nel. Fortunately, the existing resource allocation approaches
provide powerful methods and give new design freedom. The
networked system stabilization problem discussed here can
be transformed into the channel/controller joint design prob-
lem, and then, the minimum channel capacity for networked
system mean stabilization is solvable.

From the perspective of communication resource supply
and demand balance, channel resource allocation can be con-
sidered as adjusting the supply to meet different controller
input requirements. The following theorem gives a neces-
sary and sufficient condition for the stabilization of NCSs
over the SNR constraints when the channel resources are
configurable.
Theorem 7: The NCS shown in Fig. 1 over general fading

channels with SNR constraints can bemean square stabilized,
if and only if C > H (A).

Proof (Necessity): Assume that the original sys-
tem (A,B) shown in Fig. 1 is mean square stabilizable.
That is, from Lemma 6, the corresponding auxiliary system
in Fig. 2 can be internally stable, and its static covariance
matrix satisfies Pvk = Pvak , i.e., the power of the static signal
vk in Fig. 1 is equal to the power of the static signal vak
in Fig. 2. Therefore, we only need to discuss the mean square
stabilization problem for the auxiliary system.

In the auxiliary system, the complementary sensitivity
function (the transfer function from signal qak to signal vak )
is expressed as:

T (z) = UF(zI − A− BF)−1BV (V.1)

Let vaik be the ith element of vak , and {·}ii represent the ith
diagonal element of a matrix; the power spectral density of
signal vaik can be expressed as {T (ejω)PqakT (e

jω)∗}ii, and the
power of signal vaik is obtained as follows:

E[(vai )
2] =

1
2π

∫ 2π

0
{T (ejω)PqakT (e

jω)∗}iidω (V.2)

Both sides of equation (V.2) are multiplied by P
−

1
2

qak
, and the

SNR of the ith channel in (II.4) is obtained as follows:

E[(vai )
2]

σ 2
i E[(v

a
i )

2]+ p2i
=

1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

qak
}iidω

Therefore, the channel capacity of the ith channel is given by:

Ci =
1
2
log

{
I +

1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

qak
}dω

}
ii

and the total channel capacity is obtained by summing the
channel capacities of each channel as follows:

C = C1 + C2 + · · · + Cm

=
1
2
log

m∏
i=1

{
I+

1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

qak
}dω

}
ii

≥
1
2
log det

{
I+

1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

qak
}dω

}
=

1
2
log det

{
I +

1
2π

∫ 2π

0
{T̃ (ejω)T̃ (ejω)∗}dω

}
≥ H (A)

where T̃ (z) = F̃(zI − A − B̃F̃)−1B̃, F̃ = P
−

1
2

qak
UF ,and

B̃ = BVP
1
2
qak
, The first equation is obtained by Hadamard’s

inequality [41]; i.e., for anym×m positive definite matrixQ,
det(W ) ≤ 5m

i=1Wii is always true, and the necessary and suf-
ficient condition for the equality is thatQ is a diagonal matrix.
The second equation is obtained by Lemma 5. In addition,
under the SNR constraints, i.e., E{v2i } = E{(vai )

2 < s2i },

H (A) <
1
2
log

m∏
i=1

1+
1

σ 2
i +

p2i
s2i


The necessity proof is completed.
Sufficiency: The sufficiency proof is jointly determined

by the channel/controller. Without loss of generality, assum-
ing that (A,B) is already in the Wanham decomposition
form (III.1), from Lemma 5, for each stabilizable subsystem
(Ai, bi), the controller gain fi can be designed such that ‖
Ti(z) ‖22= M (Ai)2 − 1, where Ti(z) = fi(zI − Ai − bifi)−1bi.
Using these subsystem controller gains to design the entire
system controller gain as F = diag{f1, f2, · · · , fm}, the closed
system shown in Fig. 2 can be made internally stable.

