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ABSTRACT To make joints of a redundant manipulator moving automatically to a target state, a state-
adjustment (SA) scheme is studied and modified in this paper. Specifically, owing to the problem of non-zero
initial joint velocity in the SA scheme leading to a potential hazard to redundant manipulators, a modified
state-adjustment (MSA) scheme is obtained on the basis of the SA scheme. The MSA scheme achieves the
state adjustment by minimizing the differences between the joint angles and the target values. For solving
the MSA scheme, a recurrent neural network (RNN) model is derived, of which the critical component is
to iterate over the joint angles and joint velocities. The MSA scheme solved by the RNN model enables the
redundant manipulator to adjust to the target state automatically while ensuring that the initial joint velocity
is zero. Beyond that, several comparative simulations demonstrate the availability and accuracy of the MSA
scheme solved by the RNN model in controlling the state adjustment of redundant manipulators.

INDEX TERMS State-adjustment scheme, recurrent neural network, redundant manipulators.

I. INTRODUCTION
Recently, with the gradual maturity of robot technology,
manipulators have become a common tool in industrial pro-
duction and other fields [1]–[3]. A manipulator with more
degrees of freedom than required to complete tasks is called
a redundant manipulator. Compared with non-redundant
manipulators, redundant manipulators are more flexible,
which provides the possibility of controlling the pose and
avoiding obstacles when executing tasks [4]–[6]. Therefore,
in recent years, redundant manipulators have received con-
siderable attention, and studies on the motion control and
applications of redundant manipulators have emerged in an
endless stream [7]–[11]. For example, Xie et al. exploit
data-driven technology to fulfill the flexible performance
of redundant manipulators and present a high-performance
repetitive motion scheme [10]. Besides, the control approach
is extended to the acceleration level with the quantitative
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relationship between the joint space error and Cartesian space
error explored [11].

The redundancy solution scheme is the method to obtain
the optimal joint angles referring to the optimization index
when the target trajectory of the end-effector is known
[12], [13]. The optimization technique, especially quadratic
programming, is a common technique in the redundancy
solution problem. Generally speaking, when performing a
redundancy solution, the redundancy solution problemwould
be transformed into an optimization problem and solved by
numerical algorithms (e.g., Newton iteration, gradient-related
methods, neural networks) [14]. The Newton iteration and its
related improvement methods can make the system converge
to the theoretical solution, but some of them are only applica-
ble to the solution of static problems [15]. For the problem of
redundancy resolution which needs to be solved dynamically,
these methods bring about the time-delay problem due to
the absence of leveraging the time derivatives of dynamic
parameters. Neural networks, with universal approximation
property [16], fault-tolerance [17], parallelism [18], and
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excellent learning capabilities [19], are widely applied to
address all kinds of complicated problems [20]. Recurrent
neural networks (RNNs) have natural advantages in solving
real-time problems because they contain hidden layers that
can store data from the past, which is conducive to subsequent
computations [21]. To date, numerous RNNs have been
exploited to solve dynamic optimization problems converted
from robotics [22]–[25]. For instance, in [24], a neural
algorithm with an estimation on Hessian matrix inversion,
as a special kind of RNN, is presented to solve the dynamic
unconstrained optimization problem. Besides, a discrete-time
neural dynamics model is further investigated in [25] for han-
dling complex-valued quadratic programming problems with
equality constraints and applied to robot motion generation.

State adjustment refers to the process of moving themanip-
ulator from the current state to the target state [26] without
the displacement of the end-effector. Most of the research
on the redundant manipulator focuses on motion planning
such as the manipulability optimization method stated in [27]
during the task execution of the redundant manipulator, but
there are few achievements on the problem of state adjustment
[28]–[30]. In fact, state adjustment is imperative in certain
situations [31], [32]. For instance, some tasks require the
initial pose of the manipulator to be in a specific state, and
thus the manipulator needs to be adjusted to the specific state
for performing subsequent operations [33], [34]. Moreover,
during the execution of repetitive motion, the joint drift phe-
nomenon happens occasionally, which means that the joints
of the manipulator fail to return to their original states for
a completed task cycle [35], [36]. Considering the problems
described above, a state-adjustment (SA) scheme based on
the perspective of kinematics is studied and modified, which
allows joint angles to converge to target values with high
precision automatically. Owing to the SA scheme failing to
guarantee zero initial joint velocity, this paper further inves-
tigates a modified state-adjustment (MSA) scheme that is
exactly right to handle the problem of non-zero initial joint
velocity, and then an RNN is proposed to solve this MSA
scheme. Eventually, the validity and accuracy of the redun-
dant manipulator synthesized by the MSA scheme solved by
the RNN model for moving from the initial state to the target
state are illustrated by simulations.