Since C > H (A), there exists a positive ε such that C >

H (A) + ε. Furthermore, let Ci > H (Ai) + ε/m be used for
resource allocation. Choose the scaling matrix as U = D−1,
where D = diag{1, η, · · · , ηm−1}, and η is a small positive
number. Additionally, let S = diag{In1 , ηIn2 , · · · , η

m−1Inm}.
Then

T (z) = UF(zI − A− BF)−1BV = F̂(zI − Â− B̂F̂)−1B̂

where

F̂ = D−1FS

Â = S−1AS =


A1 o(η) · · · o(η)
0 A2 · · · o(η)
...

...
. . .

...

0 · · · 0 Am

 ,
VOLUME 8, 2020 111795
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B̂ = S−1BD =


b1 o(η) · · · o(η)
0 b2 · · · o(η)
...

...
. . .

...

0 · · · 0 bm


When the constant η→ 0, we have o(η)/η→ 0. Therefore,

T (z) = diag{T1(z),T2(z), · · · ,Tm(z)} + o(η)

Since the noise covariance in the auxiliary system is Pqak =
62
� Pvak + Q, after a series of matrix operations, we have

E[(vai )
2]

σ 2
i E[(v

a
i )

2]+ p2i

=
1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

qak
}iidω

= ||Ti(z)||22 + o(η)

Since ||Ti(z)||22 = M (Ai)2 − 1, when η takes a small enough
positive real number, we obatin

E[(vai )
2]

σ 2
i E[(v

a
i )

2]+ p2i
<

s2i
σ 2
i s

2
i + p

2
i

Then

E[(vai )
2] < s2i , for i = 1, 2, · · · ,m.

By Lemma 6, the system shown in Fig. 1 can be stabilized
and E[(v2i ] = E[(vai )

2] < s2i ; that is, the SNR constraints are
satisfied, and the sufficiency is verified.

The above theorem shows that the minimum channel
capacity required for networked system mean square stabi-
lization under SNR constraints is given by the open-loop
system topological entropy, i.e., H (A). On the other hand,
the structural proof of sufficiency indicates how to design the
controller gain and resource allocation.

To summarize, the controller and channel joint design
procedure is as follows:
Step 1: Decompose the system (A,B) into subsystems

(Ai, bi) with the Wonham form.
Step 2: Design the corresponding controller gain fi for

each subsystem by solving the correspondingH2 complemen-
tary sensitivity problem

inf
fi:Ai+bifiis stable

||Ti(z)||2

where Ti(z) = fi(zI − Ai + bifi)−1bi.
Step 3: Take the transmitter/receiver matrices as V = D

and U = D−1, where D = diag{1, η, · · · , ηm−1}; a small
enough η can eliminate the coupling between the subsystems.
Step 4: Allocate the total resource C to each input channel

such that Ci > H (Ai).
Remark 8: When σi = 0, SNRi = SNR+i , and the channel

capacity is reduced to the additive white Gaussian noise
channel capacity, the result is consistent with the conclusion
in [30]; and when pi = 0, SNRi = SNR×i , the channel
capacity is converted into the multiplicative random channel
capacity, the result is consistent with the conclusion in [15].

VI. NETWORKED SYSTEM STABILIZATION
WITH FIXED CHANNEL RESOURCES
The above method allocates the total resources to each paral-
lel channel, adjusting the supply to meet the demand. How-
ever, in some cases, we may encounter situations where
network devices are allocated in advance and cannot be arbi-
trarily assigned. In this case, each channel resource Ci is given
in advance but cannot be allocated. This raises the question
of whether there are other design methods that can be used to
compensate for the lack of resource allocation. The answer is
clear, and by designing the transmitter/receiver matrices U
and V , the controller design problem is translated into the
controller/transceiver joint design problem.

Before giving the main conclusions, we analyze the trans-
mitter design mechanism from the perspective of the supply
and demand balance. Because the channel capacity of each
channel is fixed in advance, the supplier cannot be operated.
With the appropriate linear transmitter matrix U , each chan-
nel transmits a linear combination of all input signals, which
can be used to effectively adjust the channel requirements
to meet the supply, and is precisely just the opposite of the
above-described method. The corresponding conclusions are
given below.
Theorem 9: The NCSs shown in Fig. 1 over general fad-

ing channels with SNR constraints can achieve mean square
stabilization if

[C̃1 − 1, C̃2 − 1, · · · , C̃m − 1]′

≺
w [M (Ã1)2 − 1,

∧
, · · · , M (Ãs)2 − 1, 0, · · · , 0]′︸ ︷︷ ︸

m

(VI.1)

where
∧
= M (Ã2)2 − 1 and only if

[C̃1, C̃2, · · · , C̃m]′

≺
w [M (Ã1)2, M (Ã2)2, · · · ,M (Ãs)2, 0, · · · , 0]′︸ ︷︷ ︸

m

(VI.2)

Proof (Necessity): Suppose there exist a state feedback
gain F and a pair of transmitter/controller matrices {U ,V }
such that the closed-loop system is mean square stable under
SNR constraints. By Lemma 6, we only need to consider the
auxiliary system shown in Fig. 2.

For convenience of description, let the relationship of each
channel capacity be as follows, that is, in nonincreasing order

C̃1 ≥ C̃2 ≥ · · · ≥ C̃m (VI.3)

According to the relationship in Lemma 2 αi+1(λ)|αi(λ), it is
easy to see that the spectrum of Ãi+1 is always included in the
spectrum of Ãi, so the inequality M (Ã1)2 ≥ M (Ã2)2 ≥ · · · ≥
M (Ãs)2 > 0 holds. The majorization (VI.2) is equivalent to
the following inequalities:

m∑
i=j

C̃i >
k∑
i=j

M (Ãi)2 (VI.4)
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for j = 1, 2, · · · , s. By Theorem 7, the total channel resources
should be greater than open-loop system topological entropy
when the system is stabilized under SNR constraints, i.e.

m∑
i=1

Ci >
k∑
i=1

H (Ãi) (VI.5)

The inequality (VI.5) can be rewritten in the following loga-
rithmic form

1
2
log

m∏
i=1

C̃i > log
k∏
i=1

M (Ãi) (VI.6)

Multiplying both sides of inequality (VI.6) by 2 and then
taking the exponential function, we obtain

m∏
i=1

C̃i >
k∏
i=1

M (Ãi)2 H⇒
m∑
i=1

C̃i >
k∑
i=1

M (Ãi)2 (VI.7)

where (VI.7) is established from C̃i, i = 1, 2, · · · ,m, and
M (Ãi)2, i = 1, 2, · · · , k are all positive real numbers. There-
fore, when j = 1, inequality (VI.4) holds.

To discuss the case for j = 2, we first perform a
controllable-uncontrollable decomposition to the first col-
umn of BV in the system (A,BV ). In other words, there
exist a nonsingular matrix P ∈ Rn×n and a state transition
zk = P̄−1xak such that the dynamic equation of the auxiliary
system becomes[
z1,k+1
z2,k+1

]
=

[
Ã11 Ã12
0 Ã22

] [
z1,k
z2,k

]
+

[
B̃11 B̃12
0 B̃22

] [
qa1k + v

a
1k

q̃a2,k + ṽ
a
2,k

]
(VI.8)

where

z(k) = [z′1,k z′2,k ]
′

q̃a2,k = [qa2k , q
a
3k , · · · , q

a
mk ]
′

ṽa2,k = [va2k , v
a
3k , · · · , v

a
mk ]
′

Let F̃ = UFP̄, and decompose it into the following block
matrix

F̃ =
[
F̃11 F̃12
F̃21 F̃22

]
(VI.9)

where F̃11 ∈ R1×n1 and F̃22 ∈ R(m−1)×(n−n1). Next, we con-
sider the subsystem (Ã22, B̃22) whose dynamic system is
expressed as:

z2,k+1 = Ã22z2,k + B̃22q̃a2,k + B̃22ṽ
a
2,k

ṽa2,k = F̃21z1,k + F̃22z2,k

Taking the Laplace transform of the above equations, we have

L(ṽa2,k ) = [T21(z) T22(z)]
[
L(z1,k )
L(z2,k )