The remainder of the paper is divided into the follow-
ing sections. In Section II, the SA scheme for redundant
manipulators is firstly discussed, and then an MSA scheme
is explored as an improvement. As described in Section III,
an RNN model is derived to solve the MSA scheme, and its
convergence is presented as well. In Section IV, comparative
simulations are carried out to examine the effectiveness of the
MSA scheme solved by the RNN. Section V concludes this
paper. Before ending the current section, the main contribu-
tions of the paper are generalized as follows:
1) The MSA scheme researched in this paper is able to

make the redundant manipulator move from one state to
the target state via decreasing the difference between the
joint angle and the target state without the displacement

of the end-effector. Considering the physical realizabil-
ity, theMSA scheme exploits andmodifies the constraint
of joint velocity to obtain the zero initial joint velocity.

2) An RNN is proposed to solve the MSA scheme at the
velocity level with the proof on its global convergence
displayed. The simulations based on Cartesian three-
dimensional space under different parameter setting
conditions verify the validity and accuracy of the MSA
scheme solved by the RNN model. Besides, the influ-
ence of parameters on the convergence speed and accu-
racy is explored through comparison simulation.

II. SA SCHEME AND MSA SCHEME
In this section, anMSA schemewith zero initial joint velocity
is studied to adjust the pose of the redundant manipulator to
the target state based on the SA scheme.

A. SA SCHEME
Before the research on the SA scheme, the essential kinematic
equations of the redundant manipulator is explained. Assume
that the number of joints of the redundant manipulator is m
and the joint angle is σ (t) = [σ1, σ2, · · · , σm]T ∈ Rm with
the superscript T denoting the transpose operator. By defining
f (·) as the mapping between the joint angles and position of
the end-effector of the redundant manipulator, the position
pe ∈ Rk is expressed as pe = f (σ (t)), and the velocity of the
end-effector ṗe is written as

ṗe = J σ̇ (t), (1)

where J = ∂f (σ (t))/∂σ (t) ∈ Rk×m, and σ̇ (t) is the joint
velocity. In addition, suppose that the initial state or current
state of the redundant manipulator is σ (0) ∈ Rm, and the
target state is σs ∈ Rm. The ultimate goal of the designed SA
scheme is σ (t) = σs, that is, each joint angle of the redundant
manipulator should change into the target value.

According to the above explanations, the SA scheme is
constructed as

min
1
2
σ̇T(t)σ̇ (t)+ %T(t)σ̇ (t)

s.t. J σ̇ (t) = ṗe
σ− ≤ σ (t) ≤ σ+

σ̇− ≤ σ̇ (t) ≤ σ̇+, (2)

where %(t) = r(σ (t) − σs) ∈ Rm; r > 0; σ̇ (t) =
dσ (t)/dt is the real-time joint velocity; σ∓ and σ̇∓ are the
lower and upper bound limits of the joint angle and joint
velocity separately. Note that, the position of the end-effector
remains unchanged during the state adjustment task, resulting
in ṗe = 0. In SA scheme (2), the objective function can
realize the pose adjustment of the redundant manipulator, and
its constraint conditions can guarantee that σ̇ (t) and σ (t) are
kept within the constraint range.

The following remark focuses on explaining the intrinsic
consistency between the minimized objective function and
the expected result σ (t) = σs.
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Remark 1: In the SA scheme (2), the redundant robot
manipulator can automatically approach the target state by
minimizing σ̇T(t)σ̇ (t)/2+ %T(t)σ̇ (t).