]
where

T21(z) = F̃21 + F̃22(zI − Ã22 − F̃22F̃22)−1B̃22F̃21

T22(z) = F̃22(zI − Ã22 − B̃22F̃22)−1B̃22

Set P̃qak = 6̃2
� Pṽak + Q̃, where Pṽa is the static covari-

ance matrix of signal ṽa2,k , 6̃
2
= diag(σ 2

2 , σ
2
3 , · · · , σ

2
m), and

Q̃ = diag(p22, p
2
3, · · · , p

2
m). Since z1,k is independent of ṽ

a
2,k ,

we obtain

E[(ṽai+1,k )
2] ≥

1
2π

∫ 2π

0
{T22(ejω)P̃qakT22(e

jω)∗}iidω

(VI.10)

for i = 1, 2, · · · ,m− 1. By equation (VI.10), we obtain

E[(vai+1)
2]

σ 2
i E[(v

a
i+1)

2]+ p2i

≥
1
2π

∫ 2π

0
{P̃
−

1
2

qak
T (ejω)P̃qakT (ejω)∗P̃

−
1
2

qak
}iidω (VI.11)

Summing both sides of the above equation, we obtain
m∑
i=2

Ci

≥
1
2
log det

{
I +

1
2π

∫ 2π

0
{P̃
−

1
2

q T (ejω)P̃qT (ejω)∗P̃
−

1
2

q }dω
}

=
1
2
log det

{
I +

1
2π

∫ 2π

0
{T̃ (ejω)T̃ (ejω)∗}dω

}
≥ H (Ã22)

By Lemma 6, the static power satisfies E[(vai )
2] = E[(vi)2] <

s2i , and therefore,
m∑
i=2

Ci > H (Ã22) (VI.12)

By the nature of cyclic decomposition, inequality H (Ã22) ≥∑k
i=2 H (Ãi) holds; thus,

m∑
i=2

Ci >
k∑
i=2

H (Ãi) H⇒
m∑
i=2

C̃i >
k∑
i=2

M (Ãi)2 (VI.13)

By imitating the above process, it is easy to verify that when
j = 3, 4, · · · , s, formula (VI.4) is also true. The necessity
proof is completed.
Sufficiency: To prove the sufficiency, we need to design

a transmitter matrix U , a receiver matrix V and a controller
gainmatrixF such that the closed-loop system ismean square
stable under the SNR constraints.

Without loss of generality, suppose (A,B) is already in
a cyclic decomposition form, where each cyclic subsystem
(Ãi, b̃i) is a stabilizable subsystem with dimension ni. Then,
controller gain can be designed for each subsystem (Ãi, b̃i) as
f̃i such that ||T̃i(z)||22 = M (Ãi)2 − 1, where

T̃i(z) = f̃i(zI − Ãi − b̃i f̃i)−1b̃i

Let f̃ = diag(f̃1, f̃2, · · · , f̃s), and select the controller gain
matrix F as follows [

l̃
0(m−s)×n

]
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Thus, A + BF is stable, and the auxiliary networked system
in Fig. 2 is internally stable. In particular, choose the trans-
mitter and receiver matrices as

U = P
1
2
qak
WD−1, V = DW ′P

−
1
2

qak
(VI.14)

where W ∈ Rm×m is a unitary matrix to be designed. Let
D = diag{1, η, · · · , ηm−1}, where η is a positive small real
number, and define

S = diag{Iñ1 , ηIñ2 , · · · , η
m−1Iñm} (VI.15)

Then, we have

T (z) = UF(zI − A− BFC)−1BV

= P
1
2
qak
W (zI − Ã− B̃F̃)−1W ′P

−
1
2

qak

where

F̃ = D−1FS

Ã = S−1AS =


Ã1 0 · · · 0
0 Ã2 · · · 0
...

...
. . .

...

0 0 · · · Ãs

 ,

B̃ = S−1BD =


b̃1 o(η) · · · o(η) o(η)
0 b̃2 · · · o(η) o(η)
...

...
. . .

...
...

0 0 · · · b̃s o(η)


When η→ 0, o(η)

η
tends to zero. Therefore, we have

T (z) = o(η)

+P
1
2
qak
Wdiag [T̃1(z), T̃2(z), · · · , T̃s(z), 0, · · · , 0]′︸ ︷︷ ︸

m

W ′P
−

1
2

qak

(VI.16)

Then, we obtain

1
2π

∫ 2π

0
{P
−

1
2

qak
T (ejω)PqakT (e

jω)∗P
−

1
2

q }dω

= o(η)+W (diag [T̃ 2
1 (z), T̃

2
2 (z), · · · , T̃

2
s (z), 0, · · · , 0]

′︸ ︷︷ ︸
m

)W ′

Similar to (11), we obtain
E[(vai )

2]

σ 2
i E[(v

a
i )

2]+ p2i
= o(η)
+{W (diag [T̃ 2

1 (z), T̃
2
2 (z), · · · , T̃

2
s (z), 0, · · · , 0]

′︸ ︷︷ ︸
m

)W ′}ii

= o(η)
+{W (diag[M (Ã1)2−1,

∧
,· · ·,M (Ãs)2−1, 0,· · ·, 0]′︸ ︷︷ ︸

m

)W ′}ii

The second equation is established because ||T̃i(z)||22 =
M (Ãi)2 − 1. By (VI.1) and Lemma 3, there exists a vector
[γ1, γ2, · · · , γm]′ such that

[C̃1 − 1, C̃2 − 1, · · · , C̃m − 1]′ > [γ1, γ2, · · · , γm]′

(VI.17)

and

[γ1, γ2, · · · , γm]′

� [M (Ã1)2 − 1,
∧
, · · · , M (Ãs)2 − 1, 0, · · · , 0]′︸ ︷︷ ︸

m

(VI.18)

By Lemma 4, a matrixW can always be constructed such that

{W (diag [T̃ 2
1 (z), T̃

2
2 (z), · · · , T̃

2
s (z), 0, · · · , 0]

′︸ ︷︷ ︸
m

)W ′}ii

+ o(η) = γi (VI.19)

for i = 1, 2, · · · ,m. Combining the above equations and
inequalities (VI.17)-(VI.20), we have

1
2
log

{
I +

1
2π

∫ 2π

0
{P̃
−

1
2

qak
T (ejω)P̃qakT (ejω)∗P̃

−
1
2

qak
}dω

}
ii
< Ci

(VI.20)

When η is a small enough real number, we obtain

E[(vaik )
2] < s2i

Finally, by Lemma 6, the networked system shown in Fig. 1 is
mean square stable and E[(vi)2] = E[(vai )

2] < s2i is
established, that is, the SNR constraints are satisfied. The
sufficiency is verified.

The proof for the sufficiency is based on the concept
of construction. Importantly, although resource allocation
is no longer applicable in this case, we expect to use the
transmitter/receiver matrices as an alternative to provide a
new controller design degree of freedom. This is because
the transmitter/receiver matrices can reorganize the minimum
stabilization resource requirements of different control inputs
among the subsystem in order to match the given supply.

In particular, the transmitter/controller joint design proce-
dure is as follows:
Step 5: Decompose the system into the subsystems

(Ãi, b̃i).
Step 6: For each subsystem, solve a corresponding H2

complementary sensitivity problem to obtain the correspond-
ing subsystem gain f̃i,

inf
f̃i:Ãi+b̃i f̃iis stable

||Ti(z)||2

where Ti(z) = f̃i(zI − Ãi + b̃i f̃i)−1b̃i.
Step 7: Choose a sufficiently small positive real number η

to construct the matrix D = diag{1, η, · · · , ηm−1}.
Step 8: Select an appropriate vector [γ1, γ2, · · · , γm] to

satisfy inequalities (VI.17) and (VI.18).
Step 9: Using the technique described in [35], calcu-

late the unitary matrix W that satisfies equation (VI.19),
and then calculate the transmitter/receiver matrices in
equation (VI.14).