The derivation of the minimization index σ̇T(t)σ̇ (t)/2 +
%T(t)σ̇ (t) is explained in detail next. First, make the following
definitions:

e(t) = σ (t)− σs, (3)

and

ė(t) = −re(t), (4)

where e(t) ∈ Rm denotes the error between the joint angle
and the target state, and ė(t) = de(t)/dt is its derivative. The
solution to differential equation (4) is

e(t) = e(0) exp(−rt), (5)

where e(0) = σ (0)−σs is the initial angle error. As observed
from (5), e(t) converges exponentially to zero and r can adjust
the convergence rate. Thanks to the convergence of e(t),
the final state of the redundant manipulator can be consistent
with the target state if there is sufficient adjustment time.
Secondly, the combination of (3) and (4) brings about

σ̇ (t)+ r(σ (t)− σs) = 0. (6)

The above analysis can be summarized that, the joint angle
can exponentially converge to σs as long as (6) is satisfied.
Hence, the state adjustment of a redundant manipulator can
be carried out by minimizing σ̇ (t) + r(σ (t) − σs). Due to
the hidden demands in the redundant manipulator’s task, it is
‖σ̇ (t)+r(σ (t)−σs)‖22 more appropriate in physical operations
rather than σ̇ (t) + r(σ (t) − σs), where ‖ · ‖2 is the operator
to obtain the two-norm of a vector. Expand ‖σ̇ (t)+ r(σ (t)−
σs)‖22 and define %(t) = r(σ (t)− σs) to get

‖σ̇ (t)+ r(σ (t)− σs)‖22
= σ̇T(t)σ̇ (t)+ 2%T(t)σ̇ (t)+ %T(t)%(t). (7)

In terms of the velocity level, %T(t)%(t) is a constant.
Eventually, the minimum index of the SA scheme (2) is
described as σ̇T(t)σ̇ (t)/2+ %T(t)σ̇ (t), with ignoring the per-
formance of %T(t)%(t).

B. MSA SCHEME
In the task of solving real-time joint velocities, it is a compli-
cated thing to constrain joint angles, and thus, two different
levels of joint physical constraints in SA scheme (2) should
be written as a comprehensive constraint. The new bounds of
the joint velocity are redefined as ψ∓, and the new upper and
lower limits of the jth joint velocity are expressed as

ψ+j = min{σ̇+j , λ(σ
+

j − σj)}

ψ−j = max{σ̇−j , λ(σ
−

j − σj)}, (8)

where σ̇+j and σ+j are the upper limits of the jth joint velocity
and angle; σ̇−j and σ−j are the lower limits of jth joint velocity
and angle; λ > 0 is the scale factor. In (8), once the joint angle

is too large, the inherent upper limit of joint velocity would
be replaced by λ(σ+j − σj), which drives the joint angle to
change into the constraint range. Similarly, when the joint
angle is too small, λ(σ−j − σj) would replace the inherent
lower limit of joint velocity, avoiding the joint velocities
out of the constraint range. In this way, the range of joint
velocities can be controlledwhile the range of joint angles can
be constrained. Note that, in this subsection and subsequent
derivations, these time-varying variables are simplified such
as σ for σ (t).
Aided with the preparatory work above, SA scheme (2) is

simplified as

min
1
2
ωTω + %Tω

s.t. Jω = ṗe
ψ− ≤ ω ≤ ψ+, (9)

where ω = σ̇ ∈ Rm. Formally, SA scheme (2) is simplified
as a quadratic optimization scheme at the velocity level,
which only contains a range constraint and is easier to solve,
in contrast to SA scheme (2).

The SA scheme (2) generally leads to a phenomenon that
the initial joint velocity is not zero with the influence of
ω(0) = −r(σ (0) − σs). In practice, the joint velocity of
the redundant manipulator maintains zero at the beginning
of the movement, and then gradually increases. If there is
a large joint velocity at the initial state, the damage to the
redundant manipulator is self-evident. Therefore, the follow-
ing improvements are added to get the MSA scheme:

min
1
2
ωTω + %Tω

s.t. Jω = ṗe
9− ≤ ω ≤ 9+, (10)

where 9− and 9+ are the modified lower and upper bounds
of the joint velocity. Specifically, 9− and 9+ are defined as

9− = sin(π t/2T )ψ−

9+ = sin(π t/2T )ψ+, (11)

where T is the stipulated state-adjustment time. Compared
with (8), a time-varying sine function is added to the con-
straint as a multiplier, which enables the limits of joint
velocity to expand gradually during the motion, makes the
joint velocity to increase from zero and avoids the prob-
lem of excessive initial joint velocity. Hence, through this
method, MSA scheme (10) possesses the merit of zero initial
joint velocity and becomes more safe and reliable than SA
scheme (2).

III. SOLUTION
To obtain joint velocity data that can control the motion of
redundant manipulator, developing a corresponding solver
to solve MSA scheme (10) is indispensable. The following
content is the derivation procedure of the effective RNN
model solver.
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First, based on MSA scheme (10), a Lagrangian function
is defined as F(ω) = ωTω/2 + %Tω + γ TJω, with γ ∈ Rk

denoting the Lagrange-multiplier vector. As known from the
Karush-Kuhn-Tucker condition [37], the optimal solution to
MSA scheme (10) satisfies

N9 (ω)+
∂F
∂ω
3 0,

Jω = 0, (12)

where N9 (ω) is the normal cone of set 9 at ω and satisfies

(η − ω)T(
∂F
∂ω

) ≥ 0, ∀η ∈ 9. (13)

Preform the following operations to get

‖η − (ω −
∂F
∂ω

)‖22 − ‖ω − (ω −
∂F
∂ω

)‖22

= ‖ω − η‖22 + 2(η − ω)T(
∂F
∂ω

) ≥ 0. (14)

Then, (12) is reformulated into

ω = 09 (ω −
∂F
∂ω

) = 09 (−%−JTγ ), (15)

where the projection function 09 (·) is defined as

09 (a) = arg min‖h− a‖22, ∀h ∈ 9 (16)

with 0 ∈ 9 and is equivalent to

09 (a) = b, with ‖h− a‖22 − ‖b− a‖
2
2 ≥ 0,

b ∈ 9, ∀h ∈ 9. (17)

Finally, to solve equation (15), an RNN is exploited and
written as a differential equation:

εω̇ = −ω + 09 (−%−JTγ ),

εγ̇ = Jω, (18)

where ε > 0 is the proportional coefficient.
Facilitated by the same derivation method, the correspond-

ing RNN exploited for the SA scheme (2) is described as
follows:

εω̇ = −ω + 0ψ (−%−JTγ ),

εγ̇ = Jω, (19)

where the definition of nonlinear projection function 0ψ (·)
is the same as (16), except that 9 is replaced by ψ . Note
that RNN model (19) is different from RNN (18) although
they are similar except for the individual parameter. Besides,
the RNN model (18) is applied to solve MSA scheme (10),
and the other is used for solving SA scheme (2).

The following theorem illustrates the convergence of RNN
model (18) in solving MSA scheme (10).
Theorem 1: The output of proposed RNN model (18) for

solving MSA scheme (10) converges to its optimal solution.
Proof: First, by defining ρ = [ω, γ ]T ∈ � with � =

{[ω, γ ]T ∈ Rk+m
|ω ∈ 9, γ ∈ Rk

}, (18) is rewritten as

ερ̇ = −ρ + 0�(ρ − G(ρ)), (20)

where the function G(ρ) is defined as

G(ρ) =
[
ω + % + JTγ
−Jω

]
∈ Rm+k , (21)

and its gradient is

∇G =
[
I JT

−J 0

]
∈ Rk+m×k+m, (22)

with I standing for an identity matrix, and∇ being the symbol
for the gradient. Then, the monotonicity of G(ω) is inferred
from

(ρ1 − ρ2)T(G(ρ1)− G(ρ2))

= (ρ1 − ρ2)T∇G(ς )(ρ1 − ρ2)

= (ρ1 − ρ2)T(∇G(ς )+∇TG(ς ))(ρ1 − ρ2) ≥ 0, (23)

where ρ1 and ρ2 are two arbitrary vectors in set�, and ς ∈ �
is a vector between ρ1 and ρ2. Facilitated by these derivations
and lemmas in [38], RNN model (18) is Lyapunov stable and
its equilibrium point ρ′ conforms to the following variational
inequality:

(ρ − ρ′)TG(ρ′) ≥ 0, ρ ∈ �. (24)

According to the properties of variational inequalities, (24)
can also be converted into the following equation:

−ρ′ + 0�(ρ′ − G(ρ′)) = 0. (25)

The above projection equation has the same solution of (20),
which indicates that the output of RNNmodel (18) converges
to the optimal solution of MSA scheme (10). The proof is
complete. �

IV. SIMULATION
In current part, for verifying the effectiveness and reliability
of the MSA scheme (10) solved by RNN model (18), a series
of simulations are carried out.