The conditions in Theorem 9 are proposed in terms of a
strictly weak majorization inequality, which is stronger than
the condition in Theorem 7. In other words, we need the
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following additional conditions: 1) the total channel capacity
should be larger than the system topological entropy, and
2) the SNR of each subsystem should be less dispersed than
the Miller measure of the cyclic subsystem.
Remark 10: When σi = 0, SNRi = SNR+i , and the chan-

nel capacity is reduced to the additive white Gaussian noise
channel capacity, the result is consistent with the conclusion
in [25]; and when pi = 0, SNRi = SNR×i , the channel
capacity is converted into the multiplicative random channel
capacity, the result is consistent with the conclusion in [26].

VII. AN ILLUSTRATIVE EXAMPLE
In this section, we present a numerical example to illustrate
the controller and channel joint design problem. Consider the
unstable system (A,B) with

A =

 4 0 0
0 2 0
0 0 2

 , B =
[
B1 B2

]
(VII.1)

where B1 = [1 1 0]′ and B1 = [0 1 1]′. It is clearly observed
that (A,B) is stabilizable, but (A,B) cannot be transformed
into two stabilizable single-input systems by merely combin-
ing two input signals from two channels. That is, for any b ∈
span{B1,B2}, (A, b) cannot be stabilized since when λ = 2,
the matrix [λI−A, b] is not full row rank. This means that
the system cannot be converted to a stabilizable single-input
system by only a linear combination of input signals from
two channels. Since (A,B) is already in the form of the Won-
ham/cyclic decomposition, the corresponding subsystems are
given by

A = diag{A1,A2}, b1 = [1 1]′, b2 = 1

where A1 = diag{4, 2} and A2 = 2. The topological entropy
of the system is calculated as: H (A) = H (A1) + H (A2) =
log2(4× 2)+ log2 2 = 3+ 1 = 4.
Let the total channel capacity beC = 4+2×10−2 > H (A).

For a general fading channel, assume that the multiplicative
noise mean isµi = 1, for i = 1, 2, · · · ,m, and the covariance
matrix of additive noise is Q = Diag{0.01, 0.16}.

A. CONFIGURABLE CHANNEL RESOURCE
According to Theorem 7, the necessary and sufficient con-
dition for the mean square stabilizability of the NCS under
the SNR constraints is that the total channel capacity satisfies
C > H (A1)+H (A2) = 4. Next, we show how to configure the
total channel capacity for each subchannel. Assuming that the
total channel capacity is 4+2×10−3, we allocate the channel
capacity into two subsystems, C1 = 3 + 10−3 > H (A1) and
C2 = 1 + 10−3 > H (A2). This resource allocation can be
performed by adjusting the stationary transfer power s2i and
the variance σ 2

i of the multiplicative noise.
In particular, let

62
= diag{0.001, 0.12}, s21 = 6.75, s22 = 4.4

for the controller design. We can solve the H2 optimal
complementary sensitivity function T (z) of two subsystems

(A1, b1) and (A2, b2). The optimal controller gains are
obtained as f1 = [−6.5625 1.3125] and f2 = −1.5. Let
F = diag{f1, f2}.
Furthermore, design the scaling matrix 0 as 0 =

diag{1, 10−3}. At this point, the controller/channel joint
design is completed. Using MATLAB, it can be seen that the
Frobenius norm of the state covariance matrix tends to a finite
constant, namely,

lim
k→∞
||X (k)||F = 0.1335

and the closed-loop evolution of ||X (k)||F is shown in Fig.3,
fromFig.3we can also see that the Frobenius norm of the state
covariance matrix tends to a finite constant. Consequently,
the closed-loop system is mean square stable and meets the
SNR constraints:

E{v21} = 6.5853 < s21 = 6.75, E{v22} = 4.3589 < s22 = 4.4

FIGURE 3. Closed-loop evolution of ||X (k)||F .