A. SIMULATION SETTING
Simulations are based on the redundant manipulator KUKA
with seven degrees of freedom, and the joint physical limits
are as follows: the upper and lower limits of the first, third,
fifth and seventh joint angles are 17/18π and −17/18π rad
separately; the upper and lower limits for the second, fourth,
and sixth joint angles are 2/3π and −2/3π rad separately;
the upper and lower limits of each joint velocity are 1.5 and
−1.5 rad/s, respectively. Suppose that the initial states of each
joint angle are 0.981028, −0.980346, 0.283290, 0.803084,
−1.557347, −2.059395, and 1.070796 rad, and the target
states are π/4, −π/4, π/6, π/3, −π/3, −π/2, and π/2
rad. Moreover, the scale factor λ is 20 and the proportion
coefficient ε is 0.001. Simulations consist of two parts: the
first part is the simulation of SA scheme (2) solved by RNN
model (19); the second part includes the simulations of the
MSA scheme (10) solved by RNNmodel (18) under different
parameter settings.
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FIGURE 1. Simulation results of the redundant manipulator synthesized by SA scheme (2) solved by RNN model (19) with T = 3 s and
r = 4. (a) The initial state and final state. (b) Motion trajectory. (c) Position of the end-effector. (d) Profiles of position errors. (e) Profiles
of joint angles. (f) Profiles of joint velocities.

B. SIMULATION RESULTS
The simulation of the redundant manipulator synthesized by
SA scheme (2) without zero initial joint velocity is carried
out with results shown in Fig. 1. More specifically, the initial
state and final state are revealed in Fig. 1(a). The motion
trajectory during the adjustment can be seen in Fig. 1(b),
in which motion trajectories are sparse near the initial state
and become dense near the final state. Owing to the same
sampling interval between two adjacent trajectories, this phe-
nomenon suggests that the redundant manipulator possesses
a large joint velocity at the initial moment and a low joint
velocity at the end. Besides, from the position and position
errors of the end-effector displayed in Fig. 1(c) and (d),
it can be generalized that the end-effector of the manipulator
does not change significantly during the state adjustment.
Moreover, as observed in Fig. 1(e) and (f), joint angles can
converge from the initial values to the target ones and the
joint velocities decrease to zero from a very large one, which
goes against the reality that the joint velocities are zero at the
start of the task. In addition, the joint velocities of the sixth
and seventh remain unchanged at 1.5 rad/s for a short time
at the beginning, of which the reason is that the two initial
joint velocities (σ̇6(0) ≈ 1.95 > 1.5 rad/s and σ̇7(0) ≈
2.00 > 1.5 rad/s) calculated by σ̇ (0) = −r(σ (0) − σs) in
Remark 1 exceed their physical constraints and are adjusted
to the boundary values 1.5 rad/s.

The rest content is the simulations of theMSA scheme (10)
for the state adjustment of the redundant manipulator, which
involves three cases with the corresponding parameter set-
tings for each case as follows: case 1) T = 3 s and r = 4;

case 2) T = 3 s and r = 8; case 3) T = 5 s and
r = 4. The convergence rate and accuracy of the MSA
scheme (10) solved by the proposed RNN model (18) are
further explored by comparing the simulations under these
three cases. In case 1), the initial state, final state, and motion
trajectory of the redundant manipulator synthesized by MSA
scheme (10) solved by RNN model (18) with T = 3 s and
r = 4 are shown in Fig. 2(a) and (b). Evidently, motion
trajectories are dense when approaching the initial state and
the final state, and sparse in the middle part, which indicates
that the redundant manipulator moves slowly at the beginning
and end of the state adjustment, and moves fast during the
intermediate process. Furthermore, by observing the position
and position errors of the end-effector in Fig. 2(c) and (d),
it is found that there is no obvious displacement at the
end-effector of the manipulator, which is consistent with
the theoretical analysis. Moreover, profiles of joint angles
and velocities are displayed in Fig. 2(e) and (f), in which
joint angles converge to the target values in 2 s, and joint
velocities increase from zero. Compared with the results of
SA scheme (2) in Fig. 1(f), MSA scheme (10) can indeed
deal with the problem of non-zero initial joint velocity such
that it becomes more applicable. In addition, to observe the
results of the state adjustment more accurately, joint-angle
errors are revealed in Table 1, in which the absolute values of
joint errors under case 1) are all less than 4.3503× 10−5 rad.

For further analysis, simulation of the redundant manip-
ulator synthesized by MSA scheme (10) solved by RNN
model (18) under case 2) is conducted and the corresponding
results are revealed in Fig. 3. In the simulation, only joint
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FIGURE 2. Simulation results of the redundant manipulator synthesized by MSA scheme (10) solved by RNN model (18) with T = 3 s and
r = 4. (a) The initial state and final state. (b) Motion trajectory. (c) Position of the end-effector. (d) Profiles of position errors. (e) Profiles
of joint angles. (f) Profiles of joint velocities.

FIGURE 3. Joint angles and velocities of the redundant manipulator synthesized by MSA
scheme (10) solved by RNN model (18) with T = 3 s and r = 8. (a) Profiles of joint angles.
(b) Profiles of joint velocities.

angles and velocities are analyzed, because other simulation
results are almost the same as those under case 1) in Fig. 2.
By observing the joint angles in Fig. 3(a), it is found that joint
angles converge to the target values in 1.5 s, which indicates
that the convergence rate of joint angles is improved when r is
increased. Furthermore, joint velocities in Fig. 3(b) gradually
increase from zero at the beginning and drop to zero around
1.5 s. To explore the change of accuracywith the increase of r ,
the errors of joint angles are calculated and shown in Table 2,
in which the maximum of the absolute value of the error is
less than 2.35 × 10−7 rad. In contrast to errors in Table 1,
the accuracy is almost a hundred times better, which implies
that the accuracy can be improved by increasing r .
As for case 3), joint angles and velocities of the redundant

manipulator synthesized by MSA scheme (10) solved by
RNNmodel (18) are shown in Fig. 4. Increasing the task time

TABLE 1. Angle error by applying RNN (18) under Case 1.

to 5 s, joint angles in Fig. 4(a) still converge to the target value
in 2 s, and joint velocities in Fig. 4(b) drop to zero around 2 s,
which indicates that the increase of task time does not affect
the convergence rate of joint angles. For exploring the impact
of task time on the accuracy, the errors of joint angles are
calculated and revealed in Table 3, in which the absolute

109788 VOLUME 8, 2020



L. Jin et al.: Recurrent Neural Network for State Adjustment of Redundant Manipulators

FIGURE 4. Joint angles and velocities of the redundant manipulator synthesized by MSA
scheme (10) solved by RNN model (18) with T = 5 s and r = 4. (a) Profiles of joint angles.
(b) Profiles of joint velocities.

TABLE 2. Angle Error by Applying RNN (18) under Case 2.

TABLE 3. Angle Error by Applying RNN (18) under Case 3.

values of the error are all almost a hundred times lower than
those obtained under case 1). It can be summarized from
simulation results under case 3) that changing the task time T
improves the accuracy but does not change the convergence
rate.

In conclusion, MSA scheme (10) solved by RNN
model (18) can solve the problem of non-zero initial joint
velocity during the state adjustment, which can change the
convergence rate by modifying r , and achieve the desired
accuracy by adjusting r and T .

V. CONCLUSION
In this paper, for controlling state adjustment of redundant
manipulators, based on the modification of the SA scheme,
an MSA scheme has been discussed, which can deal with
the non-zero initial joint velocity. To be specific, the MSA
scheme concentrates on minimizing the deviations between
joint angles and target values, and its constraints include the
joint angle constraints and joint velocity constraints. Besides,
a sine function multiplier has been added to constrain the
initial joint velocity on the basis of the joint limits, which
is different from the SA scheme. Further, RNN models have
been proposed to solve the SA scheme and the MSA scheme

separately. Eventually, the comparative simulation results
have elucidated that the MSA scheme with the assistance
of the proposed RNN model can remedy the problem of
the non-zero initial joint velocity and improve the accuracy
greatly by modifying related parameters.
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