B. FIXED CHANNEL RESOURCES
In contrast to the previous example, the channel resources in
this subsection cannot be arbitrarily assigned. The admissible
channel capacity is set in advance to s21 = 8 and s22 = 9,
and the corresponding covariance of multiplicative noise is
62
= diag{0.01, 0.02}. That is, the channel capacities of

each subchannel are fixed as C1 = 2.2554 and C2 = 1.6290
because, in this case, the cyclic decomposition is the same
as the Wonham decomposition form, and we still use the
above-described subsystems for analysis and design. The
controller is obtained by solving the H2 optimal problem
as in the previous section. In addition, even though C1 <

H (A1), the system satisfies the strict weak majorization con-
dition, namely, [C̃1, C̃2]′ ≺ω [M2(A1), M2(A2)]′, Therefore,
by Theorem 9, the system can still be stabilized by jointly
designing the controller/transmitter and choosing γ1 = 48
and γ2 = 20 such that [C̃1, C̃2]′ > [γ1, γ2]′ and [γ1, γ2]′ �
[M2(A1), M2(A2)]′. Since M2(A1) < γ1 < γ2 < M2(A2),
matrix W can be constructed as follows:

W =

[
−
√
γ1 −M2(A2)

√
M2(A1)− γ1√

M2(A1)− γ1
√
γ1 −M2(A2)

]
√
M2(A1)−M2(A2)
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Thus, we obtain

W =
[
−0.3300 0.1160
0.1022 0.3218

]
Clearly, W is a unitary matrix, and when we choose an
appropriate small enough positive real number η = 0.001,
the diagonal elements of the below matrix tend to γ1 and γ2

{W (diag [T̃ 2
1 (z), T̃

2
2 (z), · · · , T̃

2
s (z), 0, · · · , 0]

′︸ ︷︷ ︸
m

)W ′}ii

Furthermore, the transmitter and receiver matrices are given
as:

U =
[
−0.5000 0.8660
0.8660 0.5000

]
, V =

[
−0.5000 0.8660
0.8660 0.5000

]
At this point, the design process is completed. Through sim-
ulation, the Frobenius norm of the steady-state covariance
matrix tends to a finite constant, i.e.,

lim
k→∞
||X (k)||F = 0.6166

FIGURE 4. Closed-loop evolution of ||X (k)||F .

and the closed-loop evolution of ||X (k)||F is shown in Fig.4,
fromFig.4we can also see that the Frobenius norm of the state
covariance matrix tends to a finite constant. According to the
above results, the closed-loop system is stable. In addition,
the SNR constraints are satisfied,

E{v21} = 7.9514 < s21 = 8, E{v22} = 8.9514 < s22 = 9

From the above number examples, we can see that the
multi-input discrete-time systems over stochastic multiplica-
tive and additive white Gaussian noise channels can be
stabilized as long as the conditions in Theorem 5.1 or
Theorem 6.1 are satisfied. These results can provide theoret-
ical basis for the controller design of NCSs.

VIII. CONCLUSIONS
This paper discusses the mean square stabilization problem
for discrete-time NCSs. A memoryless fading channel is
modeled as a cascade of multiplicative noise and additive
noise channel. The channel capacity for such a channel is

given from the perspective of information theory. Two chan-
nel structures are discussed depending on whether the total
channel capacity can be allocated. The necessary and suf-
ficient conditions for mean square stabilizability of NCSs
under both structures are given by using the channel resources
and the majorization conditions, respectively. The conditions
are expressed in terms of the open-loop system topological
entropy or the Mahler measure. Finally, numerical examples
demonstrate the validity of the conclusions.
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